1
|
Han X, Liu X, Wan K, Yan H, Zhang M, Liu H, Gao L, Gao L, Zhang C, Wen Q, Zhang X. The clinical features and outcomes of elderly patients with acute myeloid leukemia: a real word research. Clin Exp Med 2025; 25:27. [PMID: 39751973 PMCID: PMC11698854 DOI: 10.1007/s10238-024-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
The aim of this study was to investigate the clinical features and outcomes of elderly patients with acute myeloid leukemia (AML) from a real word research. The clinical data of 223 consecutive elderly patients (aged ≥ 60 years) who were newly diagnosed with AML at our medical center between July 2017 and June 2022, including their clinical characteristics, genetic mutations, and survival outcomes, were retrospectively analyzed. Among the 223 patients (median age 67 years), 180 (80.7%) were diagnosed with de novo AML. Genetic mutations were identified in 138 of 149 patients tested (92.6%). The most commonly mutated genes included TET2, DNMT3A, NPM1, FLT3-ITD, ASXL1, IDH2, RUNX1, TP53, and CEBPA. Among these genes, TET2, DNMT3A, FLT3-ITD, and TP53 were associated with a poor outcome. Multivariate Cox's regression analysis revealed that age over 70 years, platelet count less than 100 × 109/L, albumin level less than 35 g/L, presence of infection or bleeding at diagnosis, untreated or best supportive care (BSC) treatment status, and adverse or intermediate ELN 2022 risk classification were independent prognostic factors for overall survival in elderly AML patients. Patients who received at least one induction cycle had longer overall survival times (20 months vs. 6.6 months, P < 0.001) than those who received best supportive care. Patients with ≥ 6 cycles of chemotherapy had longer overall survival times (89.2% vs. 78.5%, P = 0.007) than those with ≤ 5 cycles of therapy. The results of this study indicated that elderly AML patients had multiple genetic abnormalities and poor outcomes. Regular effective treatment can improve patient outcomes and survival. In addition to genetic abnormalities, several other clinical features can influence survival in elderly AML patients.
Collapse
Affiliation(s)
- Xiao Han
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Xue Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Kai Wan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Hongju Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Mengyun Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Hong Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University; Chongqing Key Laboratory of Hematology and Microenvironment; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, No.83 Xinqiao Main Street, Shapingba District, 400037, China.
| |
Collapse
|
2
|
Pan X, Chang Y, Ruan G, Zhou S, Jiang H, Jiang Q, Huang X, Zhao XS. TET2 mutations contribute to adverse prognosis in acute myeloid leukemia (AML): results from a comprehensive analysis of 502 AML cases and the Beat AML public database. Clin Exp Med 2024; 24:35. [PMID: 38349460 PMCID: PMC10864580 DOI: 10.1007/s10238-024-01297-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
Despite the high incidence of tet methylcytosine dioxygenase 2 (TET2) mutations in acute myeloid leukemia (AML), the prognostic implications of these mutations in three AML risk groups based on the 2022 ELN AML risk classification are still unclear. A total of 502 consecutive de novo AML patients who had next-generation sequencing data available between March 2011 and July 2021 at the Peking University Institute of Hematology were enrolled in this study. Univariate and multivariate Cox regression analyses were performed to explore the prognostic impact of TET2 mutations in the above cohort and the Beat AML cohort. Of the 502 total AML patients, 76 (15.1%) carried TET2 mutations. Multivariate analysis revealed TET2 mutations as independent risk factor for overall survival (OS) in both the total AML cohort (OR = 1.649, p = 0.009) and in the 2022 ELN intermediate-risk cohort (HR = 1.967, p = 0.05). Analysis of RNA-seq data from the Beat AML study revealed 1042 differentially expressed genes (DEGs) between the TET2-mutant and TET2 wild-type groups. The results of enrichment analysis indicated the DEGs to be notably enriched in categories related to the PI3K-Akt signaling pathway. Collectively, our findings indicate that mutations in TET2 are prognostically disadvantageous in AML patients. Assessment of TET2 mutational status contributes to the stratification of intermediate-risk AML patients. Multiple genes and pathways of potential therapeutic relevance may be differentially modulated by TET2 mutations in AML.
