1
|
Carrillo‐Tornel S, Chen‐Liang TH, Zurdo M, Puiggros A, Gómez‐Llonín A, García‐Malo MD, Cuenca‐Zamora EJ, Ortuño FJ, López AMH, Espinet B, Jerez A.
NOTCH1
mutation in chronic lymphocytic leukaemia is associated with an enhanced cell cycle
G1
/S transition and specific cyclin overexpression: Preclinical ground for targeted inhibition. Br J Haematol 2022; 201:470-479. [PMID: 36573331 DOI: 10.1111/bjh.18609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
Studies prior to next-generation sequencing (NGS) showed that the frequent indolent course of chronic lymphocytic leukaemia (CLL) is related to most cells remaining quiescent in the G0 -G1 cell cycle phase, due to the expression of dysregulated cyclin genes. Of note, the activating nature of the NOTCH1 mutation in T lymphoblastic leukaemia also drives the dysregulation of cell cycle genes. Our goal was to comprehensively revisit the cell cycle in NOTCH1-mutated CLL (NOTCH1MUT ) to test for potential therapeutic targets. Among 378 NGS-annotated CLL cases, NOTCH1MUT cells displayed a unique transcriptome profile of G0 -G1 cell cycle components, with an overexpression of early-phase effectors, reaching a 38-, 27- and ninefold change increase for the complex elements CCND3, CDK4 and CDK6, respectively. This NOTCH1MUT cells' profile was related to more cells traversing through the cell cycle. In-vitro targeted inhibition of NOTCH1 gamma-secretase and CDK4/6 reversed the distribution of cells through the cycle phases and enhanced the killing of NOTCH1MUT CLL cells, suggesting new therapeutic approaches.
Collapse
Affiliation(s)
- Salvador Carrillo‐Tornel
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Tzu Hua Chen‐Liang
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - María Zurdo
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory. Pathology Service Hospital del Mar Barcelona Spain
- Translational Research Group on Hematological Neoplasms Hospital del Mar Research Institute (IMIM) Barcelona Spain
| | - Andrea Gómez‐Llonín
- Molecular Cytogenetics Laboratory. Pathology Service Hospital del Mar Barcelona Spain
- Translational Research Group on Hematological Neoplasms Hospital del Mar Research Institute (IMIM) Barcelona Spain
| | - María Dolores García‐Malo
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Ernesto José Cuenca‐Zamora
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
- CB15/00055‐CIBERER Murcia Spain
| | - Francisco José Ortuño
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Ana María Hurtado López
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory. Pathology Service Hospital del Mar Barcelona Spain
- Translational Research Group on Hematological Neoplasms Hospital del Mar Research Institute (IMIM) Barcelona Spain
| | - Andrés Jerez
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
- CB15/00055‐CIBERER Murcia Spain
| |
Collapse
|
2
|
Mangolini M, Maiques-Diaz A, Charalampopoulou S, Gerhard-Hartmann E, Bloehdorn J, Moore A, Giachetti G, Lu J, Roamio Franklin VN, Chilamakuri CSR, Moutsopoulos I, Rosenwald A, Stilgenbauer S, Zenz T, Mohorianu I, D'Santos C, Deaglio S, Hodson DJ, Martin-Subero JI, Ringshausen I. Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape. Nat Commun 2022; 13:6220. [PMID: 36266281 PMCID: PMC9585083 DOI: 10.1038/s41467-022-33739-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Johannes Bloehdorn
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Andrew Moore
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Giorgia Giachetti
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | | | | | - Ilias Moutsopoulos
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Andreas Rosenwald
- Pathologisches Institut Universität Würzburg, 97080, Würzburg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer, Research Centre, Heidelberg, Germany
| | - Irina Mohorianu
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Daniel J Hodson
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ingo Ringshausen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
3
|
Pérez‐Carretero C, Hernández‐Sánchez M, González T, Quijada‐Álamo M, Martín‐Izquierdo M, Santos‐Mínguez S, Miguel‐García C, Vidal M, García‐De‐Coca A, Galende J, Pardal E, Aguilar C, Vargas‐Pabón M, Dávila J, Gascón‐Y‐Marín I, Hernández‐Rivas J, Benito R, Hernández‐Rivas J, Rodríguez‐Vicente A. TRAF3 alterations are frequent in del-3'IGH chronic lymphocytic leukemia patients and define a specific subgroup with adverse clinical features. Am J Hematol 2022; 97:903-914. [PMID: 35472012 DOI: 10.1002/ajh.26578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/08/2022]
Abstract
Interstitial 14q32 deletions involving IGH gene are infrequent events in chronic lymphocytic leukemia (CLL), affecting less than 5% of patients. To date, little is known about their clinical impact and molecular underpinnings, and its mutational landscape is currently unknown. In this work, a total of 871 CLLs were tested for the IGH break-apart probe, and 54 (6.2%) had a 300 kb deletion of 3'IGH (del-3'IGH CLLs), which contributed to a shorter time to first treatment (TFT). The mutational analysis by next-generation sequencing of 317 untreated CLLs (54 del-3'IGH and 263 as the control group) showed high mutational frequencies of NOTCH1 (30%), ATM (20%), genes involved in the RAS signaling pathway (BRAF, KRAS, NRAS, and MAP2K1) (15%), and TRAF3 (13%) within del-3'IGH CLLs. Notably, the incidence of TRAF3 mutations was significantly higher in del-3'IGH CLLs than in the control group (p < .001). Copy number analysis also revealed that TRAF3 loss was highly enriched in CLLs with 14q deletion (p < .001), indicating a complete biallelic inactivation of this gene through deletion and mutation. Interestingly, the presence of mutations in the aforementioned genes negatively refined the prognosis of del-3'IGH CLLs in terms of overall survival (NOTCH1, ATM, and RAS signaling pathway genes) and TFT (TRAF3). Furthermore, TRAF3 biallelic inactivation constituted an independent risk factor for TFT in the entire CLL cohort. Altogether, our work demonstrates the distinct genetic landscape of del-3'IGH CLL with multiple molecular pathways affected, characterized by a TRAF3 biallelic inactivation that contributes to a marked poor outcome in this subgroup of patients.
Collapse
Affiliation(s)
- Claudia Pérez‐Carretero
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - María Hernández‐Sánchez
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Teresa González
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Miguel Quijada‐Álamo
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Marta Martín‐Izquierdo
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Sandra Santos‐Mínguez
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Cristina Miguel‐García
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | | | | | | | - Emilia Pardal
- Servicio de Hematología Hospital Virgen del Puerto Plasencia Spain
| | - Carlos Aguilar
- Servicio de Hematología, Complejo Hospitalario de Soria Soria Spain
| | | | - Julio Dávila
- Servicio de Hematología Hospital Nuestra Señora de Sonsoles Ávila Spain
| | - Isabel Gascón‐Y‐Marín
- Servicio de Hematología, Hospital Universitario Infanta Leonor Universidad Complutense Madrid Spain
| | | | - Rocío Benito
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Jesús‐María Hernández‐Rivas
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Ana‐Eugenia Rodríguez‐Vicente
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| |
Collapse
|
4
|
Del Poeta G, Biagi A, Laurenti L, Chiarenza A, Pozzo F, Innocenti I, Postorino M, Rossi FM, Del Principe MI, Bomben R, de Fabritiis P, Bruno A, Cantonetti M, Di Raimondo F, Zucchetto A, Gattei V. Impaired nodal shrinkage and apoptosis define the independent adverse outcome of NOTCH1 mutated patients under ibrutinib therapy in chronic lymphocytic leukaemia. Haematologica 2021; 106:2345-2353. [PMID: 32732360 PMCID: PMC8409042 DOI: 10.3324/haematol.2020.251488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
The introduction of agents inhibiting the B-cell receptor-associated kinases such as ibrutinib has dramatically changed treatments algorithms of chronic lymphocytic leukemia (CLL) as well as the role of different adverse prognosticators. We evaluated the efficacy of ibrutinib as a single agent, in a real-life context, in 180 patients with CLL mostly pretreated, recruited from three independent cohorts from Italy. Patients received 420 mg oral ibrutinib once daily until progression or occurrence of unacceptable side effects. Seventy-three patients discontinued ibrutinib for progression or for adverse events. NOTCH1 mutations (NOTCH1 M) were correlated with a reduced redistribution lymphocytosis, calculated at 3 months on ibrutinib (P=0.022). Moreover, NOTCH1 M patients showed inferior nodal response at 6 months on ibrutinib compared to NOTCH1 wild-type patients (P<0.0001). Significant shorter progression free survival (PFS) and overall survival (OS) were observed in NOTCH1 M patients (P=0.00002 and P=0.001). Interestingly, NOTCH1 M plus a lower BAX/BCL-2 ratio identified a CLL subset showing the worst PFS and OS (P=0.0002 and P=0.005). In multivariate analysis of PFS and OS, NOTCH1 M were confirmed an independent prognosticator (P=0.00006 and P=0.0039). In conclusion, NOTCH1 M are strongly associated with a lower BAX/BCL-2 ratio, consistent with defective apoptosis, lower redistribution lymphocytosis and lower nodal shrinkage under ibrutinib treatment, this last paramter being responsible for partial responses, subsequent relapses, as well as shorter PFS and OS. Either new small molecule combination approaches or antibodies targeting NOTCH1 could be future therapeutic options for NOTCH1 M patients.
