1
|
Lin WY, Fordham SE, Hungate E, Sunter NJ, Elstob C, Xu Y, Park C, Quante A, Strauch K, Gieger C, Skol A, Rahman T, Sucheston-Campbell L, Wang J, Hahn T, Clay-Gilmour AI, Jones GL, Marr HJ, Jackson GH, Menne T, Collin M, Ivey A, Hills RK, Burnett AK, Russell NH, Fitzgibbon J, Larson RA, Le Beau MM, Stock W, Heidenreich O, Alharbi A, Allsup DJ, Houlston RS, Norden J, Dickinson AM, Douglas E, Lendrem C, Daly AK, Palm L, Piechocki K, Jeffries S, Bornhäuser M, Röllig C, Altmann H, Ruhnke L, Kunadt D, Wagenführ L, Cordell HJ, Darlay R, Andersen MK, Fontana MC, Martinelli G, Marconi G, Sanz MA, Cervera J, Gómez-Seguí I, Cluzeau T, Moreilhon C, Raynaud S, Sill H, Voso MT, Lo-Coco F, Dombret H, Cheok M, Preudhomme C, Gale RE, Linch D, Gaal-Wesinger J, Masszi A, Nowak D, Hofmann WK, Gilkes A, Porkka K, Milosevic Feenstra JD, Kralovics R, Grimwade D, Meggendorfer M, Haferlach T, Krizsán S, Bödör C, Stölzel F, Onel K, Allan JM. Genome-wide association study identifies susceptibility loci for acute myeloid leukemia. Nat Commun 2021; 12:6233. [PMID: 34716350 PMCID: PMC8556284 DOI: 10.1038/s41467-021-26551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).
Collapse
Affiliation(s)
- Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah E Fordham
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric Hungate
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Nicola J Sunter
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yaobo Xu
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Park
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne Quante
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Konstantin Strauch
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Christian Gieger
- Ludwig-Maximilians-Universität München, Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Munich, Germany
| | - Andrew Skol
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Junke Wang
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Theresa Hahn
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Alyssa I Clay-Gilmour
- Arnold School of Public Health, Department of Epidemiology & Biostatistics, University of South Carolina, Greenville, USA
| | - Gail L Jones
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Helen J Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Graham H Jackson
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Tobias Menne
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Mathew Collin
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College Medical School, London, UK
| | - Robert K Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alan K Burnett
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK
| | - Nigel H Russell
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Richard A Larson
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Michelle M Le Beau
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Wendy Stock
- Section of Pediatric Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Abrar Alharbi
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David J Allsup
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jean Norden
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisabeth Douglas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Clare Lendrem
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Palm
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Kim Piechocki
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Sally Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Martin Bornhäuser
- Department of Haematological Medicine, The Rayne Institute, King's College London, London, UK
- National Center for Tumor Diseases NCT, Partner site Dresden, Dresden, Germany
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Heidi Altmann
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Leo Ruhnke
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Desiree Kunadt
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca Darlay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mette K Andersen
- Department of Clinical Genetics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Maria C Fontana
- Institute of Hematology "L. and A. Seràgnoli", University of Bologna, Bologna, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Miguel A Sanz
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - José Cervera
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Inés Gómez-Seguí
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Cluzeau
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Chimène Moreilhon
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Sophie Raynaud
- Hematology department, Cote d'Azur University, CHU of Nice, Nice, France
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Maria Teresa Voso
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Francesco Lo-Coco
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Hervé Dombret
- Hôpital Saint-Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Meyling Cheok
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Claude Preudhomme
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Rosemary E Gale
- Department of Haematology, University College London Cancer Institute, London, UK
| | - David Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Julia Gaal-Wesinger
- 1st Department of Internal Medicine, Semmewleis University, Budapest, Hungary
| | - Andras Masszi
- 3rd Department of Internal Medicine, Semmewleis University, Budapest, Hungary
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Amanda Gilkes
- Department of Haematology, University of Cardiff, Cardiff, UK
| | - Kimmo Porkka
- Helsinki University Hospital Comprehensive Cancer Center, Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Grimwade
- Department of Medical and Molecular Genetics, King's College Medical School, London, UK
| | | | | | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany.
