1
|
Westerman KE, Gervis JE, O’Connor LJ, Udler MS, Manning AK. Polygenic scores capture genetic modification of the adiposity-cardiometabolic risk factor relationship. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.09.25324066. [PMID: 40297446 PMCID: PMC12036401 DOI: 10.1101/2025.04.09.25324066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Optimal use of genetics for precision medicine requires polygenic scores (PGS) that predict not just risk of disease, but also response to pharmaceutical or lifestyle interventions. These are detectable in observational datasets as PGS-by-exposure (PGS×E) interactions. Existing literature suggests that PGS based on interactions (iPGS) or variance effects (vPGS) may be more powerful than standard marginal PGS (mPGS) for the detection of PGS×E, but these have yet to be systematically compared. We describe a generalized pipeline for the development and comparison of different PGS types and apply it to detect genetic modification of the relationship between adiposity (measured by body mass index [BMI]) and a broad set of cardiometabolic risk factors (CRFs). Our applied analysis in the UK Biobank cohort identified significant PGS×BMI for at least one PGS type for 16/20 of these CRFs, many of which replicated in the All of Us cohort. Among PGS types, iPGS uncovered interactions with BMI most consistently across CRFs, with the strongest interactions impacting biomarkers of liver function (e.g., alanine aminotransferase [ALT]). Exploring the ALT iPGS more in-depth, we find a substantial effect modification of up to 72% larger BMI-ALT association in the top iPGS decile in All of Us, and further provide evidence that the iPGS prioritizes variants affecting hepatic lipid export. Taken together, our study provides a framework for the development and comparison of PGS×E strategies, quantifies genetic impacts on the adiposity-cardiometabolic risk relationship, and informs efforts to move toward clinically useful response-focused PGS.
Collapse
Affiliation(s)
- Kenneth E. Westerman
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julie E. Gervis
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Luke J. O’Connor
- Harvard Medical School, Department of Biomedical Informatics, Boston, USA
- Broad Institute, Program in Medical and Population Genetics, Cambridge, USA
| | - Miriam S. Udler
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
2
|
Ohyama N, Matsunami M, Imamura M, Yoshida A, Javed A, Liu X, Kimura R, Matsuda K, Terao C, Maeda S. A variant in HMMR/HMMR-AS1 is associated with serum alanine aminotransferase levels in the Ryukyu population. Sci Rep 2025; 15:6494. [PMID: 39987337 PMCID: PMC11846991 DOI: 10.1038/s41598-025-90195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
The Ryukyu archipelago is located southwest of the Japanese islands, and people originally from this region, the Ryukyu population, have a unique genetic background distinct from that of other populations, including people from mainland Japan. However, few genetic studies have focused on the Ryukyu population. In this study, we performed genome-wide association studies (GWAS) on the serum levels of alanine aminotransferase (ALT, n = 15,224), aspartate aminotransferase (AST, n = 15,203), and gamma-glutamyl transferase (GGT, n = 14,496) in the Ryukyu population. We found 13 loci with a genome-wide significant association (P < 5 × 10-8), three for ALT, four for AST, and six for GGT, including one novel locus associated with ALT: rs117595134-A in HMMR/HMMR-AS1, ß = - 0.131, standard error = 0.024, P = 4.90 × 10-8. Rs117595134-A is common in the Japanese population but is not observed in other ethnic populations in the 1000 genomes database. Additionally, 77 of 80 loci derived from Korean GWAS and 541 of 716 loci from European GWAS showed the same directions of effect (P = 1.41 × 10-19, P = 2.50 × 10-44, binomial test), indicating that most of susceptibility loci are shared between the Ryukyu population and other ethnic populations.
Collapse
Affiliation(s)
- Noriko Ohyama
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Department of Cardiovascular Surgery, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Haebaru, Japan
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan.
