1
|
Tsuchiya T, Miyawaki S, Teranishi Y, Ohara K, Hirano Y, Ogawa S, Torazawa S, Sakai Y, Hongo H, Ono H, Saito N. Current molecular understanding of central nervous system schwannomas. Acta Neuropathol Commun 2025; 13:24. [PMID: 39910685 PMCID: PMC11796276 DOI: 10.1186/s40478-025-01937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Schwannomas are tumors that originate from myelinating Schwann cells and can occur in cranial, spinal, and peripheral nerves. Although our understanding of the molecular biology underlying schwannomas remains incomplete, numerous studies have identified various molecular findings and biomarkers associated with schwannomas of the central nervous system (CNS). The development of these tumors is primarily linked to mutations in the NF2 gene. Merlin, the protein encoded by NF2, is integral to several signaling pathways, including Ras/Raf/MEK/ERK, PI3K/Akt/mTORC1, Wnt/β-catenin, and the Hippo pathway. MAIN BODY Recent research has also uncovered novel genetic alterations, such as the SH3PXD2A::HTRA1 fusion gene, VGLL-fusions in intraparenchymal CNS schwannomas, and the SOX10 mutation particularly in non-vestibular cranial nerve schwannomas. In addition to genetic alterations, research is also being conducted on gene expression and epigenetic regulation, with a focus on NF2 methylation and post-transcriptional silencing by micro RNA. Furthermore, the advent of advanced techniques like single-cell sequencing and multi-omics analysis has facilitated rapid discoveries related to the tumor microenvironment and tumor heterogeneity in schwannomas. CONCLUSION A deeper exploration of these molecular findings could clarify the mechanisms of schwannoma tumorigenesis and progression, ultimately guiding the development of new therapeutic targets. This review offers a comprehensive overview of the current molecular understanding of CNS schwannomas, emphasizing the insights gained from previous research, while addressing existing controversies and outlining future research and treatment perspectives.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yudai Hirano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shotaro Ogawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiei Torazawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ono
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Tomczak K, Patel MS, Bhalla AD, Peterson CB, Landers SM, Callahan SC, Zhang D, Wong J, Landry JP, Lazar AJ, Livingston JA, Guadagnolo BA, Lyu HG, Lillemoe H, Roland CL, Keung EZ, Scally CP, Hunt KK, McCutcheon IE, Slopis JM, Gu J, Scheet P, Wang L, Rai K, Torres KE. Plasma DNA Methylation-Based Biomarkers for MPNST Detection in Patients With Neurofibromatosis Type 1. Mol Carcinog 2025; 64:44-56. [PMID: 39600120 PMCID: PMC11636586 DOI: 10.1002/mc.23825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/29/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) development is characterized by an altered DNA methylation landscape, which presents a promising area for developing MPNST-specific biomarkers for screening patients with NF1. Genome-wide DNA methylation profiling of a cohort of 13 patients with MPNST (29 samples of tumor and adjacent neurofibroma tissues) and of NF1-MPNST cell lines was performed to identify and validate candidate MPNST-specific CpG sites (CpGs). A logistic regression prediction model was constructed to select MPNST-specific CpGs distinct from adjacent neurofibromas and normal tissues. To test if hypermethylation at selected CpGs can also be detected in plasma from patients with MPNST, cfMBD-seq was applied to profile the cfDNA methylome of blood from patients with MPNST and NF1. Based on stringent feature-selection criteria and predictive modeling, we identified 73 candidate MPNST-specific CpGs (67 with unique CpG island locations) that reliably discriminated MPNSTs from neurofibromas. Validation of five candidate biomarkers confirmed successful MPNST detection (sensitivity: > 88%, specificity: > 91%) in tissues. In plasma samples, 63 of 67 selected genomic regions had greater than 1.2-fold higher methylation in patients with MPNST than those with NF1. Further, we identified 15 CpG islands that consistently separated plasma from patients with confirmed MPNST diagnosis from plasma of individuals with NF1 without a diagnosis of malignant transformation (FDR < 0.1). Our findings confirmed a unique hypermethylation pattern present during malignant transformation. This study highlights the potential to be investigated further as biomarkers in clinical settings for early MPNST detection in patients with NF1.