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Jann JC, Streuer A, Hecht A, Nolte F, Nowak V, Danner J, Obländer J, Palme I, Lengfelder E, Platzbecker U, Hofmann WK, Flach J, Nowak D. RNA-sequencing of acute promyelocytic leukemia primary blasts reveals novel molecular biomarkers of early death events. Leuk Lymphoma 2020; 61:3066-3077. [PMID: 32723198 DOI: 10.1080/10428194.2020.1797006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although acute promyelocytic leukemia (APL) has evolved to the AML entity with the best prognosis, typical 'early death' (ED) events still account for mortality rates of ∼20% in population-based studies. To investigate this poorly understood issue we performed whole transcriptome analysis of n = 7 APL ED cases compared to n = 7 APL cases with long term remission. We discovered the proteins S100A8/S100A9 and EFEMP1 as the most differentially expressed factors. In an independent cohort of n = 58 APL patients EFEMP1 over-expression was associated with a worse overall survival. Furthermore, a subgroup analysis of ED caused by hemorrhagic complications revealed an association of metallothioneins (MT1G/MT1E) with higher bleeding rates, ED events and negative prognostic effects on overall survival. Finally, we identified a novel TPM4-KLF2 fusion transcripts in 44/64 APL samples. In summary, we report a comprehensive transcriptomic analysis and novel potential biomarkers of ED biology, which highlight novel pathways in ED events in APL.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Hecht
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Justine Danner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eva Lengfelder
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Uwe Platzbecker
- Department of Hematology and Oncology, University Hospital, Leipzig, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers (Basel) 2020; 12:cancers12030624. [PMID: 32182684 PMCID: PMC7139833 DOI: 10.3390/cancers12030624] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Although acute promyelocytic leukemia (APL) is one of the most characterized forms of acute myeloid leukemia (AML), the molecular mechanisms involved in the development and progression of this disease are still a matter of study. APL is defined by the PML-RARA rearrangement as a consequence of the translocation t(15;17)(q24;q21). However, this abnormality alone is not able to trigger the whole leukemic phenotype and secondary cooperating events might contribute to APL pathogenesis. Additional somatic mutations are known to occur recurrently in several genes, such as FLT3, WT1, NRAS and KRAS, whereas mutations in other common AML genes are rarely detected, resulting in a different molecular profile compared to other AML subtypes. How this mutational spectrum, including point mutations in the PML-RARA fusion gene, could contribute to the 10%–15% of relapsed or resistant APL patients is still unknown. Moreover, due to the uncertain impact of additional mutations on prognosis, the identification of the APL-specific genetic lesion is still the only method recommended in the routine evaluation/screening at diagnosis and for minimal residual disease (MRD) assessment. However, the gene expression profile of genes, such as ID1, BAALC, ERG, and KMT2E, once combined with the molecular events, might improve future prognostic models, allowing us to predict clinical outcomes and to categorize APL patients in different risk subsets, as recently reported. In this review, we will focus on the molecular characterization of APL patients at diagnosis, relapse and resistance, in both children and adults. We will also describe different standardized molecular approaches to study MRD, including those recently developed. Finally, we will discuss how novel molecular findings can improve the management of this disease.
Collapse
Affiliation(s)
- Alessandro Liquori
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Mariam Ibañez
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Claudia Sargas
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Miguel Ángel Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Eva Barragán
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - José Cervera
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Genomic CDKN2A/2B deletions in adult Ph + ALL are adverse despite allogeneic stem cell transplantation. Blood 2018; 131:1464-1475. [PMID: 29348129 DOI: 10.1182/blood-2017-07-796862] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022] Open
Abstract
We investigated the role of copy number alterations to refine risk stratification in adult Philadelphia chromosome positive (Ph)+ acute lymphoblastic leukemia (ALL) treated with tyrosine kinase inhibitors (TKIs) and allogeneic stem cell transplantation (aSCT). Ninety-seven Ph+ ALL patients (median age 41 years; range 18-64 years) within the prospective multicenter German Multicenter ALL Study Group studies 06/99 (n = 8) and 07/2003 (n = 89) were analyzed. All patients received TKI and aSCT in first complete remission (CR1). Copy number analysis was performed with single nucleotide polymorphism arrays and validated by multiplex ligation-dependent probe amplification. The frequencies of recurrently deleted genes were: IKZF1, 76%; CDKN2A/2B, 45%; PAX5, 43%; BTG1, 18%; EBF1, 13%; ETV6, 5%; RB, 14%. In univariate analyses, the presence of CDKN2A/2B deletions had a negative impact on all endpoints: overall survival (P = .023), disease-free survival (P = .012), and remission duration (P = .036). The negative predictive value of CDKN2A/2B deletions was retained in multivariable analysis along with other factors such as timing of TKI therapy, intensity of conditioning, achieving remission after induction phase 1 and BTG1 deletions. We therefore conclude that acquired genomic CDKN2A/2B deletions identify a subgroup of Ph+ ALL patients, who have an inferior prognosis despite aSCT in CR1. Their poor outcome was attributable primarily to a high relapse rate after aSCT.