Collapse
Affiliation(s)
- Giovanni Del Poeta
- Hematology, Dept of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Annalisa Biagi
- Hematology, Dept of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Luca Laurenti
- Division of Hematology, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | | | - Federico Pozzo
- Cinical and Experimental Hematology Unit, CRO, IRCCS, Aviano (PN), Italy
| | - Idanna Innocenti
- Division of Hematology, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | - Riccardo Bomben
- Cinical and Experimental Hematology Unit, CRO, IRCCS, Aviano (PN), Italy
| | - Paolo de Fabritiis
- Hematology, Dept of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Antonio Bruno
- Hematology, Dept of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Maria Cantonetti
- Hematology, Dept of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | | | | | - Valter Gattei
- Cinical and Experimental Hematology Unit, CRO, IRCCS, Aviano (PN), Italy
| |
Collapse
|
5
|
Pérez-Carretero C, González-Gascón-y-Marín I, Rodríguez-Vicente AE, Quijada-Álamo M, Hernández-Rivas JÁ, Hernández-Sánchez M, Hernández-Rivas JM. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050853. [PMID: 34068813 PMCID: PMC8151186 DOI: 10.3390/diagnostics11050853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Ana E. Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Miguel Quijada-Álamo
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José-Ángel Hernández-Rivas
- Department of Hematology, Infanta Leonor University Hospital, 28031 Madrid, Spain; (I.G.-G.-y-M.); (J.-Á.H.-R.)
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| | - Jesús María Hernández-Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| |
Collapse
|
6
|
Hoofd C, Huang SJ, Gusscott S, Lam S, Wong R, Johnston A, Ben-Neriah S, Steidl C, Scott DW, Bruyere H, Gillan TL, Toze CL, Gerrie AS, Weng AP. Ultrasensitive Detection of NOTCH1 c.7544_7545delCT Mutations in Chronic Lymphocytic Leukemia by Droplet Digital PCR Reveals High Frequency of Subclonal Mutations and Predicts Clinical Outcome in Cases with Trisomy 12. J Mol Diagn 2020; 22:571-578. [PMID: 32036086 DOI: 10.1016/j.jmoldx.2020.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 01/07/2023] Open
Abstract
NOTCH1 is recurrently mutated in chronic lymphocytic leukemia (CLL), most commonly as a 2-bp frameshift deletion (c.7541_7542delCT). This mutated allele encodes a truncated form of the receptor (p.P2514Rfs∗4) lacking the C-terminal proline, glutamic acid, serine, and threonine (PEST) degradation domain that increases NOTCH1 signaling duration. NOTCH1 mutation has been associated with poor clinical outcomes in CLL. We validated a highly sensitive and quantitative droplet digital PCR assay for the NOTCH1 delCT mutation, which was anticipated to perform well compared with Sanger sequencing and allele-specific PCR. Performance characteristics of this assay were tested on 126 samples from an unselected CLL cohort and a separate cohort of 85 samples from patients with trisomy 12 CLL. The delCT mutation was detected at allele frequencies as low as 0.024%; 25% of unselected cases and 55% of trisomy 12 cases were positive at the 0.024% detection threshold. Mutational burdens ≥1% were significantly associated with shorter overall survival (OS) in patients with trisomy 12+ disease in multivariate analysis (median OS, 9.1 versus 13 years, with hazard ratio of 2.34; P = 0.031). Mutational burdens <1% correlated with shorter OS in univariate, but not multivariate, analyses. These results suggest that droplet digital PCR testing for NOTCH1 delCT mutation may aid in risk stratification and/or disease monitoring in certain subsets of patients with CLL.
Collapse
Affiliation(s)
- Catherine Hoofd
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven J Huang
- Leukemia/Bone Marrow Transplant Program of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Samuel Gusscott
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sonya Lam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Rachel Wong
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Alexa Johnston
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Helene Bruyere
- Division of Hematology and the Cytogenetics Laboratory, Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Tanya L Gillan
- Division of Hematology and the Cytogenetics Laboratory, Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Cynthia L Toze
- Leukemia/Bone Marrow Transplant Program of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Alina S Gerrie
- Leukemia/Bone Marrow Transplant Program of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada; Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Pathology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Ragusa D, Makarov EM, Britten O, Moralli D, Green CM, Tosi S. The RS4;11 cell line as a model for leukaemia with t(4;11)(q21;q23): Revised characterisation of cytogenetic features. Cancer Rep (Hoboken) 2019; 2:e1207. [PMID: 32721124 PMCID: PMC7941496 DOI: 10.1002/cnr2.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Haematological malignancies harbouring rearrangements of the KMT2A gene represent a unique subtype of leukaemia, with biphenotypic clinical manifestations, a rapid and aggressive onset, and a generally poor prognosis. Chromosomal translocations involving KMT2A often cause the formation of oncogenic fusion genes, such as the most common translocation t(4;11)(q21;q23) producing the KMT2A-AFF1 chimera. AIM The aim of this study was to confirm and review the cytogenetic and molecular features of the KMT2A-rearranged RS4;11 cell line and put those in context with other reports of cell lines also harbouring a t(4;11) rearrangement. METHODS AND RESULTS The main chromosomal rearrangements t(4;11)(q21;q23) and i(7q), described when the cell line was first established, were confirmed by fluorescence in situ hybridisation (FISH) and 24-colour karyotyping by M-FISH. Additional cytogenetic abnormalities were investigated by further FISH experiments, including the presence of trisomy 18 as a clonal abnormality and the discovery of one chromosome 8 being an i(8q), which indicates a duplication of the oncogene MYC. A homozygous deletion of 9p21 containing the tumour-suppressor genes CDKN2A and CDKN2B was also revealed by FISH. The production of the fusion transcript KMT2A-AFF1 arising from the der(11)t(4;11) was confirmed by RT-PCR, but sequencing of the amplified fragment revealed the presence of multiple isoforms. Two transcript variants, resulting from alternative splicing, were identified differing in one glutamine residue in the translated protein. CONCLUSION As karyotype evolution is a common issue in cell lines, we highlight the need to monitor cell lines in order to re-confirm their characteristics over time. We also reviewed the literature to provide a comparison of key features of several cell lines harbouring a t(4;11). This would guide scientists in selecting the most suitable research model for this particular type of KMT2A-leukaemia.
Collapse
Affiliation(s)
- Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Evgeny M Makarov
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Oliver Britten
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Daniela Moralli
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Catherine M Green
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| |
Collapse
|
8
|
Condoluci A, Rossi D. Genetic mutations in chronic lymphocytic leukemia: impact on clinical treatment. Expert Rev Hematol 2019; 12:89-98. [DOI: 10.1080/17474086.2019.1575130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adalgisa Condoluci
- Division of Hematology, Oncology Institute of Southern Switzerland and Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland and Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| |
Collapse
|
9
|
Chen XL, Wang SF, Xu ZS. [The relationship between NOTCH1 mutation and the Richter transformation in chronic lymphocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:787-789. [PMID: 30369195 PMCID: PMC7342246 DOI: 10.3760/cma.j.issn.0253-2727.2018.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 11/25/2022]
|
10
|
Roos-Weil D, Nguyen-Khac F, Chevret S, Touzeau C, Roux C, Lejeune J, Cosson A, Mathis S, Feugier P, Leprêtre S, Béné MC, Baron M, Raynaud S, Struski S, Eclache V, Sutton L, Lesty C, Merle-Béral H, Cymbalista F, Ysebaert L, Davi F, Leblond V. Mutational and cytogenetic analyses of 188 CLL patients with trisomy 12: A retrospective study from the French Innovative Leukemia Organization (FILO) working group. Genes Chromosomes Cancer 2018; 57:533-540. [PMID: 30203893 DOI: 10.1002/gcc.22650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/09/2018] [Accepted: 06/09/2018] [Indexed: 12/28/2022] Open
Abstract
Trisomy 12 (tri12) is the second most frequent chromosomal aberration (15%-20%) in chronic lymphocytic leukemia (CLL). Tri12 confers an intermediate prognosis but is a heterogeneous entity. We examined whether additional mutational or chromosomal alterations might impact tri12 patient outcomes. This retrospective study, carried out by the French Innovative Leukemia Organization, included 188 tri12 patients with comprehensive information on immunoglobulin heavy chain (IGHV) gene status, karyotypic/FISH abnormalities, and NOTCH1, TP53, SF3B1, and MYD88 mutations. The main cytogenetic abnormalities associated with tri12 were del(13q) (25%), additional trisomies (14%) (including tri19 (10%) and tri18 (4%)), 14q32 translocations (10%), del(17p) (6.5%), del(14q) (4%), and del(11q) (4%). Unmutated (UM) IGHV, NOTCH1, and TP53, mutations were identified in respectively 66%, 25%, and 8.5% of cases. Multivariate analyses showed that additional trisomies (HR = 0.43, 95% CI = 0.23-0.78, P = .01) were associated with a significantly longer time to first treatment in Binet stage A patients and with a lower risk of relapse (HR = 0.37, 95% CI = 0.15-0.9, P = .03) in the overall tri12 population. Binet stage B/C, TP53 disruption, and UM IGHV status were associated with a shorter time to next treatment, while Binet stage B/C (HR = 4, 95% CI = 1.6-4.9, P = .002) and TP53 disruption (HR = 5, 95% CI = 1.94-12.66, P = .001) conferred shorter overall survival in multivariate comparisons. These data indicate that additional cytogenetic and mutational abnormalities, and particularly additional trisomies, IGHV status, and TP53 disruption, influence tri12 patient outcomes and could improve risk stratification in this population.