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan.
| | - Akihiro Yoshida
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Department of Obstetrics and Gynecology, Okinawa Hokubu Hospital, Nago, Japan
| | - Azeem Javed
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
| |
Collapse
|
3
|
Grandizio LC, Smelser DT, Haley JS, Delma S, Klena JC, Carey DJ. A Genome-Wide Association Study and Rare Variant Analysis for Dupuytren Disease in a North American Population. J Hand Surg Am 2025; 50:147-155. [PMID: 39570219 DOI: 10.1016/j.jhsa.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/03/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Although European genome-wide association studies (GWAS) have aided in defining genetic associations in Dupuytren disease (DD), North American populations have been infrequently analyzed. Additionally, there are a paucity of rare variant analyses (RVA) for DD, which can help define both trait variability and risk for low-frequency variants. Our purpose was to perform a GWAS and RVA for DD using a North American database. METHODS The study cohort (cases and controls) consisted of patients from our institutional MyCode Community Health Initiative, an unselected clinical cohort. A GWAS was performed controlling for age, sex and body mass index. For the RVA, sequence kernel association test analysis was performed on the most significant genes from the GWAS. Sequence kernel association test is a regression method to test associations between common and rare genetic variants in a defined region and a specific trait while adjusting for covariates. RESULTS A total of 1,123 DD cases and 130,822 controls were included. DD cases were significantly older, more likely to be male, and had higher body mass indices. The GWAS yielded variants in two genes with a statistically significant difference between cases and controls: WNT7B and EPDR1. WNT7B variants rs9330811 (odds ratio, 1.96; 95% confidence interval, 1.73-2.23) and rs10448585 (odds ratio, 1.68; 95% confidence interval, 1.44-1.96) were the top hits. Variant rs2122625 in EPDR1 also reached genome-wide significance. The RVA indicated that WNT7B, DUXA, LOXL1, CSMD2, and TACC2 were significantly associated with a diagnosis of DD. CONCLUSIONS In our North American population, GWAS yielded variants in two genes that were significantly associated with DD (WNT7B and EPDR), which likely contribute to abnormal proliferation of fibroblasts. Five rare variants (WNT7B, DUXA, LOXL1, CSMD2, and TACC2) were also significantly associated with DD. CLINICAL RELEVANCE As disease-modifying treatments are explored, these data add to a growing body of literature defining genetic variants in DD.
Collapse
Affiliation(s)
- Louis C Grandizio
- Department of Orthopaedic Surgery, Geisinger Commonwealth School of Medicine, Geisinger Musculoskeletal Institute, Danville, PA.
| | - Diane T Smelser
- Department of Genomic Health, Weis Center for Research, Geisinger Health System, Danville, PA
| | - Jeremy S Haley
- Department of Genomic Health, Weis Center for Research, Geisinger Health System, Danville, PA
| | - Stephanie Delma
- Department of Genomic Health, Weis Center for Research, Geisinger Health System, Danville, PA
| | - Joel C Klena
- Department of Orthopaedic Surgery, Geisinger Commonwealth School of Medicine, Geisinger Musculoskeletal Institute, Danville, PA
| | - David J Carey
- Department of Genomic Health, Weis Center for Research, Geisinger Health System, Danville, PA
| |
Collapse
|
4
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Xiao H, Li L, Yang M, Zhang X, Zhou J, Zeng J, Zhou Y, Lan X, Liu J, Lin Y, Zhong Y, Zhang X, Wang L, Cao Z, Liu P, Mei H, Cai M, Cai X, Tao Y, Zhu Y, Yu C, Hu L, Wang Y, Huang Y, Su F, Gao Y, Zhou R, Xu X, Yang H, Wang J, Zhu H, Zhou A, Jin X. Genetic analyses of 104 phenotypes in 20,900 Chinese pregnant women reveal pregnancy-specific discoveries. CELL GENOMICS 2024; 4:100633. [PMID: 39389017 PMCID: PMC11602630 DOI: 10.1016/j.xgen.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/14/2023] [Accepted: 07/22/2024] [Indexed: 10/12/2024]
Abstract
Monitoring biochemical phenotypes during pregnancy is vital for maternal and fetal health, allowing early detection and management of pregnancy-related conditions to ensure safety for both. Here, we conducted a genetic analysis of 104 pregnancy phenotypes in 20,900 Chinese women. The genome-wide association study (GWAS) identified a total of 410 trait-locus associations, with 71.71% reported previously. Among the 116 novel hits for 45 phenotypes, 83 were successfully replicated. Among them, 31 were defined as potentially pregnancy-specific associations, including creatine and HELLPAR and neutrophils and ESR1, with subsequent analysis revealing enrichments in estrogen-related pathways and female reproductive tissues. The partitioning heritability underscored the significant roles of fetal blood, embryoid bodies, and female reproductive organs in pregnancy hematology and birth outcomes. Pathway analysis confirmed the intricate interplay of hormone and immune regulation, metabolism, and cell cycle during pregnancy. This study contributes to the understanding of genetic influences on pregnancy phenotypes and their implications for maternal health.