Collapse
|
5
|
Ciccone M, Calin GA. MicroRNAs in Myeloid Hematological Malignancies. Curr Genomics 2015; 16:336-48. [PMID: 27047254 PMCID: PMC4763972 DOI: 10.2174/138920291605150710122815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are 19-24 nucleotides noncoding RNAs which silence modulate the expression of target genes by binding to the messenger RNAs. Myeloid malignancies include a broad spectrum of acute and chronic disorders originating from from the clonal transformation of a hematopoietic stem cell. Specific genetic abnormalities may define myeloid malignancies, such as translocation t(9;22) that represent the hallmark of chronic myeloid leukemia. Although next-generation sequencing pro-vided new insights in the genetic characterization and pathogenesis of myeloid neoplasms, the molecular mechanisms underlying myeloid neoplasms are lacking in most cases. Recently, several studies have demonstrated that the expression levels of specific miRNAs may vary among patients with myeloid malignancies compared with healthy individuals and partially unveiled how miRNAs participate in the leukemic transformation process. Finally, in vitro experiments and pre-clinical model provided preliminary data of the safety and efficacy of miRNA inhibitory molecules, opening new avenue in the treatment of myeloid hematological malignancies.
Collapse
Affiliation(s)
- Maria Ciccone
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Gronseth CM, McElhone SE, Storer BE, Kroeger KA, Sandhu V, Fero ML, Appelbaum FR, Estey EH, Fang M. Prognostic significance of acquired copy-neutral loss of heterozygosity in acute myeloid leukemia. Cancer 2015; 121:2900-8. [PMID: 26033747 DOI: 10.1002/cncr.29475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chromosomal abnormalities are important in the diagnosis and prognosis of patients with acute myeloid leukemia (AML). Genomic microarray techniques detect recurrent copy-neutral loss of heterozygosity (cnLOH) in addition to copy number aberrations. However, the clinical utility has not been fully established. Therefore, in the current study, the authors examined the prognostic impact of acquired cnLOH in patients with AML, including complete remission (CR) rate, duration of CR, and overall survival (OS). METHODS A total of 112 consecutive patients with AML who were undergoing chromosome genomic array testing (CGAT) at the Seattle Cancer Care Alliance were included in the current study. DNA from the bone marrow or blood was analyzed with a microarray platform with both single-nucleotide polymorphism (SNP) probes and non-SNP probes to identify acquired cnLOH. Results were correlated with cytogenetic, molecular, immunophenotypic, and other clinicopathological findings. RESULTS Patients with cnLOH demonstrated a shorter duration of CR (hazard ratio, 1.87; P =.04) and worse OS (HR, 1.82; P = .03). Multivariate analyses confirmed the independent predictive value of cnLOH for early disease recurrence (P =.02). These results largely reflected those in patients with intermediate and unfavorable cytogenetics. Most strikingly, 13q cnLOH was found to demonstrate a 6.64-fold higher rate of disease recurrence (P =.006) and 3.45-fold worse OS (P = .02) and was enriched with the FLT3-ITD (Fms-related tyrosine kinase 3-internal tandem duplication) mutation. CONCLUSIONS CnLOH has important prognostic significance in patients with AML. CGAT can replace imbalance fluorescence in situ hybridization and the authors recommend the routine use of CGAT to detect cnLOH, particularly among patients with intermediate-risk cytogenetics.
