1
|
Bailey SM, Cross EM, Kinner-Bibeau L, Sebesta HC, Bedford JS, Tompkins CJ. Monitoring Genomic Structural Rearrangements Resulting from Gene Editing. J Pers Med 2024; 14:110. [PMID: 38276232 PMCID: PMC10817574 DOI: 10.3390/jpm14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The cytogenomics-based methodology of directional genomic hybridization (dGH) enables the detection and quantification of a more comprehensive spectrum of genomic structural variants than any other approach currently available, and importantly, does so on a single-cell basis. Thus, dGH is well-suited for testing and/or validating new advancements in CRISPR-Cas9 gene editing systems. In addition to aberrations detected by traditional cytogenetic approaches, the strand specificity of dGH facilitates detection of otherwise cryptic intra-chromosomal rearrangements, specifically small inversions. As such, dGH represents a powerful, high-resolution approach for the quantitative monitoring of potentially detrimental genomic structural rearrangements resulting from exposure to agents that induce DNA double-strand breaks (DSBs), including restriction endonucleases and ionizing radiations. For intentional genome editing strategies, it is critical that any undesired effects of DSBs induced either by the editing system itself or by mis-repair with other endogenous DSBs are recognized and minimized. In this paper, we discuss the application of dGH for assessing gene editing-associated structural variants and the potential heterogeneity of such rearrangements among cells within an edited population, highlighting its relevance to personalized medicine strategies.
Collapse
Affiliation(s)
- Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Erin M. Cross
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | | - Henry C. Sebesta
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | |
Collapse
|
2
|
Singh J, Arora M, Kumari S, Verma D, Palanichamy JK, Qamar I, Chauhan SS, Chopra A. Molecular associations and clinical significance of core NHEJ pathway genes in renal clear cell carcinoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Arbajian E, Hofvander J, Magnusson L, Mertens F. Deep sequencing of myxoinflammatory fibroblastic sarcoma. Genes Chromosomes Cancer 2020; 59:309-317. [PMID: 31898851 DOI: 10.1002/gcc.22832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myxoinflammatory fibroblastic sarcoma (MIFS) has recurrent genetic features in the form of a translocation t(1;10)(p22-31;q24-25), BRAF gene fusions, and/or an amplicon in 3p11-12 including the VGLL3 gene. The breakpoints on chromosomes 1 and 10 in the t(1;10) cluster in or near the TGFBR3 and OGA genes, respectively. We here used a combination of deep sequencing of the genome (WGS), captured sequences (Cap-seq), and transcriptome (RNA-seq) and genomic arrays to investigate the molecular outcome of the t(1;10) and the VGLL3 amplicon, as well as to assess the spectrum of other recurrent genomic features in MIFS. Apart from a ROBO1-BRAF chimera in a t(1;10)-negative MIFS-like tumor, no fusion gene was found at RNA-seq. This was in line with WGS and Cap-seq results, revealing variable breakpoints in chromosomes 1 and 10 and genomic breakpoints that should not yield functional fusion transcripts. The most common genomic rearrangements were breakpoints in or around the OGA, NPM3, and FGF8 genes in chromosome band 10q24, and loss of 1p11-p21 and 10q26-qter (all simultaneously present in 6/7 MIFS); a breakpoint in or near TGFBR3 in chromosome 1 was found in four of these tumors. Amplification and overexpression of VGLL3 was a consistent feature in MIFS and MIFS-like tumors with amplicons in 3p11-12. The significant molecular genetic outcome of the recurrent t(1;10) could be loss of genetic material from 1p and 10q. Other recurrent genomic imbalances in MIFS, such as homozygous loss of CDKN2A and 3p- and 13q-deletions, are shared with other sarcomas, suggesting overlapping pathogenetic pathways.