Collapse
Affiliation(s)
- Xin'an Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Guorui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Songhai Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China.
| |
Collapse
|
3
|
Shin HJ, Hua JT, Li H. Recent advances in understanding DNA methylation of prostate cancer. Front Oncol 2023; 13:1182727. [PMID: 37234978 PMCID: PMC10206257 DOI: 10.3389/fonc.2023.1182727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation, is widely studied in cancer. DNA methylation patterns have been shown to distinguish between benign and malignant tumors in various cancers, including prostate cancer. It may also contribute to oncogenesis, as it is frequently associated with downregulation of tumor suppressor genes. Aberrant patterns of DNA methylation, in particular the CpG island hypermethylator phenotype (CIMP), have shown associative evidence with distinct clinical features and outcomes, such as aggressive subtypes, higher Gleason score, prostate-specific antigen (PSA), and overall tumor stage, overall worse prognosis, as well as reduced survival. In prostate cancer, hypermethylation of specific genes is significantly different between tumor and normal tissues. Methylation patterns could distinguish between aggressive subtypes of prostate cancer, including neuroendocrine prostate cancer (NEPC) and castration resistant prostate adenocarcinoma. Further, DNA methylation is detectable in cell-free DNA (cfDNA) and is reflective of clinical outcome, making it a potential biomarker for prostate cancer. This review summarizes recent advances in understanding DNA methylation alterations in cancers with the focus on prostate cancer. We discuss the advanced methodology used for evaluating DNA methylation changes and the molecular regulators behind these changes. We also explore the clinical potential of DNA methylation as prostate cancer biomarkers and its potential for developing targeted treatment of CIMP subtype of prostate cancer.
Collapse
Affiliation(s)
- Hyun Jin Shin
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Stölzel F, Fordham SE, Nandana D, Lin WY, Blair H, Elstob C, Bell HL, Mohr B, Ruhnke L, Kunadt D, Dill C, Allsop D, Piddock R, Soura EN, Park C, Fadly M, Rahman T, Alharbi A, Wobus M, Altmann H, Röllig C, Wagenführ L, Jones GL, Menne T, Jackson GH, Marr HJ, Fitzgibbon J, Onel K, Meggendorfer M, Robinson A, Bziuk Z, Bowes E, Heidenreich O, Haferlach T, Villar S, Ariceta B, Diaz RA, Altschuler SJ, Wu LF, Prosper F, Montesinos P, Martinez-Lopez J, Bornhäuser M, Allan JM. Biallelic TET2 mutations confer sensitivity to 5'-azacitidine in acute myeloid leukemia. JCI Insight 2023; 8:e150368. [PMID: 36480300 PMCID: PMC9977313 DOI: 10.1172/jci.insight.150368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.
Collapse
Affiliation(s)
- Friedrich Stölzel
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Sarah E. Fordham
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Devi Nandana
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei-Yu Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Elstob
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hayden L. Bell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Brigitte Mohr
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Leo Ruhnke
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Desiree Kunadt
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Claudia Dill
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Daniel Allsop
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Piddock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emmanouela-Niki Soura
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine Park
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohd Fadly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thahira Rahman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Abrar Alharbi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manja Wobus
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Heidi Altmann
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Christoph Röllig
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
| | - Gail L. Jones
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Tobias Menne
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Graham H. Jackson
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Helen J. Marr
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kenan Onel
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Amber Robinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Zuzanna Bziuk
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Bowes
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Sara Villar
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beñat Ariceta
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Navarra, Spain
- IdiSNA, Navarra, Spain
| | - Rosa Ayala Diaz
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Felipe Prosper
- Department of Hematology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital 12 de Octubre (i+12), Centro Nacional de Investigaciones Oncológicas (CNIO), Complutense University, Madrid, Spain
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technical University of Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - James M. Allan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Al-Bulushi F, Al-Riyami R, Al-Housni Z, Al-Abri B, Al-Khabori M. Impact of mutations in epigenetic modifiers in acute myeloid leukemia: A systematic review and meta-analysis. Front Oncol 2022; 12:967657. [PMID: 36518313 PMCID: PMC9742486 DOI: 10.3389/fonc.2022.967657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023] Open
Abstract
This is a systematic review and meta-analysis evaluating the prognostic significance of epigenetic mutations on the overall survival (OS) in Acute Myeloid Leukemia (AML). We searched for studies evaluating epigenetic mutations in AML (up to November 2018) in PubMed, Trip database and Cochrane library. Hazard ratio (HR) of outcomes were extracted, and random-effects model was used to pool the results. A total of 10,002 citations were retrieved from the search strategy; 42 articles were identified for the meta-analysis (ASXL1 = 7, TET2 = 8, DNMT3A = 12, IDH =15), with fair to good-quality studies. The pooled HR was 1.88 (95% CI: 1.49-2.36) for ASXL1 mutation, 1.39 (95% CI: 1.18-1.63) for TET2 mutation, 1.35 (95% CI 1.16-1.56) for DNMT3a and 1.54 (95% CI: 1.15-2.06) for IDH mutation. However, there was a substantial heterogeneity in the DNMT3a and IDH studies. In conclusion epigenetic mutations in ASXL1, TET2, DNMT3a and IDH adversely impact OS in patients with AML albeit with considerable heterogeneity and possibly publication bias. Further studies are required to address these limitations.