Collapse
Affiliation(s)
- Katarzyna Tomczak
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Manishkumar S. Patel
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Angela D. Bhalla
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christine B. Peterson
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sharon M. Landers
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - S. Carson Callahan
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Di Zhang
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Justin Wong
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jace P. Landry
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alexander J. Lazar
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - J. Andrew Livingston
- Department of Sarcoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - B. Ashleigh Guadagnolo
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather G. Lyu
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather Lillemoe
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christina L. Roland
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emily Z. Keung
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christopher P. Scally
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kelly K. Hunt
- Department of Breast Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ian E. McCutcheon
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - John M. Slopis
- Department of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jian Gu
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Paul Scheet
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Liang Wang
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Kunal Rai
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Keila E. Torres
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
3
|
Nourbakhsh A, Dinh CT. Updates on Tumor Biology in Vestibular Schwannoma. Otolaryngol Clin North Am 2023; 56:421-434. [PMID: 37121611 PMCID: PMC12009539 DOI: 10.1016/j.otc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Vestibular schwannomas (VSs) are benign tumors that develop after biallelic inactivation of the neurofibromatosis type 2 (NF2) gene that encodes the tumor suppressor merlin. Merlin inactivation leads to cell proliferation by dysregulation of receptor tyrosine kinase signaling and other intracellular pathways. In VS without NF2 mutations, dysregulation of non-NF2 genes can promote pathways favoring cell proliferation and tumorigenesis. The tumor microenvironment of VS consists of multiple cell types that influence VS tumor biology through complex intercellular networking and communications.
Collapse
Affiliation(s)
- Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 579, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 Northwest 12th Avenue, Miami, FL 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 579, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 Northwest 12th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Ghalavand MA, Asghari A, Farhadi M, Taghizadeh-Hesary F, Garshasbi M, Falah M. The genetic landscape and possible therapeutics of neurofibromatosis type 2. Cancer Cell Int 2023; 23:99. [PMID: 37217995 PMCID: PMC10204202 DOI: 10.1186/s12935-023-02940-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic condition marked by the development of multiple benign tumors in the nervous system. The most common tumors associated with NF2 are bilateral vestibular schwannoma, meningioma, and ependymoma. The clinical manifestations of NF2 depend on the site of involvement. Vestibular schwannoma can present with hearing loss, dizziness, and tinnitus, while spinal tumor leads to debilitating pain, muscle weakness, or paresthesias. Clinical diagnosis of NF2 is based on the Manchester criteria, which have been updated in the last decade. NF2 is caused by loss-of-function mutations in the NF2 gene on chromosome 22, leading the merlin protein to malfunction. Over half of NF2 patients have de novo mutations, and half of this group are mosaic. NF2 can be managed by surgery, stereotactic radiosurgery, monoclonal antibody bevacizumab, and close observation. However, the nature of multiple tumors and the necessity of multiple surgeries over the lifetime, inoperable tumors like meningiomatosis with infiltration of the sinus or in the area of the lower cranial nerves, the complications caused by the operation, the malignancies induced by radiotherapy, and inefficiency of cytotoxic chemotherapy due to the benign nature of NF-related tumors have led a march toward exploring targeted therapies. Recent advances in genetics and molecular biology have allowed identifying and targeting of underlying pathways in the pathogenesis of NF2. In this review, we explain the clinicopathological characteristics of NF2, its genetic and molecular background, and the current knowledge and challenges of implementing genetics to develop efficient therapies.