Collapse
Affiliation(s)
- Elsa Arbajian
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jakob Hofvander
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| |
Collapse
|
4
|
Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O'Brien T, Martincorena I, Tarpey P, Angelopoulos N, Yates LR, Butler AP, Raine K, Stewart GD, Challacombe B, Fernando A, Lopez JI, Hazell S, Chandra A, Chowdhury S, Rudman S, Soultati A, Stamp G, Fotiadis N, Pickering L, Au L, Spain L, Lynch J, Stares M, Teague J, Maura F, Wedge DC, Horswell S, Chambers T, Litchfield K, Xu H, Stewart A, Elaidi R, Oudard S, McGranahan N, Csabai I, Gore M, Futreal PA, Larkin J, Lynch AG, Szallasi Z, Swanton C, Campbell PJ. Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal. Cell 2018; 173:611-623.e17. [PMID: 29656891 PMCID: PMC5927631 DOI: 10.1016/j.cell.2018.02.020] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/10/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.
Collapse
Affiliation(s)
- Thomas J Mitchell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Academic Urology Group, Department of Surgery, Addenbrooke's Hospitals NHS Foundation Trust, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Samra Turajlic
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Andrew Rowan
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - David Nicol
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - James H R Farmery
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Tim O'Brien
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Patrick Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Nicos Angelopoulos
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Lucy R Yates
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Adam P Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Grant D Stewart
- Academic Urology Group, Department of Surgery, Addenbrooke's Hospitals NHS Foundation Trust, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Ben Challacombe
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Archana Fernando
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Jose I Lopez
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - Steve Hazell
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Ashish Chandra
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Simon Chowdhury
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sarah Rudman
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Aspasia Soultati
- Guy's and St Thomas' National Health Service (NHS) Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Gordon Stamp
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicos Fotiadis
- Interventional Radiology Department, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Lisa Pickering
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Lewis Au
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Lavinia Spain
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Joanna Lynch
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Mark Stares
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Jon Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Francesco Maura
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - David C Wedge
- Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK
| | - Stuart Horswell
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tim Chambers
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Kevin Litchfield
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Hang Xu
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Reza Elaidi
- Hôpital Européen Georges Pompidou 20, rue Leblanc, 75908 Paris, France
| | - Stéphane Oudard
- Hôpital Européen Georges Pompidou 20, rue Leblanc, 75908 Paris, France
| | - Nicholas McGranahan
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - Martin Gore
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - P Andrew Futreal
- The University of Texas MD Anderson Cancer Center, Department of Genomic Medicine, Houston, TX 77030, USA
| | - James Larkin
- Renal and Skin Units, The Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | - Andy G Lynch
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK; School of Medicine, University of St. Andrews, North Haugh, St. Andrews KY16 9TF, UK
| | - Zoltan Szallasi
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, MA, USA
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London NW1 2BU, UK.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK.
| |
Collapse
|
5
|
Islam W. CRISPR-Cas9; an efficient tool for precise plant genome editing. Mol Cell Probes 2018; 39:47-52. [PMID: 29621557 DOI: 10.1016/j.mcp.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 01/09/2023]
Abstract
Efficient plant genome editing is dependent upon induction of double stranded DNA breaks (DSBs) through site specified nucleases. These DSBs initiate the process of DNA repair which can either base upon homologous recombination (HR) or non-homologous end jointing (NHEJ). Recently, CRISPR-Cas9 mechanism got highlighted as revolutionizing genetic tool due to its simpler frame work along with the broad range of adaptability and applications. So, in this review, I have tried to sum up the application of this biotechnological tool in plant genome editing. Furthermore, I have tried to explain successful adaptation of CRISPR in various plant species where it is used for the successful generation of stable mutations in a steadily growing number of species through NHEJ. The review also sheds light upon other biotechnological approaches relying upon single DNA lesion induction such as genomic deletion or pair wise nickases for evasion of offsite effects.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Govt.of Punjab, Agriculture Department, Lahore, Pakistan.
| |
Collapse
|
6
|
Dai X, Theobard R, Cheng H, Xing M, Zhang J. Fusion genes: A promising tool combating against cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:149-160. [PMID: 29357299 DOI: 10.1016/j.bbcan.2017.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
Abstract
The driving roles of fusion genes during tumorigenesis have been recognized for decades, with efficacies demonstrated in clinical diagnosis and targeted therapy. With advances in sequencing technologies and computational biology, a surge in the identification of fusion genes has been witnessed during the past decade. The discovery and presence of splicing based fusions in normal tissues have challenged our canonical conceptions on fusion genes and offered us novel medical opportunities. The specificity of fusion genes to neoplastic tissues and their diverse functionalities during carcinogenesis foster them as promising tools in the battle against cancer. It is time to re-visit and comb through our cutting-edge knowledge on fusion genes to accelerate clinical translation of these internal markers. Urged as such, we are encouraged to categorize fusion events according to mechanisms leading to their generation, oncological consequences and clinical implications, offer insights on fusion occurrence across tumors from the system level, highlight feasible practices in fusion-related pharmaceutical development, and identify understudied yet important niches that may lead future research trend in this field.