Collapse
Affiliation(s)
- Damien Roos-Weil
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, GRC-11, Groupe de recherche clinique sur les hémopathies lymphoïdes (GRECHY), Hôpital Pitié-Salpétrière, APHP, Paris, France
| | - Florence Nguyen-Khac
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,Centre de Recherche des Cordeliers, INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France
| | - Sylvie Chevret
- Département de Biostatistique et Informatique Médicale (DBIM), Hôpital Saint Louis, APHP, Paris, France
| | | | - Clémence Roux
- Laboratoire d'Hématologie, Hôpital Pasteur, CHU de Nice, Nice, France
| | - Julie Lejeune
- Département de Biostatistique et Informatique Médicale (DBIM), Hôpital Saint Louis, APHP, Paris, France
| | - Adrien Cosson
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France
| | - Stéphanie Mathis
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Pierre Feugier
- Service d'Hématologie, Hôpitaux de Brabois, Vandoeuvre Les Nancy, France
| | | | | | - Marine Baron
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, GRC-11, Groupe de recherche clinique sur les hémopathies lymphoïdes (GRECHY), Hôpital Pitié-Salpétrière, APHP, Paris, France
| | | | - Stéphanie Struski
- Département d'Hématologie, CHU de Toulouse, Université de Toulouse, Centre de Recherche sur le Cancer de Toulouse (CRCT), Toulouse, France
| | - Virginie Eclache
- Laboratoire d'Hématologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Laurent Sutton
- Service d'Hématologie, Centre Hospitalier Victor Dupouy, Argenteuil, France
| | - Claude Lesty
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Hélène Merle-Béral
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Florence Cymbalista
- Service d'Hématologie Biologique, GHUPSSD, AP-HP, U978 INSERM, Université Paris 13, Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | | | - Frédéric Davi
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Véronique Leblond
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, GRC-11, Groupe de recherche clinique sur les hémopathies lymphoïdes (GRECHY), Hôpital Pitié-Salpétrière, APHP, Paris, France
| | | |
Collapse
|
11
|
Rosati E, Baldoni S, De Falco F, Del Papa B, Dorillo E, Rompietti C, Albi E, Falzetti F, Di Ianni M, Sportoletti P. NOTCH1 Aberrations in Chronic Lymphocytic Leukemia. Front Oncol 2018; 8:229. [PMID: 29998084 PMCID: PMC6030253 DOI: 10.3389/fonc.2018.00229] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable B-cell neoplasm characterized by highly variable clinical outcomes. In recent years, genomic and molecular studies revealed a remarkable heterogeneity in CLL, which mirrored the clinical diversity of this disease. These studies profoundly enhanced our understanding of leukemia cell biology and led to the identification of new biomarkers with potential prognostic and therapeutic significance. Accumulating evidence indicates a key role of deregulated NOTCH1 signaling and NOTCH1 mutations in CLL. This review highlights recent discoveries that improve our understanding of the pathophysiological NOTCH1 signaling in CLL and the clinical impact of NOTCH1 mutations in retrospective and prospective trials. In addition, we discuss the rationale for a therapeutic strategy aiming at inhibiting NOTCH1 signaling in CLL, along with an overview on the currently available NOTCH1-directed approaches.
Collapse
Affiliation(s)
- Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Life, Hematology Section, Health and Environmental Sciences, University of L'Aquila, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Elisa Albi
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti Pescara, Chieti, Italy.,Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Autore F, Strati P, Laurenti L, Ferrajoli A. Morphological, immunophenotypic, and genetic features of chronic lymphocytic leukemia with trisomy 12: a comprehensive review. Haematologica 2018; 103:931-938. [PMID: 29748447 PMCID: PMC6058775 DOI: 10.3324/haematol.2017.186684] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia is an extremely heterogeneous disease and prognostic factors such as chromosomal abnormalities are important predictors of time to first treatment and survival. Trisomy 12 is the second most frequent aberration detected by fluorescence in situ hybridization at the time of diagnosis (10-25%), and it confers an intermediate prognostic risk, with a median time to first treatment of 33 months and a median overall survival of 114 months. Here, we review the unique morphological, immunophenotypic, and genetic characteristics of patients with chronic lymphocytic leukemia and trisomy 12. These patients carry a significantly higher expression of CD19, CD22, CD20, CD79b, CD24, CD27, CD38, CD49d, sIgM, sIgk, and sIgλ and lower expression of CD43 compared with patients with normal karyotype. Circulating cells show increased expression of the integrins CD11b, CD18, CD29, and ITGB7, and of the adhesion molecule CD323. Patients with chronic lymphocytic leukemia and trisomy 12 frequently have unmutated IGHV, ZAP-70 positivity, and closely homologous stereotyped B-cell receptors. They rarely show TP53 mutations but frequently have NOTCH1 mutations, which can be identified in up to 40% of those with a rapidly progressive clinical course.
Collapse
MESH Headings
- Biomarkers
- Bone Marrow/pathology
- Chromosome Aberrations
- Chromosomes, Human, Pair 12
- Combined Modality Therapy
- Genetic Association Studies
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunophenotyping/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Pancytopenia/pathology
- Phenotype
- Prognosis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Treatment Outcome
- Trisomy
Collapse
Affiliation(s)
- Francesco Autore
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paolo Strati
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Luca Laurenti
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Zou Y, Fan L, Xia Y, Miao Y, Wu W, Cao L, Wu J, Zhu H, Qiao C, Wang L, Xu W, Li J. NOTCH1 mutation and its prognostic significance in Chinese chronic lymphocytic leukemia: a retrospective study of 317 cases. Cancer Med 2018; 7:1689-1696. [PMID: 29573199 PMCID: PMC5943423 DOI: 10.1002/cam4.1396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022] Open
Abstract
The proto-oncogene NOTCH1 is frequently mutated in around 10% of patients with chronic lymphocytic leukemia (CLL). This study analyzed NOTCH1 mutation status of 317 Chinese patients with CLL by Sanger sequencing. The frequencies of NOTCH1 mutation in the PEST (proline (P), glutamic acid (E), serine (S), threonine (T)-rich protein sequence) domain and the 3' untranslated regions (UTR) were 8.2% and 0.9%, with the most frequent mutation being c.7541_7542delCT and c.*371A>G, respectively. Clinical and biological associations were determined including NOTCH1 mutations with advanced stage (Binet stage, P = 0.010), unmutated immunoglobulin heavy-chain variable region (IGHV) gene (P < 0.001) and trisomy 12 (+12) (P = 0.014). NOTCH1-mutated patients had lower CD20 expression intensity than NOTCH1-unmutated patients (P = 0.029). In addition, NOTCH1-mutated patients had shorter overall survival (OS) (P = 0.002) and treatment-free survival (TFS) (P = 0.002) than NOTCH1-unmutated patients, especially for patients with NOTCH1 c.7541_7542delCT and/or c.*371A>G mutations. Patients with both mutated NOTCH1 and unmutated IGHV had shorter OS (P < 0.001) and TFS (P < 0.001) than those with unmutated NOTCH1 or mutated IGHV. These data provide a comprehensive view of the clinical relevance and prognostic impact of NOTCH1 mutations on Chinese patients with CLL.
Collapse
Affiliation(s)
- Yixin Zou
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Cao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jiazhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Huayuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Chun Qiao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| |
Collapse
|
14
|
Mature lymphoid malignancies: origin, stem cells, and chronicity. Blood Adv 2017; 1:2444-2455. [PMID: 29296894 DOI: 10.1182/bloodadvances.2017008854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic behavior of mature lymphoid malignancies, with relapses occurring years apart in many patients, has until recently been unexplained. Patterns of relapse also differ vastly between disease entities, with some being highly curable by chemotherapy whereas others are destined to reemerge after treatment. Lately, the use of next-generation sequencing techniques has revealed essential information on the clonal evolution of lymphoid malignancies. Also, experimental xenograft transplantation point to the possible existence of an ancestral (stem) cell. Such a malignant lymphoid stem cell population could potentially evade current therapies and be the cause of chronicity and death in lymphoma patients; however, the evidence is divergent across disease entities and between studies. In this review we present an overview of genetic studies, case reports, and experimental evidence of the source of mature lymphoid malignancy and discuss the perspectives.
Collapse
|
15
|
The mutational signature of chronic lymphocytic leukemia. Biochem J 2016; 473:3725-3740. [DOI: 10.1042/bcj20160256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/23/2016] [Indexed: 01/14/2023]
Abstract
Advances in next-generation sequencing technologies continue to unravel the cancer genome, identifying key biological pathways important for disease pathogenesis and clinically relevant genetic lesions. These studies have provided unprecedented resolution of the cancer genome, facilitating significant advances in the ability to detect many cancers, and predict patients who will develop an aggressive disease or respond poorly to treatment. The mature B-cell neoplasm chronic lymphocytic leukaemia remains at the forefront of these genomic analyses, largely due its protracted natural history and the accessibility to suitable material for study. We now possess a comprehensive view of the genomic copy number mutational landscape of the disease, as well as a detail description of clonal evolution, and the molecular mechanisms that drive the acquisition of genomic lesions and more broadly, genomic complexity. Here, recent genomic insights with associated biological and clinical implications will be reviewed.