Collapse
Affiliation(s)
| | - Scott E McElhone
- Cytogenetics Department, Seattle Cancer Care Alliance, Seattle, Washington
| | - Barry E Storer
- Clinical Statistics Department, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kathleen A Kroeger
- Cytogenetics Department, Seattle Cancer Care Alliance, Seattle, Washington
| | - Vicky Sandhu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Matthew L Fero
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington.,Seattle Cancer Care Alliance, Seattle, Washington
| | - Frederick R Appelbaum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington.,Seattle Cancer Care Alliance, Seattle, Washington
| | - Elihu H Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington.,Seattle Cancer Care Alliance, Seattle, Washington
| | - Min Fang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington.,Seattle Cancer Care Alliance, Seattle, Washington
| |
Collapse
|
7
|
Gómez-Seguí I, Sánchez-Izquierdo D, Barragán E, Such E, Luna I, López-Pavía M, Ibáñez M, Villamón E, Alonso C, Martín I, Llop M, Dolz S, Fuster Ó, Montesinos P, Cañigral C, Boluda B, Salazar C, Cervera J, Sanz MA. Single-nucleotide polymorphism array-based karyotyping of acute promyelocytic leukemia. PLoS One 2014; 9:e100245. [PMID: 24959826 PMCID: PMC4069034 DOI: 10.1371/journal.pone.0100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 11/29/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q21), but additional chromosomal abnormalities (ACA) and other rearrangements can contribute in the development of the whole leukemic phenotype. We hypothesized that some ACA not detected by conventional techniques may be informative of the onset of APL. We performed the high-resolution SNP array (SNP-A) 6.0 (Affymetrix) in 48 patients diagnosed with APL on matched diagnosis and remission sample. Forty-six abnormalities were found as an acquired event in 23 patients (48%): 22 duplications, 23 deletions and 1 Copy-Neutral Loss of Heterozygocity (CN-LOH), being a duplication of 8(q24) (23%) and a deletion of 7(q33-qter) (6%) the most frequent copy-number abnormalities (CNA). Four patients (8%) showed CNAs adjacent to the breakpoints of the translocation. We compared our results with other APL series and found that, except for dup(8q24) and del(7q33-qter), ACA were infrequent (≤3%) but most of them recurrent (70%). Interestingly, having CNA or FLT3 mutation were mutually exclusive events. Neither the number of CNA, nor any specific CNA was associated significantly with prognosis. This study has delineated recurrent abnormalities in addition to t(15;17) that may act as secondary events and could explain leukemogenesis in up to 40% of APL cases with no ACA by conventional cytogenetics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Chromosome Aberrations
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- Female
- Humans
- Karyotyping
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/mortality
- Loss of Heterozygosity
- Male
- Middle Aged
- Oncogene Proteins, Fusion/genetics
- Polymorphism, Single Nucleotide
- Prognosis
- Translocation, Genetic
- Young Adult
Collapse
Affiliation(s)
- Inés Gómez-Seguí
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Eva Barragán
- Laboratory of Molecular Biology, Department of Clinical Chemistry, University Hospital La Fe, Valencia, Spain
| | - Esperanza Such
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Irene Luna
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - María López-Pavía
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Mariam Ibáñez
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eva Villamón
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Carmen Alonso
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Iván Martín
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Marta Llop
- Laboratory of Molecular Biology, Department of Clinical Chemistry, University Hospital La Fe, Valencia, Spain
| | - Sandra Dolz
- Laboratory of Molecular Biology, Department of Clinical Chemistry, University Hospital La Fe, Valencia, Spain
| | - Óscar Fuster
- Laboratory of Molecular Biology, Department of Clinical Chemistry, University Hospital La Fe, Valencia, Spain
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Carolina Cañigral
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Blanca Boluda
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Claudia Salazar
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Jose Cervera
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Genetics Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- * E-mail: (IGS); (MAS)
| | - Miguel A. Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
- * E-mail: (IGS); (MAS)
| |
Collapse
|
8
|
Immunophenotypes and immune markers associated with acute promyelocytic leukemia prognosis. DISEASE MARKERS 2014; 2014:421906. [PMID: 25045197 PMCID: PMC4089198 DOI: 10.1155/2014/421906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/08/2014] [Accepted: 05/30/2014] [Indexed: 12/28/2022]
Abstract
CD2+, CD34+, and CD56+ immunophenotypes are associated with poor prognoses of acute promyelocytic leukemia (APL). The present study aimed to explore the role of APL immunophenotypes and immune markers as prognostic predictors on clinical outcomes. A total of 132 patients with de novo APL were retrospectively analyzed. Immunophenotypes were determined by flow cytometry. Clinical features, complete remission (CR), relapse, and five-year overall survival (OS) rate were assessed and subjected to multivariate analyses. The CD13+CD33+HLA-DR-CD34− immunophenotype was commonly observed in patients with APL. Positive rates for other APL immune markers including cMPO, CD117, CD64, and CD9 were 68.7%, 26%, 78.4%, and 96.6%, respectively. When compared with patients with CD2− APL, patients with CD2+ APL had a significantly higher incidence of early death (50% versus 15.7%; P = 0.016), lower CR rate (50% versus 91.1%; P = 0.042), and lower five-year OS rate (41.7% versus 74.2%; P = 0.018). White blood cell (WBC) count before treatment was found to be the only independent risk factor of early death, CR failure, and five-year mortality rate. Flow cytometric immunophenotype analysis can facilitate prompt APL diagnosis. Multivariate analysis has demonstrated that WBC count before treatment is the only known independent risk factor that predicts prognosis for APL in this study population.