Collapse
Affiliation(s)
- Fatma Al-Bulushi
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Rahma Al-Riyami
- Internal Medicine, Oman Medical Specialty Board, Muscat, Oman
| | - Zainab Al-Housni
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Bushra Al-Abri
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
| | - Murtadha Al-Khabori
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Christen F, Hablesreiter R, Hoyer K, Hennch C, Maluck-Böttcher A, Segler A, Madadi A, Frick M, Bullinger L, Briest F, Damm F. Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9. Leukemia 2022; 36:1102-1110. [PMID: 34782715 PMCID: PMC8979818 DOI: 10.1038/s41375-021-01469-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
To investigate clonal hematopoiesis associated gene mutations in vitro and to unravel the direct impact on the human stem and progenitor cell (HSPC) compartment, we targeted healthy, young hematopoietic progenitor cells, derived from umbilical cord blood samples, with CRISPR/Cas9 technology. Site-specific mutations were introduced in defined regions of DNMT3A, TET2, and ASXL1 in CD34+ progenitor cells that were subsequently analyzed in short-term as well as long-term in vitro culture assays to assess self-renewal and differentiation capacities. Colony-forming unit (CFU) assays revealed enhanced self-renewal of TET2 mutated (TET2mut) cells, whereas ASXL1mut as well as DNMT3Amut cells did not reveal significant changes in short-term culture. Strikingly, enhanced colony formation could be detected in long-term culture experiments in all mutants, indicating increased self-renewal capacities. While we could also demonstrate preferential clonal expansion of distinct cell clones for all mutants, the clonal composition after long-term culture revealed a mutation-specific impact on HSPCs. Thus, by using primary umbilical cord blood cells, we were able to investigate epigenetic driver mutations without confounding factors like age or a complex mutational landscape, and our findings provide evidence for a direct impact of clonal hematopoiesis-associated mutations on self-renewal and clonal composition of human stem and progenitor cells.
Collapse
Affiliation(s)
- Friederike Christen
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Raphael Hablesreiter
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Kaja Hoyer
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Cornelius Hennch
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Antje Maluck-Böttcher
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Angela Segler
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gynecology with Center for Oncological Surgery, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Obstetrics, Berlin, Germany
| | - Annett Madadi
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Obstetrics, Berlin, Germany
| | - Mareike Frick
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bullinger
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Briest
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Frederik Damm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Bussaglia E, Antón R, Nomdedéu JF, Fuentes-Prior P. TET2 missense variants in human neoplasia. A proposal of structural and functional classification. Mol Genet Genomic Med 2019; 7:e00772. [PMID: 31187595 PMCID: PMC6625141 DOI: 10.1002/mgg3.772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background The human TET2 gene plays a pivotal role in the epigenetic regulation of normal and malignant hematopoiesis. Somatic TET2 mutations have been repeatedly identified in age‐related clonal hematopoiesis and in myeloid neoplasms ranging from acute myeloid leukemia (AML) to myeloproliferative neoplasms. However, there have been no attempts to systematically explore the structural and functional consequences of the hundreds of TET2 missense variants reported to date. Methods We have sequenced the TET2 gene in 189 Spanish AML patients using Sanger sequencing and NGS protocols. Next, we performed a thorough bioinformatics analysis of TET2 protein and of the expected impact of all reported TET2 missense variants on protein structure and function, exploiting available structure‐and‐function information as well as 3D structure prediction tools. Results We have identified 38 TET2 allelic variants in the studied patients, including two frequent SNPs: p.G355D (10 cases) and p.I1762V (28 cases). Four of the detected mutations are reported here for the first time: c.122C>T (p.P41L), c.4535C>G (p.A1512G), c.4760A>G (p.D1587G), and c.5087A>T (p.Y1696F). We predict a complex multidomain architecture for the noncatalytic regions of TET2, and in particular the presence of well‐conserved α+β globular domains immediately preceding and following the actual catalytic unit. Further, we provide a rigorous interpretation of over 430 missense SNVs that affect the TET2 catalytic domain, and we hypothesize explanations for ~700 additional variants found within the regulatory regions of the protein. Finally, we propose a systematic classification of all missense mutants and SNPs reported to date into three major categories (severe, moderate, and mild), based on their predicted structural and functional impact. Conclusions The proposed classification of missense TET2 variants would help to assess their clinical impact on human neoplasia and may guide future structure‐and‐function investigations of TET family members.