Collapse
Affiliation(s)
- Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Linxuan Li
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xinyi Zhang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieqiong Zhou
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Jingyu Zeng
- BGI Research, Shenzhen 518083, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Zhou
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xianmei Lan
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuying Liu
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Ying Lin
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhong
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xiaoqian Zhang
- BGI Research, Shenzhen 518083, China; College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Lin Wang
- BGI Research, Shenzhen 518083, China
| | - Zhongqiang Cao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | | | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | | | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Ye Tao
- BGI Research, Shenzhen 518083, China
| | - Yunqing Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China; Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing 100191, China
| | - Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Yu Wang
- BGI Research, Shenzhen 518083, China
| | - Yushan Huang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ya Gao
- BGI Research, Shenzhen 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518120, China
| | - Huanming Yang
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI, Shenzhen 518120, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | | | - Huanhuan Zhu
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China.
| | - Aifen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China; Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China.
| |
Collapse
|
7
|
Koch RL, Stanton JB, McClatchy S, Churchill GA, Craig SW, Williams DN, Johns ME, Chase KR, Thiesfeldt DL, Flynt JC, Pazdro R. Discovery of genomic loci for liver health and steatosis reveals overlap with glutathione redox genetics. Redox Biol 2024; 75:103248. [PMID: 38917671 PMCID: PMC11254179 DOI: 10.1016/j.redox.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition in the United States, encompassing a wide spectrum of liver pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite its high prevalence, there are no medications currently approved by the Food and Drug Administration for the treatment of NAFLD. Recent work has suggested that NAFLD has a strong genetic component and identifying causative genes will improve our understanding of the molecular mechanisms contributing to NAFLD and yield targets for future therapeutic investigations. Oxidative stress is known to play an important role in NAFLD pathogenesis, yet the underlying mechanisms accounting for disturbances in redox status are not entirely understood. To better understand the relationship between the glutathione redox system and signs of NAFLD in a genetically-diverse population, we measured liver weight, serum biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and graded liver pathology in a large cohort of Diversity Outbred mice. We compared hepatic endpoints to those of the glutathione redox system previously measured in the livers and kidneys of the same mice, and we screened for statistical and genetic associations using the R/qtl2 software. We discovered several novel genetic loci associated with markers of liver health, including loci that were associated with both liver steatosis and glutathione redox status. Candidate genes within each locus point to possible new mechanisms underlying the complex relationship between NAFLD and the glutathione redox system, which could have translational implications for future studies targeting NAFLD pathology.
Collapse
Affiliation(s)
- Rebecca L Koch
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - James B Stanton
- Department of Pathology, University of Georgia, Athens, GA, USA, 30602
| | | | | | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Darian N Williams
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Mallory E Johns
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Kylah R Chase
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Dana L Thiesfeldt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Jessica C Flynt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602.
| |
Collapse
|
8
|
Zhu W, Li Q, Peng M, Yang C, Chen X, Feng P, Liu Q, Zhang B, Zeng D, Zhao Y. Biochemical indicators, cell apoptosis, and metabolomic analyses of the low-temperature stress response and cold tolerance mechanisms in Litopenaeus vannamei. Sci Rep 2024; 14:15242. [PMID: 38956131 PMCID: PMC11219869 DOI: 10.1038/s41598-024-65851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.