Collapse
|
9
|
Stirewalt DL, Pogosova-Agadjanyan EL, Tsuchiya K, Joaquin J, Meshinchi S. Copy-neutral loss of heterozygosity is prevalent and a late event in the pathogenesis of FLT3/ITD AML. Blood Cancer J 2014; 4:e208. [PMID: 24786392 PMCID: PMC4042297 DOI: 10.1038/bcj.2014.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 03/14/2014] [Indexed: 01/31/2023] Open
Abstract
Patients with high FLT3 internal tandem duplication allelic ratios (FLT3/ITD-ARs) have a poor prognosis. Single-nucleotide polymorphism/comparative genomic hybridization, single-cell PCR and colony-forming assays were used to evaluate genotypic evolution of high FLT3/ITD-ARs in 85 acute myeloid leukemia (AML) patients. Microarrays were used to examine molecular pathways disrupted in leukemic blasts with high FLT3/ITD-ARs. Copy-neutral loss of heterozygosity (CN-LOH) was identified at the FLT3 locus in diagnostic samples with high FLT3/ITD-ARs (N=11), but not in samples with low FLT3/ITD-ARs (N=24), FLT3-activating loop mutations (N=11) or wild-type FLT3 (N=39). Single-cell assays showed that homozygous FLT3/ITD genotype was present in subsets of leukemic blasts at diagnosis but became the dominant clone at relapse. Less differentiated CD34+/CD33− progenitor colonies were heterozygous for FLT3/ITD, whereas more differentiated CD34+/CD33+ progenitor colonies were homozygous for FLT3/ITD. Expression profiling revealed that samples harboring high FLT3/ITD-ARs aberrantly expressed genes within the recombination/DNA repair pathway. Thus, the development of CN-LOH at the FLT3 locus, which results in high FLT3/ITD-ARs, likely represents a late genomic event that occurs after the acquisition of the FLT3/ITD. Although the etiology underlying the development of CN-LOH remains to be clarified, the disruption in recombination/DNA repair pathway, which is present before the development of LOH, may have a role.
Collapse
Affiliation(s)
- D L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - K Tsuchiya
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA [3] Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - J Joaquin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - S Meshinchi
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Pediatrics, University of Washington Medical Center, Seattle, WA, USA [3] Children's Oncology Group, Arcadia, CA, USA [4] Department of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
10
|
Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C, Lier A, Eisen C, Nowak V, Zens B, Müdder K, Klein C, Obländer J, Fey S, Vogler J, Fabarius A, Riedl E, Roehl H, Kohlmann A, Staller M, Haferlach C, Müller N, John T, Platzbecker U, Metzgeroth G, Hofmann WK, Trumpp A, Nowak D. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 2014; 14:824-37. [PMID: 24704494 DOI: 10.1016/j.stem.2014.02.014] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/23/2013] [Accepted: 02/26/2014] [Indexed: 01/16/2023]
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of myeloid neoplasms with defects in hematopoietic stem and progenitor cells (HSPCs) and possibly the HSPC niche. Here, we show that patient-derived mesenchymal stromal cells (MDS MSCs) display a disturbed differentiation program and are essential for the propagation of MDS-initiating Lin(-)CD34(+)CD38(-) stem cells in orthotopic xenografts. Overproduction of niche factors such as CDH2 (N-Cadherin), IGFBP2, VEGFA, and LIF is associated with the ability of MDS MSCs to enhance MDS expansion. These factors represent putative therapeutic targets in order to disrupt critical hematopoietic-stromal interactions in MDS. Finally, healthy MSCs adopt MDS MSC-like molecular features when exposed to hematopoietic MDS cells, indicative of an instructive remodeling of the microenvironment. Therefore, this patient-derived xenograft model provides functional and molecular evidence that MDS is a complex disease that involves both the hematopoietic and stromal compartments. The resulting deregulated expression of niche factors may well also be a feature of other hematopoietic malignancies.