Collapse
Affiliation(s)
- Mohammad Amin Ghalavand
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Wu B, Dou G, Zhang Y, Wang J, Wang X, Jiang S, Zhong S, Ren J, Zhang Z, Li J, Sheng C, Zhao G, Zhao L. Identification of key pathways and genes in vestibular schwannoma using bioinformatics analysis. Exp Ther Med 2022; 23:217. [PMID: 35126720 DOI: 10.3892/etm.2022.11141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study is to identify novel promising marks and targets of diagnosis, therapy and prognosis for patients with vestibular schwannoma at the molecular level. The gene expression profiles of GSE54934, GSE39645 and GSE56597 datasets were obtained respectively from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified by comparing between gene expression profiles of the vestibular schwannoma tissues and normal tissues. Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network analysis were performed. The function and pathway enrichment analysis were performed for DEGs with DAVID. Reverse transcription-quantitative PCR were conducted to confirm the expression of BCL2, AGT, IL6 and ITGA2 in human Schwann cells and vestibular schwannoma cells. A total of 4,025, 1,1291 and 1,513 DEGs were identified from GSE54934, GSE56597 and GSE39645 datasets, respectively. GO and KEGG analysis showed that the mutual upregulated genes were mainly enriched in cell division, mitotic nuclear division, and transition of mitotic cell cycle, whilst mutual downregulated genes were enriched in chemical synaptic transmission, neurotransmitter transport, and synaptic vesicle membrane. Subsequently, 20 genes, including BCL2, AGT, IL6 and ITGA2 were selected as hub genes with high degrees after PPI network analysis. The significant differential expression of those genes were detected among vestibular schwannoma tissues compared with normal nerve tissues. In conclusion, BCL2, AGT, IL6 and ITGA2 are significantly higher expressed in vestibular schwannoma tissues compared with human Schwann tissues. The DEGs identified in the present study provide novel targets for the diagnosis and treatment of vestibular schwannoma.
Collapse
Affiliation(s)
- Bo Wu
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Orthopedics, The First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Gaojing Dou
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Breast Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuan Zhang
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Wang
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinhui Wang
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Oncology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shanshan Jiang
- Institute of Zoology, China Academy of Science, Beijing 100049, P.R. China
| | - Sheng Zhong
- Department of Neurosurgery, Cancer Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Junan Ren
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiyun Zhang
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiahui Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chunjia Sheng
- Clinical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Gang Zhao
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liyan Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
6
|
Patil N, Abba ML, Zhou C, Chang S, Gaiser T, Leupold JH, Allgayer H. Changes in Methylation across Structural and MicroRNA Genes Relevant for Progression and Metastasis in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13235951. [PMID: 34885060 DOI: 10.3390/cancers13235951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
MiRs are important players in cancer and primarily genetic/transcriptional means of regulating their gene expression are known. However, epigenetic changes modify gene expression significantly. Here, we evaluated genome-wide methylation changes focusing on miR genes from primary CRC and corresponding normal tissues. Differentially methylated CpGs spanning CpG islands, open seas, and north and south shore regions were evaluated, with the largest number of changes observed within open seas and islands. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed several of these miRs to act in important cancer-related pathways, including phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways. We found 18 miR genes to be significantly differentially methylated, with MIR124-2, MIR124-3, MIR129-2, MIR137, MIR34B, MIR34C, MIR548G, MIR762, and MIR9-3 hypermethylated and MIR1204, MIR17, MIR17HG, MIR18A, MIR19A, MIR19B1, MIR20A, MIR548F5, and MIR548I4 hypomethylated in CRC tumor compared with normal tissue, most of these miRs having been shown to regulate steps of metastasis. Generally, methylation changes were distributed evenly across all chromosomes with predominance for chromosomes 1/2 and protein-coding genes. Interestingly, chromosomes abundantly affected by methylation changes globally were rarely affected by methylation changes within miR genes. Our findings support additional mechanisms of methylation changes affecting (miR) genes that orchestrate CRC progression and metastasis.