Collapse
Affiliation(s)
- Elena Bussaglia
- Hematology Department and Diagnostic Hematology Group, Barcelona, Spain
| | - Rosa Antón
- Molecular Bases of Disease, The Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Josep F Nomdedéu
- Hematology Department and Diagnostic Hematology Group, Barcelona, Spain
| | - Pablo Fuentes-Prior
- Molecular Bases of Disease, The Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
9
|
Wang R, Gao X, Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta-analysis. BMC Cancer 2019; 19:389. [PMID: 31023266 PMCID: PMC6485112 DOI: 10.1186/s12885-019-5602-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background The impact of Tet oncogene family member 2 (TET2) mutations on the prognosis of acute myeloid leukemia (AML) is still controversial. A meta analysis is needed in order to assess the prognostic significance of TET2 mutation in AML. Methods Five databases including PubMed, Cochrane, EMBase, China National Knowledge Internet (CNKI) and Wanfang database were retrieved to search studies that investigated the correlation between TET2 mutations and outcomes of AML patients. Pooled hazard ratios (HRs) and odds ratios (ORs) were used to assess the effects of TET2 mutations. Results Sixteen studies were included. TET2 mutation was an unfavorable prognostic factor for overall survival (OS: HR = 1.386; P < 0.001) and event-free survival (EFS: HR = 1.594; P = 0.002) in patients with AML. For patients under 65 years of age, TET2 mutation predicted an inferior OS (HR = 1.310, P = 0.051) and EFS (HR = 1.429, P = 0.027). For patients with intermediate-risk cytogenetics (IR-AML), mutant TET2 had a significant association with adverse OS (HR = 0.474; P < 0.001). For patients with normal cytogenetics (CN-AML), mutant TET2 also conferred adverse OS (HR = 1.425; P < 0.001) and EFS (HR = 1.450, P < 0.001). Further, among patients with CN-AML, mutant TET2 was associated with inferior OS (HR = 2.034, P < 0.001) and EFS (HR = 2.140, P < 0.001) in the ELN favorable-risk subgroup and an inferior EFS (HR = 1.487; P < 0.001) in the ELN intermediate-Isubgroup. With respect to treatment outcome, TET2 mutation predicted a significantly lower rate of complete remission (CR) in cases with ELN favorable-risk cytogenetics (OR = 0.460, P = 0.011). Conclusions TET2 mutation had adverse impacts on survival and treatment response in AML patients and will contribute to risk-stratification, prognosis prediction and therapy guidance. Electronic supplementary material The online version of this article (10.1186/s12885-019-5602-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruiqi Wang
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.,Medicine School, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaoning Gao
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China. .,Department of Hematology-Oncology, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan Avenue, Shenzhen, 518060, China.
| |
Collapse
|
10
|
Frick M, Chan W, Arends CM, Hablesreiter R, Halik A, Heuser M, Michonneau D, Blau O, Hoyer K, Christen F, Galan-Sousa J, Noerenberg D, Wais V, Stadler M, Yoshida K, Schetelig J, Schuler E, Thol F, Clappier E, Christopeit M, Ayuk F, Bornhäuser M, Blau IW, Ogawa S, Zemojtel T, Gerbitz A, Wagner EM, Spriewald BM, Schrezenmeier H, Kuchenbauer F, Kobbe G, Wiesneth M, Koldehoff M, Socié G, Kroeger N, Bullinger L, Thiede C, Damm F. Role of Donor Clonal Hematopoiesis in Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol 2019; 37:375-385. [DOI: 10.1200/jco.2018.79.2184] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Clonal hematopoiesis of indeterminate potential (CHIP) occurs in the blood of approximately 20% of older persons. CHIP is linked to an increased risk of hematologic malignancies and of all-cause mortality; thus, the eligibility of stem-cell donors with CHIP is questionable. We comprehensively investigated how donor CHIP affects outcome of allogeneic hematopoietic stem-cell transplantation (HSCT). Methods We collected blood samples from 500 healthy, related HSCT donors (age ≥ 55 years) at the time of stem-cell donation for targeted sequencing with a 66-gene panel. The effect of donor CHIP was assessed on recipient outcomes, including graft-versus-host disease (GVHD), cumulative incidence of relapse/progression (CIR/P), and overall survival (OS). Results A total of 92 clonal mutations with a median variant allele frequency of 5.9% were identified in 80 (16.0%) of 500 donors. CHIP prevalence was higher in donors related to patients with myeloid compared with lymphoid malignancies (19.2% v 6.3%; P ≤ .001). In recipients allografted with donor CHIP, we found a high cumulative incidence of chronic GVHD (cGVHD; hazard ratio [HR], 1.73; 