Collapse
Affiliation(s)
- Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
9
|
Jones AK, Bajrami B, Campbell MK, Erzurumluoglu AM, Guo Q, Chen H, Zhang X, Zeveleva S, Kvaskoff D, Brunner AD, Muller S, Gathey V, Dave RM, Tanner JW, Rixen S, Struwe MA, Phoenix K, Klumph KJ, Robinson H, Veyel D, Muller A, Noyvert B, Bartholdy BA, Steixner-Kumar AA, Stutzki J, Drichel D, Omland S, Sheehan R, Hill J, Bretschneider T, Gottschling D, Scheidig AJ, Clement B, Giera M, Ding Z, Broadwater J, Warren CR. mARC1 in MASLD: Modulation of lipid accumulation in human hepatocytes and adipocytes. Hepatol Commun 2024; 8:e0365. [PMID: 38619429 PMCID: PMC11019821 DOI: 10.1097/hc9.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Mutations in the gene MTARC1 (mitochondrial amidoxime-reducing component 1) protect carriers from metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. MTARC1 encodes the mARC1 enzyme, which is localized to the mitochondria and has no known MASH-relevant molecular function. Our studies aimed to expand on the published human genetic mARC1 data and to observe the molecular effects of mARC1 modulation in preclinical MASH models. METHODS AND RESULTS We identified a novel human structural variant deletion in MTARC1, which is associated with various biomarkers of liver health, including alanine aminotransferase levels. Phenome-wide Mendelian Randomization analyses additionally identified novel putatively causal associations between MTARC1 expression, and esophageal varices and cardiorespiratory traits. We observed that protective MTARC1 variants decreased protein accumulation in in vitro overexpression systems and used genetic tools to study mARC1 depletion in relevant human and mouse systems. Hepatocyte mARC1 knockdown in murine MASH models reduced body weight, liver steatosis, oxidative stress, cell death, and fibrogenesis markers. mARC1 siRNA treatment and overexpression modulated lipid accumulation and cell death consistently in primary human hepatocytes, hepatocyte cell lines, and primary human adipocytes. mARC1 depletion affected the accumulation of distinct lipid species and the expression of inflammatory and mitochondrial pathway genes/proteins in both in vitro and in vivo models. CONCLUSIONS Depleting hepatocyte mARC1 improved metabolic dysfunction-associated steatotic liver disease-related outcomes. Given the functional role of mARC1 in human adipocyte lipid accumulation, systemic targeting of mARC1 should be considered when designing mARC1 therapies. Our data point to plasma lipid biomarkers predictive of mARC1 abundance, such as Ceramide 22:1. We propose future areas of study to describe the precise molecular function of mARC1, including lipid trafficking and subcellular location within or around the mitochondria and endoplasmic reticulum.
Collapse
Affiliation(s)
- Amanda K. Jones
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Besnik Bajrami
- Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Morgan K. Campbell
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Abdullah Mesut Erzurumluoglu
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Qiusha Guo
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Hongxing Chen
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Xiaomei Zhang
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Svetlana Zeveleva
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - David Kvaskoff
- Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Andreas-David Brunner
- Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Stefanie Muller
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Vasudha Gathey
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Rajvee M. Dave
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - James W. Tanner
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Sophia Rixen
- Department of Pharmacy, Pharmaceutical Institute, Christian Albrechts University, Kiel, Germany
| | - Michel A. Struwe
- Department of Pharmacy, Pharmaceutical Institute, Christian Albrechts University, Kiel, Germany
- Department of Biology, Institute of Zoology-Structural Biology, Christian Albrechts University, Kiel, Germany
| | - Kathryn Phoenix
- Department of Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Kaitlyn J. Klumph
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Heather Robinson
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Daniel Veyel
- Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Annkatrin Muller
- Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Boris Noyvert
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Boris Alexander Bartholdy
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Agnes A. Steixner-Kumar
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Jan Stutzki
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
- Data Science Chapter, BI X GmbH, Ingelheim am Rhein, Germany
| | - Dmitriy Drichel
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
- Data Science Chapter, BI X GmbH, Ingelheim am Rhein, Germany
| | - Steffen Omland
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
- Data Science Chapter, BI X GmbH, Ingelheim am Rhein, Germany
| | - Ryan Sheehan
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Jon Hill
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Tom Bretschneider
- Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Dirk Gottschling
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - Axel J. Scheidig
- Department of Biology, Institute of Zoology-Structural Biology, Christian Albrechts University, Kiel, Germany
| | - Bernd Clement
- Department of Pharmacy, Pharmaceutical Institute, Christian Albrechts University, Kiel, Germany
| | - Martin Giera
- Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
- The Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Zhihao Ding
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany
| | - John Broadwater
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Curtis R. Warren
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| |
Collapse
|
10
|
Aparicio A, Sun Z, Gold DR, Litonjua AA, Weiss ST, Lee-Sarwar K, Liu YY. Genotype-microbiome-metabolome associations in early childhood, and their link to BMI and childhood obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298467. [PMID: 38014043 PMCID: PMC10680902 DOI: 10.1101/2023.11.13.23298467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The influence of genotype on defining the human gut microbiome has been extensively studied, but definite conclusions have not yet been found. To fill this knowledge gap, we leverage data from children enrolled in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) from 6 months to 8 years old. We focus on a pool of 12 genes previously found to be associated with the gut microbiome in independent studies, establishing a Bonferroni corrected significance level of p-value < 2.29 × 10 -6 . We identified significant associations between SNPs in the FHIT gene (known to be associated with obesity and type 2 diabetes) and obesity-related microbiome features, and the children's BMI through their childhood. Based on these associations, we defined a set of SNPs of interest and a set of taxa of interest. Taking a multi-omics approach, we integrated plasma metabolome data into our analysis and found simultaneous associations among children's BMI, the SNPs of interest, and the taxa of interest, involving amino acids, lipids, nucleotides, and xenobiotics. Using our association results, we constructed a quadripartite graph where each disjoint node set represents SNPs in the FHIT gene, microbial taxa, plasma metabolites, or BMI measurements. Network analysis led to the discovery of patterns that identify several genetic variants, microbial taxa and metabolites as new potential markers for obesity, type 2 diabetes, or insulin resistance risk.
