1
|
Thomson A, Rehn J, Yeung D, Breen J, White D. Deciphering IGH rearrangement complexity and detection strategies in acute lymphoblastic leukaemia. NPJ Precis Oncol 2025; 9:99. [PMID: 40185891 PMCID: PMC11971345 DOI: 10.1038/s41698-025-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Acute lymphoblastic leukaemia is a highly heterogeneous malignancy characterised by various genomic alterations that influence disease progression and therapeutic outcomes. Gene fusions involving the immunoglobulin heavy chain gene represent a complex and diverse category. These fusions often result in enhancer hijacking, upregulation of partner proto-oncogenes and contribute to leukemogenesis. This review highlights the mechanisms underlying IGH gene fusions, the critical role they play in ALL pathogenesis, and current detection technologies.
Collapse
Affiliation(s)
- Ashlee Thomson
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| | - Jacqueline Rehn
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - David Yeung
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Haematology Department, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, 5000, Australia
| | - James Breen
- Black Ochre Data Labs, Indigenous Genomics, The Kids Research Institute Australia, Adelaide, SA, 5000, Australia
- James Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - Deborah White
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, VIC, 3168, Australia.
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
| |
Collapse
|
2
|
Panuciak K, Nowicka E, Mastalerczyk A, Zawitkowska J, Niedźwiecki M, Lejman M. Overview on Aneuploidy in Childhood B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24108764. [PMID: 37240110 DOI: 10.3390/ijms24108764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Recent years have brought significant progress in the treatment of B-cell acute lymphoblastic leukemia (ALL). This was influenced by both the improved schemes of conventionally used therapy, as well as the development of new forms of treatment. As a consequence, 5-year survival rates have increased and now exceed 90% in pediatric patients. For this reason, it would seem that everything has already been explored in the context of ALL. However, delving into its pathogenesis at the molecular level shows that there are many variations that still need to be analyzed in more detail. One of them is aneuploidy, which is among the most common genetic changes in B-cell ALL. It includes both hyperdiploidy and hypodiploidy. Knowledge of the genetic background is important already at the time of diagnosis, because the first of these forms of aneuploidy is characterized by a good prognosis, in contrast to the second, which is in favor of an unfavorable course. In our work, we will focus on summarizing the current state of knowledge on aneuploidy, along with an indication of all the consequences that may be correlated with it in the context of the treatment of patients with B-cell ALL.
Collapse
Affiliation(s)
- Kinga Panuciak
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Emilia Nowicka
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Angelika Mastalerczyk
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Schwab C, Cranston RE, Ryan SL, Butler E, Winterman E, Hawking Z, Bashton M, Enshaei A, Russell LJ, Kingsbury Z, Peden JF, Barretta E, Murray J, Gibson J, Hinchliffe AC, Bain R, Vora A, Bentley DR, Ross MT, Moorman AV, Harrison CJ. Integrative genomic analysis of childhood acute lymphoblastic leukaemia lacking a genetic biomarker in the UKALL2003 clinical trial. Leukemia 2023; 37:529-538. [PMID: 36550215 PMCID: PMC9991913 DOI: 10.1038/s41375-022-01799-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Incorporating genetics into risk-stratification for treatment of childhood B-progenitor acute lymphoblastic leukaemia (B-ALL) has contributed significantly to improved survival. In about 30% B-ALL (B-other-ALL) without well-established chromosomal changes, new genetic subtypes have recently emerged, yet their true prognostic relevance largely remains unclear. We integrated next generation sequencing (NGS): whole genome sequencing (WGS) (n = 157) and bespoke targeted NGS (t-NGS) (n = 175) (overlap n = 36), with existing genetic annotation in a representative cohort of 351 B-other-ALL patients from the childhood ALL trail, UKALL2003. PAX5alt was most frequently observed (n = 91), whereas PAX5 P80R mutations (n = 11) defined a distinct PAX5 subtype. DUX4-r subtype (n = 80) was defined by DUX4 rearrangements and/or ERG deletions. These patients had a low relapse rate and excellent survival. ETV6::RUNX1-like subtype (n = 21) was characterised by multiple abnormalities of ETV6 and IKZF1, with no reported relapses or deaths, indicating their excellent prognosis in this trial. An inferior outcome for patients with ABL-class fusions (n = 25) was confirmed. Integration of NGS into genomic profiling of B-other-ALL within a single childhood ALL trial, UKALL2003, has shown the added clinical value of NGS-based approaches, through improved accuracy in detection and classification into the range of risk stratifying genetic subtypes, while validating their prognostic significance.
Collapse
Affiliation(s)
- Claire Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra L Ryan
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ellie Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Emily Winterman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoe Hawking
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Matthew Bashton
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoya Kingsbury
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - John F Peden
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - James Murray
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jude Gibson
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Andrew C Hinchliffe
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Robert Bain
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - David R Bentley
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Mark T Ross
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Haas OA, Borkhardt A. Hyperdiploidy: the longest known, most prevalent, and most enigmatic form of acute lymphoblastic leukemia in children. Leukemia 2022; 36:2769-2783. [PMID: 36266323 PMCID: PMC9712104 DOI: 10.1038/s41375-022-01720-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Hyperdiploidy is the largest genetic entity B-cell precursor acute lymphoblastic leukemia in children. The diagnostic hallmark of its two variants that will be discussed in detail herein is a chromosome count between 52 and 67, respectively. The classical HD form consists of heterozygous di-, tri-, and tetrasomies, whereas the nonclassical one (usually viewed as "duplicated hyperhaploid") contains only disomies and tetrasomies. Despite their apparently different clinical behavior, we show that these two sub-forms can in principle be produced by the same chromosomal maldistribution mechanism. Moreover, their respective array, gene expression, and mutation patterns also indicate that they are biologically more similar than hitherto appreciated. Even though in-depth analyses of the genomic intricacies of classical HD leukemias are indispensable for the elucidation of the disease process, the ensuing results play at present surprisingly little role in treatment stratification, a fact that can be attributed to the overall good prognoses and low relapse rates of the concerned patients and, consequently, their excellent treatment outcome. Irrespective of this underutilization, however, the detailed genetic characterization of HD leukemias may, especially in planned treatment reduction trials, eventually become important for further treatment stratification, patient management, and the clinical elucidation of outcome data. It should therefore become an integral part of all upcoming treatment studies.