Collapse
Affiliation(s)
- Nitin Patil
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht Karls University of Heidelberg, 68167 Mannheim, Germany
| | - Mohammed L Abba
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht Karls University of Heidelberg, 68167 Mannheim, Germany
| | - Chan Zhou
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht Karls University of Heidelberg, 68167 Mannheim, Germany
| | - Shujian Chang
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht Karls University of Heidelberg, 68167 Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Mannheim Medical Faculty, Ruprecht Karls University of Heidelberg, Theodor Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht Karls University of Heidelberg, 68167 Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht Karls University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
8
|
Dinh CT, Nisenbaum E, Chyou D, Misztal C, Yan D, Mittal R, Young J, Tekin M, Telischi F, Fernandez-Valle C, Liu XZ. Genomics, Epigenetics, and Hearing Loss in Neurofibromatosis Type 2. Otol Neurotol 2020; 41:e529-e537. [PMID: 32150022 PMCID: PMC7547625 DOI: 10.1097/mao.0000000000002613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES In this review, we discuss current knowledge about the genetics and epigenetics of vestibular schwannoma (VS) in relation to hearing loss. A multistep and sequential genetic algorithm suitable for the identification of Neurofibromatosis Type 2 (NF2) constitutional and somatic mutations is discussed. DATA SOURCES, STUDY SELECTION A review was performed of the English literature from 1990 to 2019 using PubMed regarding genetics and epigenetics of vestibular schwannoma and NF2. CONCLUSION NF2 is a genetic disorder characterized by NF2 mutations that affect the function of a tumor suppressor called merlin. In particular, individuals with NF2 develop bilateral VS that can lead to hearing loss and even deafness. Recent advances in genetic and epigenetic studies have improved our understanding of the genotype-phenotype relationships that affect hearing in NF2 patients. Specific constitutional NF2 mutations including particular truncating, deletion, and missense mutations have been associated with poorer hearing outcomes and more severe clinical manifestations. Epigenetic events, such as DNA methylation and histone modifications, also contribute to the development and progression of hearing loss in NF2 patients. Furthermore, the accumulation of multiple NF2 and non-NF2 genetic and epigenetic abnormalities at the level of the tumor may contribute to worse hearing outcomes. Understanding genetic and epigenetic signatures in individual NF2 patients and particularly in each VS will allow us to develop novel gene therapies and precision medicine algorithms to preserve hearing in NF2 individuals.
Collapse
Affiliation(s)
- Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine
| | - Darius Chyou
- Department of Otolaryngology, University of Miami Miller School of Medicine
| | - Carly Misztal
- Department of Otolaryngology, University of Miami Miller School of Medicine
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine
| | - Juan Young
- Department of Human Genetics, Dr. John T. Macdonald Foundation
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami
| | - Mustafa Tekin
- Department of Human Genetics, Dr. John T. Macdonald Foundation
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine
| |
Collapse
|
9
|
Yao L, Alahmari M, Temel Y, Hovinga K. Therapy of Sporadic and NF2-Related Vestibular Schwannoma. Cancers (Basel) 2020; 12:E835. [PMID: 32244314 PMCID: PMC7226024 DOI: 10.3390/cancers12040835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Vestibular schwannoma (VS) is a benign primary brain tumor that occurs sporadic or as part of a genetic syndrome. The most common cause is the mutation of the NF2 tumor suppressor gene that is involved in the production of the protein merlin. Merlin plays a role in cell growth and cell adhesion. In patients with NF2, the VSs arise bilaterally and coincide with other brain tumors. In sporadic VS, the tumor is typically unilateral and does not coincide in combination with other tumors. MRI is the standard imaging technique and can be used to assess the size and aspect of the tumor as well as the progression of disease. The preferred management of large VS in both VS types is surgery with or without adjuvant radiation. The management for the medium- or small-sized VS includes wait and scan, radiotherapy and/or surgery. This choice depends on the preference of the patient and institutional protocols. The outcomes of surgical and radiotherapy treatments are improving due to progress in surgical equipment/approaches, advances in radiation delivery techniques and dose optimizations protocols. The main purpose of the management of VS is preserving function as long as possible in combination with tumor control.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| | - Mohammed Alahmari
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
- Department of Radiology, King Fahad Hospital of Imam Abdulrahman Bin Faisal University, P.O. Box 40046, 31952 AL-Khobar, Saudi Arabia
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| | - Koos Hovinga
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| |
Collapse
|
10
|
Lassaletta L, Calvino M, Morales-Puebla JM, Lapunzina P, Rodriguez-de la Rosa L, Varela-Nieto I, Martinez-Glez V. Biomarkers in Vestibular Schwannoma-Associated Hearing Loss. Front Neurol 2019; 10:978. [PMID: 31620068 PMCID: PMC6759574 DOI: 10.3389/fneur.2019.00978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Vestibular schwannomas (VSs) are benign tumors composed of differentiated neoplastic Schwann cells. They can be classified into two groups: sporadic VS and those associated with neurofibromatosis type 2 (NF2). VSs usually grow slowly, initially causing unilateral sensorineural hearing loss (HL) and tinnitus. These tumors cause HL both due to compression of the auditory nerve or the labyrinthine artery and due to the secretion of different substances potentially toxic to the inner ear or the cochlear nerve. As more and more patients are diagnosed and need to be managed, we are more than ever in need of searching for biomarkers associated with these tumors. Owing to an unknown toxic substance generated by the tumor, HL in VS may be linked to a high protein amount of perilymph. Previous studies have identified perilymph proteins correlated with tumor-associated HL, including μ-Crystallin (CRYM), low density lipoprotein receptor-related protein 2 (LRP2), immunoglobulin (Ig) γ-4 chain C region, Ig κ-chain C region, complement C3, and immunoglobulin heavy constant γ 3. Besides, the presence of specific subtypes of heat shock protein 70 has been suggested to be associated with preservation of residual hearing. It has been recently demonstrated that chemokine receptor-4 (CXCR4) is overexpressed in sporadic VS as well as in NF2 tumors and that hearing disability and CXCR4 expression may be correlated. Further, the genetic profile of VS and its relationship with poor hearing has also been studied, including DNA methylation, deregulated genes, growth factors, and NF2 gene mutations. The knowledge of biomarkers associated with VS would be of significant value to maximize outcomes of hearing preservation in these patients.