95% CI, 1.21 to 2.49; P = .003) and lower CIR/P (univariate: HR, 0.62; 95% CI, 0.40 to 0.97; P = .027; multivariate: HR, 0.63; 95% CI, 0.41 to 0.98; P = .042) but no effect on nonrelapse mortality. Serial quantification of 25 mutations showed engraftment of 24 of 25 clones and disproportionate expansion in half of them. Donor-cell leukemia was observed in two recipients. OS was not affected by donor CHIP status (HR, 0.88; 95% CI, 0.65 to 1.321; P = .434). Conclusion Allogeneic HSCT from donors with CHIP seems safe and results in similar survival in the setting of older, related donors. Future studies in younger and unrelated donors are warranted to extend these results. Confirmatory studies and mechanistic experiments are warranted to challenge the hypothesis that donor CHIP might foster cGVHD development and reduce relapse/progression risk.
Collapse
Affiliation(s)
- Mareike Frick
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Willy Chan
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christopher Maximilian Arends
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Raphael Hablesreiter
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Adriane Halik
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - David Michonneau
- David Michonneau and Gérard Socié, INSERM U1160, Institut Universitaire d’Hematologie, Paris/University Paris Diderot, Paris, France
| | - Olga Blau
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Kaja Hoyer
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Friederike Christen
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Joel Galan-Sousa
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Daniel Noerenberg
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | - Igor Wolfgang Blau
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Tomasz Zemojtel
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité, University Medical Center, Berlin, Germany
| | - Armin Gerbitz
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Eva M. Wagner
- UCT Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bernd M. Spriewald
- University Hospital Erlangen, Friedrich Alexander University Erlangen Nürnberg (FAU), Erlangen, Germany
| | - Hubert Schrezenmeier
- German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and Institute of Transfusion Medicine, Ulm, Germany
| | | | - Guido Kobbe
- Heinrich Heine University, Düsseldorf, Germany
| | - Markus Wiesneth
- German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and Institute of Transfusion Medicine, Ulm, Germany
| | - Michael Koldehoff
- West German Cancer Centre, University Hospital of Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Gérard Socié
- David Michonneau and Gérard Socié, INSERM U1160, Institut Universitaire d’Hematologie, Paris/University Paris Diderot, Paris, France
| | | | - Lars Bullinger
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Thiede
- Carl Gustav Carus University Hospital Dresden, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Damm
- Charité - University Medical Center Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
He Z, Wang B, Chen L, Huang Y, Wang H, Yang M, Xiao X, Lu Y, Chen J, Wu Y. MLL-PTD in a 13-year-old patient with blast phase myeloproliferative neoplasm: A case report. Medicine (Baltimore) 2018; 97:e13220. [PMID: 30431598 PMCID: PMC6257502 DOI: 10.1097/md.0000000000013220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RATIONALE The risk of leukemic transformation in myeloproliferative neoplasm (MPN) has been increasing with time. Partial Tandem Duplications of the MLL gene (MLL-PTD) has been reported in de novo acute myeloid leukemia (AML), but not in MPN blast phase. The post-MPN AML developed adverse clinical outcomes, which showed no noticeable improvement over the past 15 years. Therefore, the mechanisms and therapeutic approaches of post-MPN AML need to be deeply studied. PATIENT CONCERNS In this study, we present a JAK2V617F positive MPN patient who experienced fatigue and splenomegaly, transforming into JAK2V617F negative AML. DIAGNOSES A diagnosis of acute monocytic leukemia was made in MPN blast phase. INTERVENTIONS The patient received chemotherapy and allogeneic hematopoietic stem cell transplantation (Allo-SCT). OUTCOMES The patient achieved complete remission twice, but relapsed twice. Relapse-free survival was only 3 months. She died about 24 months after her diagnosis. LESSONS MLL-PTD occurs in the progression of JAK2V617F positive MPN into JAK2V617F negative AML, which may be a novel mechanism of MPN blast phase and helpful for post-MPN AML diagnosis. Allo-SCT may be a good choice for post-MPN AML with MLL-PTD. More therapeutic strategies need to be explored for a better prognosis in these patients.