Collapse
|
11
|
Clement B, Struwe MA. The History of mARC. Molecules 2023; 28:4713. [PMID: 37375270 DOI: 10.3390/molecules28124713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC's discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model compounds. Many compounds are N-oxidized extensively in vitro, but it turned out that a previously unknown enzyme catalyzes the retroreduction of the N-oxygenated products in vivo. After many years, the molybdoenzyme mARC could finally be isolated and identified in 2006. mARC is an important drug-metabolizing enzyme and N-reduction by mARC has been exploited very successfully for prodrug strategies, that allow oral administration of otherwise poorly bioavailable therapeutic drugs. Recently, it was demonstrated that mARC is a key factor in lipid metabolism and likely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The exact link between mARC and lipid metabolism is not yet fully understood. Regardless, many now consider mARC a potential drug target for the prevention or treatment of liver diseases. This article focusses on discoveries related to mammalian mARC enzymes. mARC homologues have been studied in algae, plants and bacteria. These will not be discussed extensively here.
Collapse
Affiliation(s)
- Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Michel A Struwe
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
12
|
Lewis LC, Chen L, Hameed LS, Kitchen RR, Maroteau C, Nagarajan SR, Norlin J, Daly CE, Szczerbinska I, Hjuler ST, Patel R, Livingstone EJ, Durrant TN, Wondimu E, BasuRay S, Chandran A, Lee WH, Hu S, Gilboa B, Grandi ME, Toledo EM, Erikat AH, Hodson L, Haynes WG, Pursell NW, Coppieters K, Fleckner J, Howson JM, Andersen B, Ruby MA. Hepatocyte mARC1 promotes fatty liver disease. JHEP Rep 2023; 5:100693. [PMID: 37122688 PMCID: PMC10133763 DOI: 10.1016/j.jhepr.2023.100693] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa R. Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | | | | | | | - Rahul Patel
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | | | | | | | - Wan-Hung Lee
- Dicerna Pharmaceuticals Inc., Lexington, MA, USA
| | - Sile Hu
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | | | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Amangurbanova M, Huang DQ, Loomba R. Review article: the role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment Pharmacol Ther 2023; 57:37-51. [PMID: 36349732 PMCID: PMC10047549 DOI: 10.1111/apt.17292] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) occurs in around a quarter of the global population and is one of the leading causes of chronic liver disease. The phenotypic manifestation and the severity of NAFLD are influenced by an interplay of environmental and genetic factors. Recently, several inactivating variants in the novel 17-Beta hydroxysteroid dehydrogenase 13 (HSD17B13) gene have been found to be associated with a reduced risk of chronic liver diseases, including NAFLD. AIMS To review the existing literature on the epidemiology of HSD17B13 and discuss its role in the natural history, disease pathogenesis and treatment of NAFLD. METHODS We extensively searched relevant literature in PubMed, Google Scholar, clinicaltrials.gov and the reference list of articles included in the review. RESULTS HSD17B13 is a liver-specific, lipid droplet (LD)-associated protein that has enzymatic pathways involving steroids, pro-inflammatory lipid mediators and retinol. The estimated prevalence of the best characterised HSD17B13 variant (rs72613567) ranges from 5% in Africa to 34% in East Asia. Loss-of-function variants in HSD17B13 are protective against the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis and hepatocellular carcinoma. Emerging data from mechanistic and preclinical studies with RNA interference (RNAi) and small molecule agents indicate that inhibiting HSD17B13 activity may prevent NAFLD progression. CONCLUSIONS The loss-of-function polymorphisms of the newly identified HSD17B13 gene mitigate the progression of NAFLD. It is important to understand the exact mechanism by which these variants exert a protective effect and implement the gathered knowledge in the treatment of NAFLD.