Collapse
|
16
|
Genetic evolution in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2016; 29:67-78. [PMID: 27742073 DOI: 10.1016/j.beha.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 06/30/2016] [Accepted: 08/04/2016] [Indexed: 11/21/2022]
Abstract
Next-generation sequencing provides a comprehensive understanding of the genomic, epigenomic and transcriptomic underpinnings of chronic lymphocytic leukaemia. Recent studies have uncovered new drivers, including mutations in non-coding regions, and signalling pathways whose role in cancer was previously unknown or poorly understood. Moreover, massive scale epigenomics and transcriptomics have supplied the foundations for the cellular origin of the disease. Some drivers could be targeted pharmacologically, and the ability to detect mutations present in minority subclones might even allow treatment before clonal selection occurs, thus preventing disease refractoriness. As our understanding broadens and ongoing technological innovation propels new achievements, we will certainly learn how to apply it in our daily practice.
Collapse
|
17
|
Yu L, Kim HT, Kasar S, Benien P, Du W, Hoang K, Aw A, Tesar B, Improgo R, Fernandes S, Radhakrishnan S, Klitgaard J, Lee C, Getz G, Setlur SR, Brown JR. Survival of Del17p CLL Depends on Genomic Complexity and Somatic Mutation. Clin Cancer Res 2016; 23:735-745. [PMID: 27503198 DOI: 10.1158/1078-0432.ccr-16-0594] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/17/2016] [Accepted: 07/17/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) with 17p deletion typically progresses quickly and is refractory to most conventional therapies. However, some del(17p) patients do not progress for years, suggesting that del(17p) is not the only driving event in CLL progression. We hypothesize that other concomitant genetic abnormalities underlie the clinical heterogeneity of del(17p) CLL. EXPERIMENTAL DESIGN We profiled the somatic mutations and copy number alterations (CNA) in a large group of del(17p) CLLs as well as wild-type CLL and analyzed the genetic basis of their clinical heterogeneity. RESULTS We found that increased somatic mutation number associates with poor overall survival independent of 17p deletion (P = 0.003). TP53 mutation was present in 81% of del(17p) CLL, mostly clonal (82%), and clonal mutations with del(17p) exhibit shorter overall survival than subclonal mutations with del(17p) (P = 0.019). Del(17p) CLL has a unique driver mutation profile, including NOTCH1 (15%), RPS15 (12%), DDX3X (8%), and GPS2 (6%). We found that about half of del(17p) CLL cases have recurrent deletions at 3p, 4p, or 9p and that any of these deletions significantly predicts shorter overall survival. In addition, the number of CNAs, but not somatic mutations, predicts shorter time to treatment among patients untreated at sampling. Indolent del(17p) CLLs were characterized by absent or subclonal TP53 mutation and few CNAs, with no difference in somatic mutation number. CONCLUSIONS We conclude that del(17p) has a unique genomic profile and that clonal TP53 mutations, 3p, 4p, or 9p deletions, and genomic complexity are associated with shorter overall survival. Clin Cancer Res; 23(3); 735-45. ©2016 AACR.
Collapse
Affiliation(s)
- Lijian Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| | - Haesook T Kim
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Siddha Kasar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| | | | - Wei Du
- Brigham and Women's Hospital, Boston, MA
| | - Kevin Hoang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Andrew Aw
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario
| | - Bethany Tesar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Reina Improgo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| | - Stacey Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Josephine Klitgaard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, MA.,Massachusetts General Hospital Cancer Center and Department of Pathology, Boston, MA
| | - Sunita R Setlur
- Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Scarfò L, Ferreri AJM, Ghia P. Chronic lymphocytic leukaemia. Crit Rev Oncol Hematol 2016; 104:169-82. [PMID: 27370174 DOI: 10.1016/j.critrevonc.2016.06.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/01/2016] [Accepted: 06/14/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common leukaemia among the adults in the Western World. CLL (and the corresponding nodal entity small lymphocytic lymphoma, SLL) is classified as a lymphoproliferative disorder characterised by the relentless accumulation of mature B-lymphocytes showing a peculiar immunophenotype in the peripheral blood, bone marrow, lymph nodes and spleen. CLL clinical course is very heterogeneous: the majority of patients follow an indolent clinical course with no or delayed treatment need and with a prolonged survival, while others experience aggressive disease requiring early treatment followed by frequent relapses. In the last decade, the improved understanding of CLL pathogenesis shed light on premalignant conditions (i.e., monoclonal B-cell lymphocytosis, MBL), defined new prognostic and predictive markers, improving patient stratification, but also broadened the therapeutic armamentarium with novel agents, targeting fundamental signaling pathways.
Collapse
Affiliation(s)
- Lydia Scarfò
- Department of Onco-Haematology, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Andrés J M Ferreri
- Department of Onco-Haematology, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy.
| | - Paolo Ghia
- Department of Onco-Haematology, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
19
|
Abstract
The recent discovery of genes mutated in chronic lymphocytic leukemia (CLL) has stimulated new research into the role of these genes in CLL pathogenesis. CLL cases carry approximately 5-20 mutated genes per exome, a lower number than detected in many human tumors. Of the recurrently mutated genes in CLL, all are mutated in 10% or less of patients when assayed in unselected CLL cohorts at diagnosis. Mutations in TP53 are of major clinical relevance, are often associated with del17p and gain in frequency over time. TP53 mutated and associated del17p states substantially lower response rates, remission duration, and survival in CLL. Mutations in NOTCH1 and SF3B1 are recurrent, often associated with progressive CLL that is also IgVH unmutated and ZAP70-positive and are under investigation as targets for novel therapies and as factors influencing CLL outcome. There are an estimated 20-50 additional mutated genes with frequencies of 1%-5% in CLL; more work is needed to identify these and to study their significance. Finally, of the major biological aberration categories influencing CLL as a disease, gene mutations will need to be placed into context with regard to their ultimate role and importance. Such calibrated appreciation necessitates studies incorporating multiple CLL driver aberrations into biological and clinical analyses.
Collapse
Affiliation(s)
- Nisar A Amin
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sami N Malek
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Sutton LA, Rosenquist R. Deciphering the molecular landscape in chronic lymphocytic leukemia: time frame of disease evolution. Haematologica 2015; 100:7-16. [PMID: 25552678 DOI: 10.3324/haematol.2014.115923] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dramatic advances in next generation sequencing technologies have provided a novel opportunity to understand the molecular genetics of chronic lymphocytic leukemia through the comprehensive detection of genetic lesions. While progress is being made in elucidating the clinical significance of recurrently mutated genes, layers of complexity have been added to our understanding of chronic lymphocytic leukemia pathogenesis in the guise of the molecular evolution and (sub)clonal architecture of the disease. As we prepare for an era of tailored therapy, we need to appreciate not only the effect mutations have on drug response but also the impact subclones containing specific mutations have at initial presentation, during therapy and upon relapse. Therefore, although the wealth of emerging genetic data has great potential in helping us devise strategies to improve the therapy and prognosis of patients, focused efforts will be required to follow disease evolution, particularly in the context of novel therapies, in order to translate this knowledge into clinical settings.
Collapse
Affiliation(s)
- Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
21
|
Strati P, Abruzzo LV, Wierda WG, O'Brien S, Ferrajoli A, Keating MJ. Second cancers and Richter transformation are the leading causes of death in patients with trisomy 12 chronic lymphocytic leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:420-7. [PMID: 25800543 DOI: 10.1016/j.clml.2015.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Trisomy 12 (+12) is detected by fluorescence in-situ hybridization (FISH) analysis in up to 20% of patients with chronic lymphocytic leukemia (CLL). Patients with +12 are known to have unique features and to carry an intermediate prognosis. PATIENTS AND METHODS In order to better define this large group, we reviewed the characteristics of 250 untreated patients with +12. RESULTS When compared to 516 untreated patients negative for +12 by FISH, patients with +12 showed a higher incidence of thrombocytopenia, Richter transformation, and second malignant neoplasms (SMN), in addition to the expected increased rate of CD38 positivity and atypical immunophenotype. At a median follow-up of 51 months, 57% of patients needed first-line treatment; median time to first treatment was 38 months, and on multivariate analysis (MVA), it was found to be shorter in patients with advanced Rai stage, palpable splenomegaly, and deletion of 14q by conventional cytogenetic analysis. The overall response rate with first-line treatment was 94%. The median failure-free survival has not been reached, but on MVA, it was found to be shorter in patients whose disease responded in a manner other than complete remission or with FISH negativity for deletion 13q. The median overall survival for the entire group has not been reached, but MVA revealed it to be shorter in patients with an absolute lymphocyte count of > 30 × 10(9)/L or who developed SMN. Eighteen deaths have been observed so far, and Richter transformation and SMN were the leading causes of death (3 and 6, respectively). CONCLUSION Patients with +12 CLL show characteristic clinical and biologic features, and may benefit from increased surveillance for second cancers.