Collapse
|
12
|
Liu Y, Cao Y, Lin Y, Dong WM, Lin RR, Gu Q, Xie XB, Gu WY. Successful Treatment of Cytogenetically Normal Acute Myeloid Leukemia With Ten-Eleven Translocation 2-Isocitrate Dehydrogenase 2 and Additional Sex Comb-like 1-Nucleophosmin Co-mutations by HLA Haploidentical Stem Cell Transplantation: A Case Report and Literature Review. Transplant Proc 2018; 50:959-963. [PMID: 29661468 DOI: 10.1016/j.transproceed.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/17/2018] [Indexed: 11/17/2022]
Abstract
The presence of recurrent gene mutations is increasingly important in acute myeloid leukemia (AML) and sheds new insights into the understanding of leukemogenesis, prognostic evaluation, and clinical therapeutic efficacy. Until now, ten-eleven translocation 2 (TET2) and isocitrate dehydrogenase 2 (IDH2) mutations were reported to be mutually exclusive in AML patients. Similarly, nucleophosmin (NPM1) and additional sex comb-like 1 (ASXL1) mutations were rarely coexisted in AML. A 47-year-old man diagnosed with high-risk AML presented simultaneous mutations of TET2-IDH2 and NPM1-ASXL1 revealed by next-generation sequencing. After successful treatment with chemotherapy followed by HLA haploidentical transplantation, he achieved a clinical complete remission without evidence of overt graft-versus-host disease. This case highlights that HLA haploidentical transplantation might be a safe and feasible therapy for AML patients who are characterized by TET2-IDH2 and NPM1-ASXL1 co-mutations.
Collapse
Affiliation(s)
- Y Liu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Y Cao
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Y Lin
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - W-M Dong
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - R-R Lin
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Q Gu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - X-B Xie
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - W-Y Gu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
13
|
Pogosova-Agadjanyan EL, Moseley A, Othus M, Appelbaum FR, Chauncey TR, Chen IML, Erba HP, Godwin JE, Fang M, Kopecky KJ, List AF, Pogosov GL, Radich JP, Willman CL, Wood BL, Meshinchi S, Stirewalt DL. Impact of Specimen Heterogeneity on Biomarkers in Repository Samples from Patients with Acute Myeloid Leukemia: A SWOG Report. Biopreserv Biobank 2017; 16:42-52. [PMID: 29172682 DOI: 10.1089/bio.2017.0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Current prognostic models for acute myeloid leukemia (AML) are inconsistent at predicting clinical outcomes for individual patients. Variability in the quality of specimens utilized for biomarker discovery and validation may contribute to this prognostic inconsistency. METHODS We evaluated the impact of sample heterogeneity on prognostic biomarkers and methods to mitigate any adverse effects of this heterogeneity in 240 cryopreserved bone marrow and peripheral blood specimens from AML patients enrolled on SWOG (Southwest Oncology Group) trials. RESULTS Cryopreserved samples displayed a broad range in viability (37% with viabilities ≤60%) and nonleukemic cell contamination (13% with lymphocyte percentages >20%). Specimen viability was impacted by transport time, AML immunophenotype, and, potentially, patients' age. The viability and cellular heterogeneity in unsorted samples significantly altered biomarker results. Enriching for viable AML blasts improved the RNA quality from specimens with poor viability and refined results for both DNA and RNA biomarkers. For example, FLT3-ITD allelic ratio, which is currently utilized to risk-stratify AML patients, was on average 1.49-fold higher in the viable AML blasts than in the unsorted specimens. CONCLUSION To our knowledge, this is the first study to provide evidence that using cryopreserved specimens can introduce uncontrollable variables that may impact biomarker results and enrichment for viable AML blasts may mitigate this impact.