Collapse
Affiliation(s)
- Maral Amangurbanova
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
| | - Daniel Q. Huang
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, United States
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Kalinowski P, Smyk W, Nowosad M, Paluszkiewicz R, Michałowski Ł, Ziarkiewicz-Wróblewska B, Weber SN, Milkiewicz P, Lammert F, Zieniewicz K, Krawczyk M. MTARC1 and HSD17B13 Variants Have Protective Effects on Non-Alcoholic Fatty Liver Disease in Patients Undergoing Bariatric Surgery. Int J Mol Sci 2022; 23:15825. [PMID: 36555467 PMCID: PMC9781679 DOI: 10.3390/ijms232415825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The severity of hepatic steatosis is modulated by genetic variants, such as patatin-like phospholipase domain containing 3 (PNPLA3) rs738409, transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) rs641738. Recently, mitochondrial amidoxime reducing component 1 (MTARC1) rs2642438 and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) rs72613567 polymorphisms were shown to have protective effects on liver diseases. Here, we evaluate these variants in patients undergoing bariatric surgery. A total of 165 patients who underwent laparoscopic sleeve gastrectomy and intraoperative liver biopsies and 314 controls were prospectively recruited. Genotyping was performed using TaqMan assays. Overall, 70.3% of operated patients presented with hepatic steatosis. NASH (non-alcoholic steatohepatitis) was detected in 28.5% of patients; none had cirrhosis. The increment of liver fibrosis stage was associated with decreasing frequency of the MTARC1 minor allele (p = 0.03). In multivariate analysis MTARC1 was an independent protective factor against fibrosis ≥ 1b (OR = 0.52, p = 0.03) and ≥ 1c (OR = 0.51, p = 0.04). The PNPLA3 risk allele was associated with increased hepatic steatosis, fibrosis, and NASH (OR = 2.22, p = 0.04). The HSD17B13 polymorphism was protective against liver injury as reflected by lower AST (p = 0.04) and ALT (p = 0.03) activities. The TM6SF2 polymorphism was associated with increased ALT (p = 0.04). In conclusion, hepatic steatosis is common among patients scheduled for bariatric surgery, but the MTARC1 and HSD17B13 polymorphisms lower liver injury in these individuals.
Collapse
Affiliation(s)
- Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Wiktor Smyk
- Department of Gastroenterology and Hepatology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Małgorzata Nowosad
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rafał Paluszkiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Łukasz Michałowski
- Department of Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | - Susanne N. Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
- Hannover Health Science Campus, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
15
|
Sveinbjornsson G, Ulfarsson MO, Thorolfsdottir RB, Jonsson BA, Einarsson E, Gunnlaugsson G, Rognvaldsson S, Arnar DO, Baldvinsson M, Bjarnason RG, Eiriksdottir T, Erikstrup C, Ferkingstad E, Halldorsson GH, Helgason H, Helgadottir A, Hindhede L, Hjorleifsson G, Jones D, Knowlton KU, Lund SH, Melsted P, Norland K, Olafsson I, Olafsson S, Oskarsson GR, Ostrowski SR, Pedersen OB, Snaebjarnarson AS, Sigurdsson E, Steinthorsdottir V, Schwinn M, Thorgeirsson G, Thorleifsson G, Jonsdottir I, Bundgaard H, Nadauld L, Bjornsson ES, Rulifson IC, Rafnar T, Norddahl GL, Thorsteinsdottir U, Sulem P, Gudbjartsson DF, Holm H, Stefansson K. Multiomics study of nonalcoholic fatty liver disease. Nat Genet 2022; 54:1652-1663. [PMID: 36280732 PMCID: PMC9649432 DOI: 10.1038/s41588-022-01199-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver (NAFL) and its sequelae are growing health problems. We performed a genome-wide association study of NAFL, cirrhosis and hepatocellular carcinoma, and integrated the findings with expression and proteomic data. For NAFL, we utilized 9,491 clinical cases and proton density fat fraction extracted from 36,116 liver magnetic resonance images. We identified 18 sequence variants associated with NAFL and 4 with cirrhosis, and found rare, protective, predicted loss-of-function variants in MTARC1 and GPAM, underscoring them as potential drug targets. We leveraged messenger RNA expression, splicing and predicted coding effects to identify 16 putative causal genes, of which many are implicated in lipid metabolism. We analyzed levels of 4,907 plasma proteins in 35,559 Icelanders and 1,459 proteins in 47,151 UK Biobank participants, identifying multiple proteins involved in disease pathogenesis. We show that proteomics can discriminate between NAFL and cirrhosis. The present study provides insights into the development of noninvasive evaluation of NAFL and new therapeutic options.