Collapse
Affiliation(s)
- Xiaofeng Dai
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Rutaganda Theobard
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengtao Xing
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Jianying Zhang
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA; Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
8
|
Norris AL, Kamiyama H, Makohon-Moore A, Pallavajjala A, Morsberger LA, Lee K, Batista D, Iacobuzio-Donahue CA, Lin MT, Klein AP, Hruban RH, Wheelan SJ, Eshleman JR. Transflip mutations produce deletions in pancreatic cancer. Genes Chromosomes Cancer 2015; 54:472-481. [PMID: 26031834 DOI: 10.1002/gcc.22258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is driven by the inactivation of the tumor suppressor genes (TSGs), CDKN2A (P16) and SMAD4 (DPC4), commonly by homozygous deletions (HDs). Using a combination of high density single-nucleotide polymorphism (SNP) microarray and whole genome sequencing (WGS), we fine-mapped novel breakpoints surrounding deletions of CDKN2A and SMAD4 and characterized them by their underlying structural variants (SVs). Only one third of CDKN2A and SMAD4 deletions (6 of 18) were simple interstitial deletions, rather, the majority of deletions were caused by complex rearrangements, specifically, a translocation on one side of the TSG in combination with an inversion on the other side. We designate these as "TransFlip" mutations. Characteristics of TransFlip mutations are: (1) a propensity to target the TSGs CDKN2A and SMAD4 (P < 0.005), (2) not present in the germline of the examined samples, (3) non-recurrent breakpoints, (4) relatively small (47 bp to 3.4 kb) inversions, (5) inversions can be either telomeric or centromeric to the TSG, and (6) non-reciprocal, and non-recurrent translocations. TransFlip mutations are novel complex genomic rearrangements with unique breakpoint signatures in pancreatic cancer. We hypothesize that they are a common but poorly understood mechanism of TSG inactivation in human cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis L Norris
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Hirohiko Kamiyama
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Alvin Makohon-Moore
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Aparna Pallavajjala
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Laura A Morsberger
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Kurt Lee
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Denise Batista
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Ming-Tseh Lin
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Sarah J Wheelan
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231
| |
Collapse
|
9
|
Gill Super HJ. A role for epigenetics in the formation of chromosome translocations in acute leukemia. Cancer Genet 2015; 208:230-6. [PMID: 25953461 DOI: 10.1016/j.cancergen.2015.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/01/2015] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
In general, the field of cancer genetics seems to have shifted its focus from cancer-associated genes to cancer-associated epigenetic activity. An abundance of evidence suggests that epigenetic malfunction, such as aberrant histone modification, and altered DNA methylation, is at the root of much, if not most aberrant gene expression associated with cancer. However, a role for epigenetics in physical DNA changes, such as chromosome rearrangements, is less obvious, and certainly less well understood. A growing body of evidence suggests that epigenetics may play a role in many of the steps of aberrant chromosome recombination, especially chromosome translocations, associated with cancers such as acute leukemias.
Collapse
|
10
|
Iarovaia OV, Rubtsov M, Ioudinkova E, Tsfasman T, Razin SV, Vassetzky YS. Dynamics of double strand breaks and chromosomal translocations. Mol Cancer 2014; 13:249. [PMID: 25404525 PMCID: PMC4289179 DOI: 10.1186/1476-4598-13-249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 12/27/2022] Open
Abstract
Chromosomal translocations are a major cause of cancer. At the same time, the mechanisms that lead to specific chromosomal translocations that associate different gene regions remain largely unknown. Translocations are induced by double strand breaks (DSBs) in DNA. Here we review recent data on the mechanisms of generation, mobility and repair of DSBs and stress the importance of the nuclear organization in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Yegor S Vassetzky
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, Villejuif 94805, France.
| |
Collapse
|