Collapse
Affiliation(s)
| | - Anna Moseley
- 2 SWOG Statistical Center , Fred Hutch, Seattle, Washington
| | - Megan Othus
- 2 SWOG Statistical Center , Fred Hutch, Seattle, Washington
| | - Frederick R Appelbaum
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington
| | - Thomas R Chauncey
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington.,4 VA Puget Sound Health Care System , Seattle, Washington
| | - I-Ming L Chen
- 5 Department of Pathology, University of New Mexico , UNM Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Harry P Erba
- 6 Division of Hematology and Oncology, University of Alabama at Birmingham , Birmingham, Alabama
| | - John E Godwin
- 7 Providence Cancer Center, Earle A. Chiles Research Institute , Portland, Oregon
| | - Min Fang
- 8 Departments of Laboratory Medicine and Pathology, University of Washington , Seattle, Washington
| | | | - Alan F List
- 9 Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute , Tampa, Florida
| | | | - Jerald P Radich
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington
| | - Cheryl L Willman
- 5 Department of Pathology, University of New Mexico , UNM Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Brent L Wood
- 8 Departments of Laboratory Medicine and Pathology, University of Washington , Seattle, Washington
| | - Soheil Meshinchi
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,10 Department of Pediatrics, University of Washington , Seattle, Washington
| | - Derek L Stirewalt
- 1 Clinical Research Division , Fred Hutch, Seattle, Washington.,3 Departments of Oncology and Hematology, University of Washington , Seattle, Washington
| |
Collapse
|
14
|
McCurdy SR, Levis MJ. Emerging molecular predictive and prognostic factors in acute myeloid leukemia. Leuk Lymphoma 2017; 59:2021-2039. [DOI: 10.1080/10428194.2017.1393669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shannon R. McCurdy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Mutations in TET2 and DNMT3A genes are associated with changes in global and gene-specific methylation in acute myeloid leukemia. Tumour Biol 2017; 39:1010428317732181. [DOI: 10.1177/1010428317732181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Mukherjee S, Sathanoori M, Ma Z, Andreatta M, Lennon PA, Wheeler SR, Prescott JL, Coldren C, Casey T, Rietz H, Fasig K, Woodford R, Hartley T, Spence D, Donnelan W, Berdeja J, Flinn I, Kozyr N, Bouzyk M, Correll M, Ho H, Kravtsov V, Tunnel D, Chandra P. Addition of chromosomal microarray and next generation sequencing to FISH and classical cytogenetics enhances genomic profiling of myeloid malignancies. Cancer Genet 2017; 216-217:128-141. [DOI: 10.1016/j.cancergen.2017.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/28/2017] [Accepted: 07/27/2017] [Indexed: 01/31/2023]
|
17
|
Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int 2017; 2017:6962379. [PMID: 28197208 PMCID: PMC5288537 DOI: 10.1155/2017/6962379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023] Open
Abstract
Adult acute myeloid leukemia (AML) clinically is a disparate disease that requires intensive treatments ranging from chemotherapy alone to allogeneic hematopoietic cell transplantation (allo-HCT). Historically, cytogenetic analysis has been a useful prognostic tool to classify patients into favorable, intermediate, and unfavorable prognostic risk groups. However, the intermediate-risk group, consisting predominantly of cytogenetically normal AML (CN-AML), itself exhibits diverse clinical outcomes and requires further characterization to allow for more optimal treatment decision-making. The recent advances in clinical genomics have led to the recategorization of CN-AML into favorable or unfavorable subgroups. The relapsing nature of AML is thought to be due to clonal heterogeneity that includes founder or driver mutations present in the leukemic stem cell population. In this article, we summarize the clinical outcomes of relevant molecular mutations and their cooccurrences in CN-AML, including NPM1, FLT3ITD, DNMT3A, NRAS, TET2, RUNX1, MLLPTD, ASXL1, BCOR, PHF6, CEBPAbiallelic, IDH1, IDH2R140, and IDH2R170, with an emphasis on their relevance to the leukemic stem cell compartment. We have reviewed the available literature and TCGA AML databases (2013) to highlight the potential role of stem cell regulating factor mutations on outcome within newly defined AML molecular subgroups.
Collapse
|
18
|
A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome. Leukemia 2017; 31:2011-2019. [PMID: 28074068 PMCID: PMC5537054 DOI: 10.1038/leu.2017.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Genetic changes are infrequent in acute myeloid leukemia (AML) compared to other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation (DREAM) data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CIMP (A-CIMP+). A-CIMP was associated with longer overall survival (OS) in this dataset (median OS, years: A-CIMP+ = Not reached, A-CIMP− =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP+ =2.34, A-CIMP− =1.00; P=0.01). Hypermethylation in A-CIMP favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple datasets. We conclude that CIMP in AML cannot be explained solely by gene mutations (e.g. IDH1/2, TET2), and that curability in A-CIMP+ AML should be validated prospectively.