Collapse
Affiliation(s)
- Paolo Strati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lynne V Abruzzo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan O'Brien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
22
|
Xu ZS, Zhang JS, Zhang JY, Wu SQ, Xiong DL, Chen HJ, Chen ZZ, Zhan R. Constitutive activation of NF-κB signaling by NOTCH1 mutations in chronic lymphocytic leukemia. Oncol Rep 2015; 33:1609-14. [PMID: 25633905 PMCID: PMC4358086 DOI: 10.3892/or.2015.3762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
NOTCH1 mutations occur in approximately 10% of patients with chronic lymphocytic leukemia (CLL). However, the relationship between the genetic aberrations and tumor cell drug resistance or disease progression remains unclear. Frameshift deletions were detected by gene sequencing in the NOTCH1 PEST domain in three naive CLL patients. These mutations were associated with chromosomal abnormalities including trisomy 12 or 13q deletion. Of note, one of the patients developed Richter's transformation during FCR treatment. Immunofluorescent and western blot analyses revealed a markedly higher intracellular domain of NOTCH (ICN) expression in the mutated cells compared with their unmutated counterparts and normal CD19+ B lymphocytes (P<0.01 and P<0.001, respectively). In addition, strong DNA-κB binding activities were observed in the mutant cells by gel shift assays. RT-PCR analysis revealed elevated RelA mRNA expression in the mutant cells, while RelB levels were variable. Reduced levels of RelA and RelB mRNA were observed in unmutated CLL and normal B cells. Compared to unmutated CLL and normal B cells, increased apoptosis occurred in the mutant cells in the presence of GSI (ICN inhibitor) and PDTC (NF-κB inhibitor), particularly under the synergistic effects of the two drugs (P=0.03). Moreover, IKKα and IKKβ, the active components in the NF-κB pathway, were markedly inhibited following prolonged treatment with GSI and PDTC. These results suggested that NOTCH1 mutations constitutively activate the NF-κB signaling pathway in CLL, which is likely related to ICN overexpression, indicating NOTCH1 and NF-κB as potential therapeutic targets in the treatment of CLL.
Collapse
Affiliation(s)
- Zhen-Shu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Ju-Shun Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jing-Yan Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Shun-Quan Wu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Dong-Lian Xiong
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Hui-Jun Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Zhi-Zhe Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Rong Zhan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
23
|
Strefford JC. The genomic landscape of chronic lymphocytic leukaemia: biological and clinical implications. Br J Haematol 2014; 169:14-31. [PMID: 25496136 DOI: 10.1111/bjh.13254] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) remains at the forefront of the genetic analysis of human tumours, principally due its prevalence, protracted natural history and accessibility to suitable material for analysis. With the application of high-throughput genetic technologies, we have an unbridled view of the architecture of the CLL genome, including a comprehensive description of the copy number and mutational landscape of the disease, a detailed picture of clonal evolution during pathogenesis, and the molecular mechanisms that drive genomic instability and therapeutic resistance. This work has nuanced the prognostic importance of established copy number alterations, and identified novel prognostically relevant gene mutations that function within biological pathways that are attractive treatment targets. Herein, an overview of recent genomic discoveries will be reviewed, with associated biological and clinical implications, and a view into how clinical implementation may be facilitated.
Collapse
Affiliation(s)
- Jonathan C Strefford
- Cancer Genomics, Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
Comprehensive chronic lymphocytic leukemia diagnostics by combined multiplex ligation dependent probe amplification (MLPA) and interphase fluorescence in situ hybridization (iFISH). Mol Cytogenet 2014; 7:79. [PMID: 25435911 PMCID: PMC4247644 DOI: 10.1186/s13039-014-0079-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Banding-karyotyping and metaphase-directed-fluorescence-in-situhybridization (FISH) may be hampered by low mitotic index in leukemia. Interphase FISH (iFISH) is a way out here, however, testing many probes at the same time is protracted and expensive. Here multiplex-ligation-dependent-probe-amplification (MLPA) was used retrospectively in chronic lymphocytic leukemia (CLL) samples initially studied by banding cytogenetics and iFISH. Detection rates of iFISH and MLPA were compared and thus a cost-efficient scheme for routine diagnostics is proposed. Results Banding cytogenetics was done successfully in 67/85 samples. DNA was extracted from all 85 CLL samples. A commercially available MLPA probe set directed against 37 loci prone to be affected in hematological malignancies was applied. Besides, routine iFISH was done by commercially available probes for following regions: 11q22.3, 12p11.2-q11.1, 13q14.3, 13q34, 14q32.33 and 17p13.1. MLPA results were substantiated by iFISH using corresponding locus-specific probes. Aberrations were detected in 67 of 85 samples (~79%) applying banding cytogenetics, iFISH and MLPA. A maximum of 8 aberrations was detected per sample; however, one aberration per sample was found most frequently. Overall 163 aberrations were identified. 15 of those (~9%) were exclusively detected by banding cytogenetics, 95 were found by MLPA (~58%) and 100 (~61%) by routine iFISH. MLPA was not able to distinguish reliably between mono- and biallelic del(13)(q14.3q14.3), which could be easily identified as well as quantified by routine iFISH. Also iFISH was superior to MLPA in samples with low tumor cell load. On the other hand MLPA detected additional aberrations in 22 samples, two of them being without any findings after routine iFISH. Conclusions Both MLPA and routine iFISH have comparable detection rates for aberrations being typically present in CLL. As MLPA can detect also rare chromosomal aberrations it should be used as an initial test if routine cytogenetics is not possible or non-informative. Still iFISH should be used additionally to distinguish mono- from biallelic deletions and also to determine rate of mosaicism for 13q14.2 to 13q14.3. In case MLPA is negative the corresponding CLL samples should be tested at least by iFISH using the standard probe set to. Electronic supplementary material The online version of this article (doi:10.1186/s13039-014-0079-2) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Sutton LA, Rosenquist R. Clonal evolution in chronic lymphocytic leukemia: impact of subclonality on disease progression. Expert Rev Hematol 2014; 8:71-8. [PMID: 25345442 DOI: 10.1586/17474086.2015.972930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, next-generation sequencing has unraveled the molecular landscape in chronic lymphocytic leukemia with the discovery of a number of recurrently mutated genes. Mutations in several of these genes, such as NOTCH1, SF3B1 and BIRC3, are linked to a more aggressive disease with early disease progression, short time-to-first-treatment and even chemorefractoriness. Although in its infancy, we have also begun to understand the complex dynamics of subclonal diversity and its impact on disease outcome. From pioneering studies, we know that certain genetic events are found in the majority of chronic lymphocytic leukemia cells and are considered as 'clonal driver mutations' (e.g., +12, 13q-), whereas others, present only in a fraction of the tumor, are deemed to be 'subclonal driver mutations' for example, TP53 and SF3B1. Over the coming years, we need to gain a deeper insight into the dynamics of this subclonal architecture to understand how, at an individual level, chronic lymphocytic leukemia patients should be followed, which will be particularly relevant as novel targeted therapies begin to emerge.
Collapse
Affiliation(s)
- Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751-85, Uppsala, Sweden
| | | |
Collapse
|
26
|
Karube K, Martínez D, Royo C, Navarro A, Pinyol M, Cazorla M, Castillo P, Valera A, Carrió A, Costa D, Colomer D, Rosenwald A, Ott G, Esteban D, Giné E, López-Guillermo A, Campo E. Recurrent mutations of NOTCH genes in follicular lymphoma identify a distinctive subset of tumours. J Pathol 2014; 234:423-30. [PMID: 25141821 DOI: 10.1002/path.4428] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/30/2014] [Accepted: 08/14/2014] [Indexed: 01/27/2023]
Abstract
Follicular lymphoma (FL) is one of the most common malignant lymphomas. The t(14;18)(q32;q21) translocation is found in about 80% of cases and plays an important role in lymphomagenesis. However, the molecular mechanisms involved in the development and transformation of this lymphoma are not fully understood. Gain-of-function mutations of NOTCH1 or NOTCH2 have recently been reported in several B cell lymphoid neoplasms but the role of these mutations in FL is not known. In this study we investigated the mutational status of these genes in 112 FLs. NOTCH1 and NOTCH2 mutations were identified in five and two cases, respectively (total 7/112, 6.3%). All mutations predicted for truncated protein in the PEST domain and were identical to those identified in other B cell lymphoid neoplasms. NOTCH-mutated FL cases were characterized by lower frequency of t(14;18) (14% versus 69%, p = 0.01), higher incidence of splenic involvement (71% versus 25%, p = 0.02) and female predominance (100% versus 55%, p = 0.04). A diffuse large B cell lymphoma (DLBCL) component was more frequently identified in NOTCH-mutated FL than in wild-type cases (57% versus 18%, p = 0.03). These results indicate that NOTCH mutations are uncommon in FL but may occur in a subset of cases with distinctive, characteristic, clinicopathological features.