Collapse
Affiliation(s)
- Luis Lassaletta
- Department of Otorhinolaryngology, La Paz University Hospital, Madrid, Spain.,IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain
| | - Miryam Calvino
- Department of Otorhinolaryngology, La Paz University Hospital, Madrid, Spain.,IdiPAZ Research Institute, Madrid, Spain
| | | | - Pablo Lapunzina
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Lourdes Rodriguez-de la Rosa
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Isabel Varela-Nieto
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Victor Martinez-Glez
- IdiPAZ Research Institute, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, Institute of Health Carlos III, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| |
Collapse
|
11
|
Nojima M, Matsui T, Tamori A, Kubo S, Shirabe K, Kimura K, Shimada M, Utsunomiya T, Kondo Y, Iio E, Naito Y, Ochiya T, Tanaka Y. Global, cancer-specific microRNA cluster hypomethylation was functionally associated with the development of non-B non-C hepatocellular carcinoma. Mol Cancer 2016; 15:31. [PMID: 27137948 PMCID: PMC4852433 DOI: 10.1186/s12943-016-0514-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND While hepatitis B and C viral infection have been suppressed, non-B non-C hepatocellular carcinoma (NBNC-HCC) is considered to be rising in incidence terms in some developed countries where prevalence of those viral infections among HCC patients had been very high (such as Japan, Korea, and Italy). To elucidate critical molecular changes in NBNC-HCC, we integrated three large datasets relating to comprehensive array-based analysis of genome-wide DNA methylation (N = 43 pairs) and mRNA/miRNA expression (N = 15, and 24 pairs, respectively) via statistical modeling. RESULTS Hierarchical clustering of DNA methylation in miRNA coding regions clearly distinguished NBNC-HCC tissue samples from relevant background tissues, revealing a remarkable tumor-specific hypomethylation cluster. In addition, miRNA clusters were extremely hypomethylated in tumor samples (median methylation change for non-clustered miRNAs: -2.3%, clustered miRNAs: -24.6%). The proportion of CpGs hypomethylated in more than 90% of the samples was 55.9% of all CpGs within miRNA clusters, and the peak methylation level was drastically shifted from 84% to 39%. Following statistical adjustment, the difference in methylation levels within miRNA coding regions was positively associated with their expression change. Receiver operating characteristic (ROC) analysis revealed a great discriminatory ability in respect to cluster-miRNA methylation. Moreover, miRNA methylation change was negatively correlated with corresponding target gene expression amongst conserved and highly matched miRNA sites. CONCLUSIONS We observed a drastic negative shift of methylation levels in miRNA cluster regions. Changes in methylation status of miRNAs were more indicative of target gene expression and pathological diagnosis than respective miRNA expression changes, suggesting the importance of genome-wide miRNA methylation for tumor development. Our study dynamically summarized global miRNA hypomethylation and its genome-wide scale consequence in NBNC-HCC.
Collapse
Affiliation(s)
- Masanori Nojima
- Institute of Medical Science Hospital, Center for Translational Research, the University of Tokyo, Tokyo, Japan
| | - Takeshi Matsui
- Department of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiro Tamori
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ken Shirabe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Kimura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Etsuko Iio
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Naito
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|