Collapse
|
19
|
Ossenkoppele GJ, Janssen JJWM, van de Loosdrecht AA. Risk factors for relapse after allogeneic transplantation in acute myeloid leukemia. Haematologica 2016; 101:20-5. [PMID: 26721801 DOI: 10.3324/haematol.2015.139105] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia is a clonal neoplasm derived from myeloid progenitor cells with a varying outcome. The initial goal of treatment is the achievement of complete remission, defined for over 40 years by morphology. However, without additional post-remission treatment the majority of patients relapse. In many cases of acute myeloid leukemia, allogeneic stem cell transplantation offers the best prospects of cure. In 2013, 5608 stem cell transplantations in acute myeloid leukemia were performed in Europe (5228 allogeneic and 380 autologous stem cell transplantations). Most stem cell transplantations are performed in first complete remission. However, despite a considerable reduction in the chance of relapse, in most studies, overall survival benefit of allogeneic stem cell transplantation is modest due to substantial non-relapse mortality. Here we discuss the many factors related to the risk of relapse after allogeneic stem cell transplantation.
Collapse
|
20
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
21
|
Hou HA, Tien HF. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility. Expert Rev Hematol 2016; 9:447-69. [DOI: 10.1586/17474086.2016.1144469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Falini B, Sportoletti P, Brunetti L, Martelli MP. Perspectives for therapeutic targeting of gene mutations in acute myeloid leukaemia with normal cytogenetics. Br J Haematol 2015; 170:305-22. [PMID: 25891481 DOI: 10.1111/bjh.13409] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The acute myeloid leukaemia (AML) genome contains more than 20 driver recurrent mutations. Here, we review the potential for therapeutic targeting of the most common mutations associated with normal cytogenetics AML, focusing on those affecting the FLT3, NPM1 and epigenetic modifier genes (DNMT3A, IDH1/2, TET2). As compared to early compounds, second generation FLT3 inhibitors are more specific and have better pharmacokinetics. They also show higher anti-leukaemic activity, leading to about 50% of composite complete remissions in refractory/relapsed FLT3-internal tandem duplication-mutated AML. However, rapid relapses invariably occur due to various mechanisms of resistance to FLT3 inhibitors. This issue and the best way for using FLT3 inhibitors in combination with other therapeutic modalities are discussed. Potential approaches for therapeutic targeting of NPM1-mutated AML include: (i) reverting the aberrant nuclear export of NPM1 mutant using exportin-1 inhibitors; (ii) disruption of the nucleolus with drugs blocking the oligomerization of wild-type nucleophosmin or inducing nucleolar stress; and (iii) immunotherapeutic targeting of highly expressed CD33 and IL3RA (CD123) antigens. Finally, we discuss the role of demethylating agents (decitabine and azacitidine) and IDH1/2 inhibitors in the treatment of AML patients carrying mutations of genes (DNMT3A, IDH1/2 and TET2) involved in the epigenetic regulation of transcription.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| | - Lorenzo Brunetti
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| | - Maria Paola Martelli
- Institute of Haematology-CREO (Centro di Ricerche Emato-Oncologiche), Ospedale S. Maria Misericordia, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Bochtler T, Fröhling S, Krämer A. Role of chromosomal aberrations in clonal diversity and progression of acute myeloid leukemia. Leukemia 2015; 29:1243-52. [PMID: 25673237 DOI: 10.1038/leu.2015.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/24/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022]
Abstract
Genetic abnormalities are a hallmark of cancer. Hereby, cytogenetic aberrations and small-scale abnormalities, such as single-nucleotide variations and insertion/deletion mutations, have emerged as two alternative modes of genetic diversification. Both mechanisms are at work in acute myeloid leukemia (AML), in which conventional karyotyping and molecular studies demonstrate that gene mutations occur predominantly in cytogenetically normal AML, whereas chromosomal changes are a driving force of development and progression of disease in aberrant karyotype AML. All steps of disease evolution in AML, ranging from the transformation of preleukemic clones into overt leukemia to the expansion and recurrence of malignant clones, are paralleled by clonal evolution at either the gene mutation or chromosome aberration level. Preleukemic conditions, such as Fanconi anemia and Bloom syndrome, demonstrate that the acquisition of chromosomal aberrations can contribute to leukemic transformation. Similar to what has been shown at the mutational level, expansion and recurrence of AML clones goes along with increasing genetic diversification. Hereby, cytogenetically more evolved subclones are at a proliferative advantage and outgrow ancestor clones or have evolved toward a more aggressive behavior with additional newly acquired aberrations as compared with the initial leukemic clone, respectively.
Collapse
Affiliation(s)
- T Bochtler
- 1] Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany [2] Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - S Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Krämer
- 1] Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany [2] Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|