Collapse
Affiliation(s)
- Kennosuke Karube
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Campregher PV, Hamerschlak N. Novel Prognostic Gene Mutations Identified in Chronic Lymphocytic Leukemia and Their Impact on Clinical Practice. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:271-6. [DOI: 10.1016/j.clml.2013.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 01/03/2023]
|
28
|
Increased leukemia-associated gene expression in benzene-exposed workers. Sci Rep 2014; 4:5369. [PMID: 24993241 PMCID: PMC4081871 DOI: 10.1038/srep05369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/29/2014] [Indexed: 01/08/2023] Open
Abstract
Long-term exposure to benzene causes several adverse health effects, including an increased risk of acute myeloid leukemia. This study was to identify genetic alternations involved in pathogenesis of leukemia in benzene-exposed workers without clinical symptoms of leukemia. This study included 33 shoe-factory workers exposed to benzene at levels from 1 ppm to 10 ppm. These workers were divided into 3 groups based on the benzene exposure time, 1- < 7, 7- < 12, and 12- < 24 years. 17 individuals without benzene exposure history were recruited as controls. Cytogenetic analysis using Affymetrix Cytogenetics Array found copy-number variations (CNVs) in several chromosomes of benzene-exposed workers. Expression of targeted genes in these altered chromosomes, NOTCH1 and BSG, which play roles in leukemia pathogenesis, was further examined using real-time PCR. The NOTCH1 mRNA level was significantly increased in all 3 groups of workers, and the NOTCH1 mRNA level in the 12- < 24 years group was significantly higher than that in 1- < 7 and 7- < 12 years groups. Compared to the controls, the BSG mRNA level was significantly increased in 7- < 12 and 12- < 24 years groups, but not in the 1- < 7 years group. These results suggest that CNVs and leukemia-related gene expression might play roles in leukemia development in benzene-exposed workers.
Collapse
|
29
|
Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N, Larrayoz M, Kminkova J, Agathangelidis A, Davis Z, Tausch E, Stalika E, Kantorova B, Mansouri L, Scarfò L, Cortese D, Navrkalova V, Rose-Zerilli MJJ, Smedby KE, Juliusson G, Anagnostopoulos A, Makris AM, Navarro A, Delgado J, Oscier D, Belessi C, Stilgenbauer S, Ghia P, Pospisilova S, Gaidano G, Campo E, Strefford JC, Stamatopoulos K, Rosenquist R. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2014; 29:329-36. [PMID: 24943832 DOI: 10.1038/leu.2014.196] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/20/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Through the European Research Initiative on chronic lymphocytic leukemia (CLL) (ERIC), we screened 3490 patients with CLL for mutations within the NOTCH1 (n=3334), SF3B1 (n=2322), TP53 (n=2309), MYD88 (n=1080) and BIRC3 (n=919) genes, mainly at diagnosis (75%) and before treatment (>90%). BIRC3 mutations (2.5%) were associated with unmutated IGHV genes (U-CLL), del(11q) and trisomy 12, whereas MYD88 mutations (2.2%) were exclusively found among M-CLL. NOTCH1, SF3B1 and TP53 exhibited variable frequencies and were mostly enriched within clinically aggressive cases. Interestingly, as the timespan between diagnosis and mutational screening increased, so too did the incidence of SF3B1 mutations; no such increase was observed for NOTCH1 mutations. Regarding the clinical impact, NOTCH1 mutations, SF3B1 mutations and TP53 aberrations (deletion/mutation, TP53ab) correlated with shorter time-to-first-treatment (P<0.0001) in 889 treatment-naive Binet stage A cases. In multivariate analysis (n=774), SF3B1 mutations and TP53ab along with del(11q) and U-CLL, but not NOTCH1 mutations, retained independent significance. Importantly, TP53ab and SF3B1 mutations had an adverse impact even in U-CLL. In conclusion, we support the clinical relevance of novel recurrent mutations in CLL, highlighting the adverse impact of SF3B1 and TP53 mutations, even independent of IGHV mutational status, thus underscoring the need for urgent standardization/harmonization of the detection methods.
Collapse
Affiliation(s)
- P Baliakas
- 1] Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden [2] Hematology Department and HCT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - A Hadzidimitriou
- 1] Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden [2] Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - L-A Sutton
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - D Rossi
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - E Minga
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - N Villamor
- Hematopathology Unit and Department of Hematology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - M Larrayoz
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J Kminkova
- Central European Institute of Technology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - A Agathangelidis
- 1] Università Vita-Salute San Raffaele, Milan, Italy [2] Division of Molecular Oncology and Department of Onco-Hematology, San Raffaele Scientific Institute, Milan, Italy
| | - Z Davis
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - E Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - E Stalika
- Hematology Department and HCT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - B Kantorova
- Central European Institute of Technology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - L Mansouri
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - L Scarfò
- 1] Università Vita-Salute San Raffaele, Milan, Italy [2] Division of Molecular Oncology and Department of Onco-Hematology, San Raffaele Scientific Institute, Milan, Italy
| | - D Cortese
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - V Navrkalova
- Central European Institute of Technology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - M J J Rose-Zerilli
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - K E Smedby
- Department of Medicine, Solna, Clinical Epidemiology Unit, Karolinska Institutet, Stockholm, Sweden
| | - G Juliusson
- Lund University and Hospital Department of Hematology, Lund Stem Cell Center, Lund, Sweden
| | - A Anagnostopoulos
- Hematology Department and HCT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - A M Makris
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - A Navarro
- Hematopathology Unit and Department of Hematology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - J Delgado
- Hematopathology Unit and Department of Hematology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - D Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - C Belessi
- Hematology Department, Nikea General Hospital, Pireaus, Greece
| | - S Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - P Ghia
- 1] Università Vita-Salute San Raffaele, Milan, Italy [2] Division of Molecular Oncology and Department of Onco-Hematology, San Raffaele Scientific Institute, Milan, Italy
| | - S Pospisilova
- Central European Institute of Technology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - G Gaidano
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - E Campo
- Hematopathology Unit and Department of Hematology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - J C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - K Stamatopoulos
- 1] Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden [2] Hematology Department and HCT Unit, G Papanicolaou Hospital, Thessaloniki, Greece [3] Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - R Rosenquist
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
30
|
Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435983. [PMID: 24967369 PMCID: PMC4054680 DOI: 10.1155/2014/435983] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
Abstract
Chromosomal abnormalities in chronic lymphocytic leukemia (CLL) are detected in up to 80% of patients. Among them, deletions of 11q, 13q, 17p, and trisomy 12 have a known prognostic value and play an important role in CLL pathogenesis and evolution, determining patients outcome and therapeutic strategies. Standard methods used to identify these genomic aberrations include both conventional G-banding cytogenetics (CGC) and fluorescence in situ hybridization (FISH). Although FISH analyses have been implemented as the gold standard, CGC allows the identification of chromosomal translocations and complex karyotypes, the latest associated with poor outcome. Genomic arrays have a higher resolution that allows the detection of cryptic abnormalities, although these have not been fully implemented in routine laboratories. In the last years, next generation sequencing (NGS) methods have identified a wide range of gene mutations (e.g., TP53, NOTCH1, SF3B1, and BIRC3) which have improved our knowledge about CLL development, allowing us to refine both the prognostic subgroups and better therapeutic strategies. Clonal evolution has also recently arisen as a key point in CLL, integrating cytogenetic alterations and mutations in a dynamic model that improve our understanding about its clinical course and relapse.
Collapse
|
31
|
Cosson A, Chapiro E, Belhouachi N, Cung HA, Keren B, Damm F, Algrin C, Lefebvre C, Fert-Ferrer S, Luquet I, Gachard N, Mugneret F, Terre C, Collonge-Rame MA, Michaux L, Rafdord-Weiss I, Talmant P, Veronese L, Nadal N, Struski S, Barin C, Helias C, Lafage M, Lippert E, Auger N, Eclache V, Roos-Weil D, Leblond V, Settegrana C, Maloum K, Davi F, Merle-Beral H, Lesty C, Nguyen-Khac F. 14q deletions are associated with trisomy 12, NOTCH1 mutations and unmutated IGHV genes in chronic lymphocytic leukemia and small lymphocytic lymphoma. Genes Chromosomes Cancer 2014; 53:657-66. [PMID: 24729385 DOI: 10.1002/gcc.22176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 01/21/2023] Open
Abstract
Deletions of the long arm of chromosome 14 [del(14q)] are rare but recurrently observed in mature B-cell neoplasms, particularly in chronic lymphocytic leukemia (CLL). To further characterize this aberration, we studied 81 cases with del(14q): 54 of CLL and 27 of small lymphocytic lymphoma (SLL), the largest reported series to date. Using karyotype and fluorescence in situ hybridization (FISH), the most frequent additional abnormality was trisomy 12 (tri12), observed in 28/79 (35%) cases, followed by del13q14 (12/79, 15%), delTP53 (11/80, 14%) delATM (5/79, 6%), and del6q21 (3/76, 4%). IGHV genes were unmutated in 41/53 (77%) patients, with a high frequency of IGHV1-69 (21/52, 40%). NOTCH1 gene was mutated in 14/45 (31%) patients. There was no significant difference in cytogenetic and molecular abnormalities between CLL and SLL. Investigations using FISH and SNP-array demonstrated the heterogeneous size of the 14q deletions. However, a group with the same del(14)(q24.1q32.33) was identified in 48% of cases. In this group, tri12 (P = 0.004) and NOTCH1 mutations (P = 0.02) were significantly more frequent than in the other patients. In CLL patients with del(14q), median treatment-free survival (TFS) was 27 months. In conclusion, del(14q) is associated with tri12 and with pejorative prognostic factors: unmutated IGHV genes (with over-representation of the IGHV1-69 repertoire), NOTCH1 mutations, and a short TFS.