Collapse
Affiliation(s)
- Oskar A Haas
- St. Anna Children's Hospital, Pediatric Clinic, Medical University, Vienna, Austria.
- Labdia Labordiagnostik, Vienna, Austria.
| | - Arndt Borkhardt
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), partnering site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Zhang L, Habeebu SSM, Li W. Prognostic and Predictive Biomarkers in Precursor B-cell Acute Lymphoblastic Leukemia. Leukemia 2022. [DOI: 10.36255/exon-publications-leukemia-biomarkers-lymphoblastic-leukemia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
7
|
Moorman AV, Barretta E, Butler ER, Ward EJ, Twentyman K, Kirkwood AA, Enshaei A, Schwab C, Creasey T, Leongamornlert D, Papaemmanuil E, Patrick P, Clifton-Hadley L, Patel B, Menne T, McMillan AK, Harrison CJ, Rowntree CJ, Marks DI, Fielding AK. Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell precursor acute lymphoblastic leukaemia: a UKALL14 study. Leukemia 2022; 36:625-636. [PMID: 34657128 PMCID: PMC8885405 DOI: 10.1038/s41375-021-01448-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
Chromosomal abnormalities are established prognostic markers in adult ALL. We assessed the prognostic impact of established chromosomal abnormalities and key copy number alterations (CNA) among 652 patients with B-cell precursor ALL treated on a modern MRD driven protocol. Patients with KMT2A-AFF1, complex karyotype (CK) and low hypodiploidy/near-triploidy (HoTr) had high relapse rates 50%, 60% & 53% and correspondingly poor survival. Patients with BCR-ABL1 had an outcome similar to other patients. JAK-STAT abnormalities (CRLF2, JAK2) occurred in 6% patients and were associated with a high relapse rate (56%). Patients with ABL-class fusions were rare (1%). A small group of patients with ZNF384 fusions (n = 12) had very good survival. CNA affecting IKZF1, CDKN2A/B, PAX5, BTG1, ETV6, EBF1, RB1 and PAR1 were assessed in 436 patients. None of the individual deletions or profiles were associated with survival, either in the cohort overall or within key subgroups. Collectively these data indicate that primary genetic abnormalities are stronger prognostic markers than secondary deletions. We propose a revised UKALL genetic risk classification based on key established chromosomal abnormalities: (1) very high risk: CK, HoTr or JAK-STAT abnormalities; (2) high risk: KMT2A fusions; (3) Tyrosine kinase activating: BCR-ABL1 and ABL-class fusions; (4) standard risk: all other patients.
Collapse
Affiliation(s)
- Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ellie R Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Eleanor J Ward
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Katie Twentyman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy A Kirkwood
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, University College London, London, UK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tom Creasey
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Pip Patrick
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, University College London, London, UK
| | - Laura Clifton-Hadley
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, University College London, London, UK
| | - Bela Patel
- Department of Haematology, Queen Mary University of London, London, UK
| | - Tobias Menne
- Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew K McMillan
- Department of Haematology, Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Clare J Rowntree
- Department of Haematology, Cardiff And Vale University Health Board, Cardiff, UK
| | - David I Marks
- Department of Haematology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | | |
Collapse
|
8
|
Corrigendum. Genes Chromosomes Cancer 2022; 61:212-214. [PMID: 34994994 DOI: 10.1002/gcc.23021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Near-Haploidy and Low-Hypodiploidy in B-Cell Acute Lymphoblastic Leukemia: When Less Is Too Much. Cancers (Basel) 2021; 14:cancers14010032. [PMID: 35008193 PMCID: PMC8750410 DOI: 10.3390/cancers14010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Hypodiploidy with less than 40 chromosomes is a rare genetic abnormality in B-cell acute lymphoblastic leukemia (B-ALL). This condition can be classified based on modal chromosome number as low-hypodiploidy (30–39 chromosomes) and near-haploidy (24–29 chromosomes), with unique cytogenetic and mutational landscapes. Hypodiploid B-ALL with <40 chromosomes has an extremely poor outcome, with 5-year overall survival rates below 50% and 20% in childhood and adult B-ALL, respectively. Accordingly, this genetic feature represents an adverse prognostic factor in B-ALL and is associated with early relapse and therapy refractoriness. Notably, half of all patients with hypodiploid B-ALL with <40 chromosomes cases ultimately exhibit chromosome doubling of the hypodiploid clone, resulting in clones with 50–78 chromosomes. Doubled clones are often the major clones at diagnosis, leading to “masked hypodiploidy”, which is clinically challenging as patients can be erroneously classified as hyperdiploid B-ALL. Here, we summarize the main cytogenetic and molecular features of hypodiploid B-ALL subtypes, and provide a brief overview of the diagnostic methods, standard-of-care treatments and overall clinical outcome. Finally, we discuss molecular mechanisms that may underlie the origin and leukemogenic impact of hypodiploidy and may open new therapeutic avenues to improve survival rates in these patients.
Collapse
|