Collapse
Affiliation(s)
- Hind Medyouf
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium, 69120 Heidelberg, Germany.
| | - Maximilian Mossner
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Simon Raffel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Carl Herrmann
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany; Division of Theoretical Bioinformatics, DKFZ, 69120 Heidelberg, Germany
| | - Amelie Lier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Christian Eisen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Verena Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Bettina Zens
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Katja Müdder
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Corinna Klein
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Julia Obländer
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Stephanie Fey
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Jovita Vogler
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Eva Riedl
- Department of Pathology, University Hospital Mannheim, 68167 Mannheim, Germany
| | - Henning Roehl
- Department of Orthopedics, University Hospital Mannheim, 68167 Mannheim, Germany
| | | | | | | | - Nadine Müller
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Thilo John
- Department of Traumatology, DRK Hospital Westend, 14050 Berlin, Germany
| | - Uwe Platzbecker
- Technical University Dresden, University Hospital 'Carl Gustav Carus,' Medical Clinic and Policlinic I, 01307 Dresden, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German; German Cancer Consortium, 69120 Heidelberg, Germany.
| | - Daniel Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
11
|
|
12
|
Valli R, Pressato B, Marletta C, Mare L, Montalbano G, Curto FL, Pasquali F, Maserati E. Different loss of material in recurrent chromosome 20 interstitial deletions in Shwachman-Diamond syndrome and in myeloid neoplasms. Mol Cytogenet 2013; 6:56. [PMID: 24330778 PMCID: PMC3914702 DOI: 10.1186/1755-8166-6-56] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/04/2013] [Indexed: 12/19/2022] Open
Abstract
Background An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome (SDS), who have a 30-40% risk of developing MDS and AML. Results We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature. Conclusions The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the breakpoints that we defined are probably common to most patients from the literature. In some SDS patients less material may be lost, due to different distal breakpoints, but the proximal breakpoint is in the same region, always leading to the loss of the EIF6 gene, an event which was related to a lower risk of MDS/AML in comparison with other patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emanuela Maserati
- Dipartimento di Medicina Clinica e Sperimentale, Università dell'Insubria, Via J, H, Dunant, 5, I 21100 Varese, Italy.
| |
Collapse
|
13
|
Outcome of elderly patients with acute promyelocytic leukemia: results of the German Acute Myeloid Leukemia Cooperative Group. Ann Hematol 2012; 92:41-52. [PMID: 23090499 PMCID: PMC3536950 DOI: 10.1007/s00277-012-1597-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022]
Abstract
Despite improvement of prognosis, older age remains a negative prognostic factor in acute promyelocytic leukemia (APL). Reports on disease characteristics and outcome of older patients are conflicting. We therefore analyzed 91 newly diagnosed APL patients aged 60 years or older (30 % of 305 adults with APL) registered by the German AML Cooperative Group (AMLCG) since 1994; 68 patients (75 %) were treated in studies, 23 (25 %) were non-eligible, and 31 % had high-risk APL. Fifty-six patients received induction therapy with all-trans retinoic acid and TAD (6-thioguanine, cytarabine, daunorubicin), and consolidation and maintenance therapy. Treatment intensification with a second induction cycle (high dose cytarabine, mitoxantrone; HAM) was optional (n = 14). Twelve patients were randomized to another therapy not considered in this report. The early death rate was 48 % in non-eligible and 19 % in study patients. With the AMLCG regimen, 7-year overall, event-free and relapse-free survival (RFS) and cumulative incidence of relapse were 45 %, 40 %, 48 %, and 24 %, respectively. In patients treated with TAD–HAM induction, 7-year RFS was superior (83 %; p = 0.006) compared to TAD only, and no relapse was observed. In our registered elderly patients, we see a high rate of non-eligibility for treatment in studies and of high-risk APL. In patients who can undergo a curative approach, intensified chemotherapy is highly effective, but is restricted to a selection of patients. Therefore, new less toxic treatment approaches with broader applicability are needed. Elderly patients might be a particular target group for concepts with arsenic trioxide.
Collapse
|
14
|
Huh J, Jung CW, Kim HJ, Kim YK, Moon JH, Sohn SK, Kim HJ, Min WS, Kim DHD. Different characteristics identified by single nucleotide polymorphism array analysis in leukemia suggest the need for different application strategies depending on disease category. Genes Chromosomes Cancer 2012; 52:44-55. [DOI: 10.1002/gcc.22005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/05/2012] [Accepted: 08/07/2012] [Indexed: 12/19/2022] Open
|