Collapse
Affiliation(s)
- Adrien Cosson
- INSERM U872, Centre de Recherche des Cordeliers, Paris 6, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Villamor N, López-Guillermo A, López-Otín C, Campo E. Next-generation sequencing in chronic lymphocytic leukemia. Semin Hematol 2014; 50:286-95. [PMID: 24246696 DOI: 10.1053/j.seminhematol.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of next-generation sequencing (NGS) has expanded our knowledge of the genomic alterations in chronic lymphocytic leukemia (CLL) and provides new tools for analyzing leukemic clonal architecture. Recent studies have demonstrated substantial differences in genomic alterations between mutated and unmutated IGHV subgroups, which reflect distinct molecular pathways and mutagenic mechanisms in the pathogenesis of the disease. The mutational profile of CLL can be characterized by a relatively low number of somatic mutations per case, few recurrent mutations at moderate frequency (5%-15%) and a long tail of recurrent lower frequency somatic mutations. Functional and clinical studies of novel mutations have uncovered new mechanisms involved in the pathogenesis of the disease, revealing new insights into CLL molecular evolution that could ultimately translate into improvements in the management of patients. The clonal architecture of CLL shows striking heterogeneity between patients, which could have important clinical implications. In summary, NGS studies of CLL are expanding our fundamental knowledge on the molecular mechanisms involved in the pathogenesis of the disease and offering new perspectives for the clinical management of the patients.
Collapse
Affiliation(s)
- Neus Villamor
- Unitat d'Hematopatologia, Servei d'Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | | | | |
Collapse
|
33
|
CD49d is overexpressed by trisomy 12 chronic lymphocytic leukemia cells: evidence for a methylation-dependent regulation mechanism. Blood 2013; 122:3317-21. [DOI: 10.1182/blood-2013-06-507335] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
CD49d, a negative prognosticator with a key role for microenvironmental interactions in CLL, is near universally expressed in trisomy 12 CLL. CD49d overexpression in trisomy 12 CLL is regulated by a methylation-dependent mechanism.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Next-generation sequencing of whole genomes, exomes and DNA methylomes in chronic lymphocytic leukemia (CLL) has provided the first comprehensive view of somatic mutations and methylation changes in this disease. This review summarizes the recent findings in this field and their impact on our current understanding of this neoplasm. RECENT FINDINGS Genomic studies have revealed a remarkable molecular heterogeneity of the disease, with only few genes mutated in up to 10-15% of the patients and a relatively large number of genes recurrently mutated at low frequency. The mutated genes tend to cluster in different pathways that include NOTCH1 signaling, RNA splicing, processing and transport machinery, innate inflammatory response, and DNA damage and cell cycle control, among others. NOTCH1 and SF3B1 mutations are emerging as new drivers of aggressive forms of the disease. Genome-wide methylation studies have shown that CLL transformation is associated with a massive hypomethylation phenomenon frequently affecting the enhancer regions. This epigenetic reprogramming maintains an imprint of the putative cell of origin from naïve and memory B-cells. SUMMARY Genomic and epigenomic studies of CLL are reshaping our understanding of the disease and provide new perspective for a more individualized diagnosis and new potential therapeutic targets.
Collapse
|
35
|
A revised NOTCH1 mutation frequency still impacts survival while the allele burden predicts early progression in chronic lymphocytic leukemia. Leukemia 2013; 28:436-9. [PMID: 24177259 DOI: 10.1038/leu.2013.289] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
López C, Delgado J, Costa D, Villamor N, Navarro A, Cazorla M, Gómez C, Arias A, Muñoz C, Cabezas S, Baumann T, Rozman M, Aymerich M, Colomer D, Pereira A, Cobo F, López-Guillermo A, Campo E, Carrió A. Clonal evolution in chronic lymphocytic leukemia: analysis of correlations with IGHV mutational status, NOTCH1 mutations and clinical significance. Genes Chromosomes Cancer 2013; 52:920-7. [PMID: 23893575 DOI: 10.1002/gcc.22087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/11/2013] [Indexed: 01/21/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder characterized with highly variable clinical course. The most common chromosomal abnormalities in CLL, using conventional and molecular cytogenetics, are trisomy 12, del(13)(q14), del(11)(q22-23), del(17)(p13), and del(6)(q21). Whereas the prognostic marker such as IGHV mutational status remains stable during course of the diseases, chromosomal aberrations may be acquired over time. The aim of this study was to determine the incidence, and biological significance of clonal evolution (CE) using conventional and molecular cytogenetics and its relationship with prognostic markers such as CD38, ZAP70, and the mutational status of IGHV and NOTCH1. One hundred and forty-three untreated CLL patients were included in the study. The median time interval between analyses was 32 months (range 6-156 months). Forty-seven patients (33%) had CE as evidenced by detection of new cytogenetic abnormalities during follow-up. CE was not correlated with high expression of ZAP70, unmutated IGHV genes or NOTCH1 mutations. Multivariate analysis revealed that CE and IGHV mutation status had a significant impact on TFS. The combination of conventional and molecular cytogenetics increased the detection of CE, this phenomenon probably being a reflection of genomic instability and conferring a more aggressive clinical course.
Collapse
Affiliation(s)
- Cristina López
- Hematopathology Unit, Department of Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhou XX, Wang X. Role of microRNAs in chronic lymphocytic leukemia (Review). Mol Med Rep 2013; 8:719-25. [PMID: 23900739 DOI: 10.3892/mmr.2013.1599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/19/2013] [Indexed: 11/06/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia among adults in the western world. It is characterized by a malignant clone of B cells in the bone marrow, blood and secondary lymphoid tissues. microRNAs (miRNAs) are a family of small, non‑coding RNAs that regulate the expression of target messenger RNAs at the post‑transcriptional level. Previous studies have suggested that miRNAs are extensively involved in the proliferation and differentiation of hematopoietic cells. Aberrant expression of certain miRNAs has been observed in CLL. Associations between miRNAs and chromosomal abnormalities suggest that miRNAs may be involved in the pathogenesis of CLL. Moreover, miRNAs may be used as novel biomarkers for the prognosis of CLL. Expression levels of miRNAs are also involved in resistance to chemotherapy drugs. In this article, we review recent developments of miRNAs in the initiation, prognosis and chemoresistance of CLL.
Collapse
Affiliation(s)
- Xiang-Xiang Zhou
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | | |
Collapse
|
38
|
Alsolami R, Knight SJL, Schuh A. Clinical application of targeted and genome-wide technologies: can we predict treatment responses in chronic lymphocytic leukemia? Per Med 2013; 10:361-376. [PMID: 24611071 PMCID: PMC3943176 DOI: 10.2217/pme.13.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is low-grade lymphoma of mature B cells and it is considered to be the most common type of hematological malignancy in the western world. CLL is characterized by a chronically relapsing course and clinical and biological heterogeneity. Many patients do not require any treatment for years. Although important progress has been made in the treatment of CLL, none of the conventional treatment options are curative. Recurrent chromosomal abnormalities have been identified and are associated with prognosis and pathogenesis of the disease. More recently, unbiased genome-wide technologies have identified multiple additional recurrent aberrations. The precise predictive value of these has not been established, but it is likely that the genetic heterogeneity observed at least partly reflects the clinical variability. The present article reviews our current knowledge of predictive markers in CLL using whole-genome technologies.
Collapse
Affiliation(s)
- Reem Alsolami
- Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
- King Abdulaziz University, Faculty of Applied Medical Sciences, Jeddah, Saudi Arabia
| | - Samantha JL Knight
- Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna Schuh
- Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Rossi D, Gaidano G. Molecular genetics of high-risk chronic lymphocytic leukemia. Expert Rev Hematol 2013; 5:593-602. [PMID: 23216591 DOI: 10.1586/ehm.12.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In an optimized management algorithm of chronic lymphocytic leukemia (CLL), the early identification of high-risk patients, ideally prior to treatment, is a prerequisite for designing strategies tailored at overcoming therapy resistance. TP53 abnormalities play a central role in our current understanding of the poor prognosis of high-risk CLL patients, but fail to explain the molecular basis of 50% of high-risk CLL. Next-generation sequencing studies have revealed several novel genetic alterations in high-risk CLL, including NOTCH1, SF3B1 and BIRC3 mutations. Alterations of these genes occur in 5-10% of CLL at diagnosis, show a prevalence that increases in the more advanced phases of the disease, and confer poor prognosis in consecutive CLL series.
Collapse
Affiliation(s)
- Davide Rossi
- Department of Translational Medicine, Division of Hematology, Amedeo Avogadro University of Eastern Piedmont, Via Solaroli 17, Novara, Italy
| | | |
Collapse
|
40
|
Rossi D, Ciardullo C, Gaidano G. Genetic aberrations of signaling pathways in lymphomagenesis: revelations from next generation sequencing studies. Semin Cancer Biol 2013; 23:422-30. [PMID: 23665546 DOI: 10.1016/j.semcancer.2013.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 11/17/2022]
Abstract
Next generation sequencing (NGS) technology has led to a burst of disease-relevant molecular information in a variety of lymphoid tumors, including chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and splenic marginal zone lymphoma. Beside disclosing comprehensive catalogs of somatic mutations and new insights into the genes that contribute to cellular transformation, NGS has also provided molecular clues useful for addressing a number of unmet clinical needs in the field of B-cell tumor management, including biomarkers for disease diagnosis and classification improvement (i.e. mutations of BRAF, MYD88 and NOTCH2), and new targets to be translated into therapeutic interventions (i.e. BCR, TLR, NOTCH, NF-κB and MAPK signaling pathways). This review summarizes the molecular lesions of signaling pathways that have been discovered in B-cell lymphoproliferative disorders by NGS studies.
Collapse
Affiliation(s)
- Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | | | | |
Collapse
|
41
|
Foà R, Del Giudice I, Guarini A, Rossi D, Gaidano G. Clinical implications of the molecular genetics of chronic lymphocytic leukemia. Haematologica 2013; 98:675-85. [PMID: 23633543 PMCID: PMC3640109 DOI: 10.3324/haematol.2012.069369] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/15/2013] [Indexed: 11/09/2022] Open
Abstract
Genetics and molecular genetics have contributed to clarify the biological bases of the clinical heterogeneity of chronic lymphocytic leukemia. In recent years, our knowledge of the molecular genetics of chronic lymphocytic leukemia has significantly broadened, offering potential new clinical implications. Mutations of TP53 and ATM add prognostic information independently of fluorescence in situ hybridization cytogenetic stratification. In addition, next generation sequencing technologies have allowed previously unknown genomic alterations in chronic lymphocytic leukemia to be identified. Mutations of NOTCH1, SF3B1 and BIRC3 have been associated with short time to progression and survival. Each of these lesions recognizes a different distribution across different clinical phases and biological subgroups of the disease. The clinical implications of these molecular lesions are in some instances well established, such as in the case of patients with TP53 disruption, who should be considered for alternative therapies/allogeneic stem cell transplant upfront, or in patients with ATM disruption, who are candidates to rituximab-based immunochemotherapy. On the contrary, NOTCH1, SF3B1 and BIRC3 mutations appear to have a specific significance, the clinical value of which is currently being validated, i.e. association to Richter syndrome transformation for NOTCH1 mutations, and short progression-free survival after treatment for SF3B1 mutations. Certainly, these new lesions have helped clarify the molecular bases of chronic lymphocytic leukemia aggressiveness beside TP53 disruption. This review covers the recent advancements in our understanding of the molecular genetics of chronic lymphocytic leukemia and discusses how they are going to translate into clinical implications for patient management.
Collapse
Affiliation(s)
- Robin Foà
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, University Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
42
|
TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood 2013; 121:3284-8. [DOI: 10.1182/blood-2012-11-469627] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Key Points
This trial update shows that allotransplantation can provide long-term minimal residual disease–negative disease control in poor-risk chronic lymphocytic leukemia. Six-year survival is close to 60% and is independent of the presence of TP53, SF3B1, and NOTCH1 mutations in the tumor clone.
Collapse
|
43
|
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world, characterized by peripheral blood B-cell lymphocytosis as well as lymphadenopathy, organomegaly, cytopenias, and systemic symptoms. Chronic lymphocytic leukemia cells have a distinctive immunophenotype, and the disease has a characteristic pattern of histological infiltration in the lymph node and bone marrow. The clinical course of CLL is heterogeneous, with some patients presenting with very indolent disease and other patients having a more aggressive malignancy. It is known that genetic abnormalities underlie this difference in clinical presentation. Some patients may present solely with lymphadenopathy, organomegaly, and presence of infiltrating monoclonal B cells with the same immunophenotype as CLL cells, but lacking peripheral blood lymphocytosis. This disease is called small lymphocytic lymphoma (SLL) and has been considered for almost 2 decades to be the tissue equivalent of CLL. Both CLL and SLL are currently considered different manifestations of the same entity by the fourth edition of the World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues. It is suspected that differential expression of chemokine receptors (e.g., reduced expression of R1 and CCR3 in SLL cells), integrins (e.g., CLL cells have lower expression of integrin αLβ2), and genetic abnormalities (a higher incidence of trisomy 12 and lower incidence of del(13q) is found in SLL) may explain some of the clinical differences between these 2 disorders. However, there is still a lack of knowledge on the precise biological basis underlying the different clinical presentations of CLL and SLL. It is expected that future studies will shed light on the pathophysiology of both disorders.
Collapse
|
44
|
Rodríguez-Vicente AE, Díaz MG, Hernández-Rivas JM. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet 2013; 206:49-62. [DOI: 10.1016/j.cancergen.2013.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/11/2022]
|
45
|
Gunnarsson R, Mansouri L, Rosenquist R. Exploring the genetic landscape in chronic lymphocytic leukemia using high-resolution technologies. Leuk Lymphoma 2013; 54:1583-90. [PMID: 23167608 DOI: 10.3109/10428194.2012.751530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract During recent years, microarray-based technologies and next-generation sequencing (NGS) have been applied in chronic lymphocytic leukemia (CLL) in order to identify novel genomic aberrations that may contribute to the pathogenesis of the disease. Even though high-resolution microarray studies have confirmed the importance of the known recurrent aberrations, i.e. del(11q), trisomy 12, del(13q) and del(17p), and have more precisely delineated the genomic borders of these aberrations, only a few novel aberrations, found at a low frequency, have been detected with these techniques. In contrast to this, the application of NGS technology of the coding genome (exome sequencing) or the entire genome (whole-genome sequencing) has unveiled a number of novel recurrent mutations in e.g. the NOTCH1, SF3B1 and BIRC3 genes. Importantly, mutations in these latter genes were reported to be associated with a particularly poor outcome, similar to TP53 aberrations, and may play key roles in tumor development, treatment resistance and prognosis. In this review, we not only summarize the latest achievements using array-based or NGS technologies, but also point to new directions for research aiming to unravel the complex genetic "map" in CLL and its prognostic subsets.
Collapse
Affiliation(s)
- Rebeqa Gunnarsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
46
|
Acquired Genomic Copy Number Aberrations in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:47-86. [DOI: 10.1007/978-1-4614-8051-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Martínez-Trillos A, Quesada V, Villamor N, Puente XS, López-Otín C, Campo E. Recurrent gene mutations in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:87-107. [PMID: 24014293 DOI: 10.1007/978-1-4614-8051-8_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing of whole genomes and exomes in chronic lymphocytic leukemia (CLL) has provided the first comprehensive view of somatic mutations in this disease. Subsequent studies have characterized the oncogenic pathways and clinical implications of a number of these mutations. The global number of somatic mutations per case is lower than those described in solid tumors but is in agreement with previous estimates of less than one mutation per megabase in hematological neoplasms. The number and pattern of somatic mutations differ in tumors with unmutated and mutated IGHV, extending at the genomic level the clinical differences observed in these two CLL subtypes. One of the striking conclusions of these studies has been the marked genetic heterogeneity of the disease, with a relatively large number of genes recurrently mutated at low frequency and only a few genes mutated in up to 10-15 % of the patients. The mutated genes tend to cluster in different pathways that include NOTCH1 signaling, RNA splicing and processing machinery, innate inflammatory response, Wnt signaling, and DNA damage and cell cycle control, among others. These results highlight the molecular heterogeneity of CLL and may provide new biomarkers and potential therapeutic targets for the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Alejandra Martínez-Trillos
- Unidad de Hematopatologia, Departamento de Anatomía Patológica, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Villamor N, Conde L, Martínez-Trillos A, Cazorla M, Navarro A, Beà S, López C, Colomer D, Pinyol M, Aymerich M, Rozman M, Abrisqueta P, Baumann T, Delgado J, Giné E, González-Díaz M, Hernández JM, Colado E, Payer AR, Rayon C, Navarro B, José Terol M, Bosch F, Quesada V, Puente XS, López-Otín C, Jares P, Pereira A, Campo E, López-Guillermo A. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 2012; 27:1100-6. [DOI: 10.1038/leu.2012.357] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Del Poeta G, Dal Bo M, Del Principe MI, Pozzo F, Rossi FM, Zucchetto A, Bomben R, Degan M, Rasi S, Rossi D, Bulian P, Gaidano G, Amadori S, Gattei V. Clinical significance of c.7544-7545 delCT NOTCH1 mutation in chronic lymphocytic leukaemia. Br J Haematol 2012; 160:415-8. [PMID: 23167503 DOI: 10.1111/bjh.12128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giovanni Del Poeta
- Division of Haematology, S.Eugenio Hospital and University of Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world and shows a remarkable heterogeneity in the clinical course. Understand the genetic basis of CLL may help in clarifying the molecular bases of this clinical heterogeneity. Recurrent chromosomal aberrations at 13q14, 12q, 11q22–q23 and 17p13, and TP53 mutations are the first genetic lesions identified as drivers of the disease. While some of these lesions are associated with poor outcome (17p13 deletion, TP53 mutations and, to a lesser extent, 11q22–q23 deletion) others are linked to a favorable course (13q14 deletion as sole aberration). Recently, next generation sequencing has revealed additional recurrent alterations in CLL targeting the NOTCH1, SF3B1, and BIRC3 genes. NOTCH1, SF3B1, and BIRC3 lesions provide: I) new insights on the mechanisms of leukemogenesis, tumor progression and chemoresistance in this leukemia; II) new biomarkers for the identification of poor risk patients, having individually shown correlations with survival in CLL; and III) new therapeutic targets, especially in the setting of high risk disease. This review will summarize the most important genetic aberrations in CLL and how our improved knowledge of the genome of leukemic cells may translate into improved patients' management.
Collapse
|