Collapse
Affiliation(s)
| | - Magnus O Ulfarsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - David O Arnar
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Ragnar G Bjarnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Children's Medical Center, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland
| | | | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | - Lotte Hindhede
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | - David Jones
- Intermountain Healthcare, St. George, UT, USA
| | | | | | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Mechanical Engineering, Industrial Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Clinical Laboratory Services, Diagnostics and Blood Bank, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Sigurdur Olafsson
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Cophenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | - Emil Sigurdsson
- Development Centre for Primary Health Care in Iceland, Reykjavík, Iceland.,Department of Family Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Cophenhagen, Denmark
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Henning Bundgaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Einar S Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
16
|
Hudert CA, Adams LA, Alisi A, Anstee QM, Crudele A, Draijer LG, EU‐PNAFLD investigators, Furse S, Hengstler JG, Jenkins B, Karnebeek K, Kelly DA, Koot BG, Koulman A, Meierhofer D, Melton PE, Mori TA, Snowden SG, van Mourik I, Vreugdenhil A, Wiegand S, Mann JP. Variants in mitochondrial amidoxime reducing component 1 and hydroxysteroid 17-beta dehydrogenase 13 reduce severity of nonalcoholic fatty liver disease in children and suppress fibrotic pathways through distinct mechanisms. Hepatol Commun 2022; 6:1934-1948. [PMID: 35411667 PMCID: PMC9315139 DOI: 10.1002/hep4.1955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies in adults have identified variants in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) and mitochondrial amidoxime reducing component 1 (MTARC1) as protective against nonalcoholic fatty liver disease (NAFLD). We aimed to test their association with pediatric NAFLD liver histology and investigate their function using metabolomics. A total of 1450 children (729 with NAFLD, 399 with liver histology) were genotyped for rs72613567T>TA in HSD17B13, rs2642438G>A in MTARC1, and rs738409C>G in patatin-like phospholipase domain-containing protein 3 (PNPLA3). Genotype-histology associations were tested using ordinal regression. Untargeted hepatic proteomics and plasma lipidomics were performed in a subset of children. We found rs72613567T>TA in HSD17B13 to be associated with lower odds of NAFLD diagnosis (odds ratio, 0.7; 95% confidence interval, 0.6-0.9) and a lower grade of portal inflammation (p < 0.001). rs2642438G>A in MTARC1 was associated with a lower grade of hepatic steatosis (p = 0.02). Proteomics found reduced expression of HSD17B13 in carriers of the protective -TA allele. MTARC1 levels were unaffected by genotype. Both variants were associated with down-regulation of fibrogenic pathways. HSD17B13 perturbs plasma phosphatidylcholines and triglycerides. In silico modeling suggested p.Ala165Thr disrupts the stability and metal binding of MTARC1. Conclusion: Both HSD17B13 and MTARC1 variants are associated with less severe pediatric NAFLD. These results provide further evidence for shared genetic mechanisms between pediatric and adult NAFLD.
Collapse
Affiliation(s)
- Christian A. Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic DiseasesCharité Universitätsmedizin BerlinBerlinGermany
| | - Leon A. Adams
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of HepatologySir Charles Gairdner HospitalPerthAustralia
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital‐Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Quentin M. Anstee
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Newcastle National Institute for Health Research Biomedical Research CentreNewcastle upon Tyne Hospitals National Health Service Foundation TrustNewcastle upon TyneUK
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex PhenotypesBambino Gesù Children's Hospital‐Istituto di Ricovero e Cura a Carattere ScientificoRomeItaly
| | - Laura G. Draijer
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children’s HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | | | - Samuel Furse
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Jan G. Hengstler
- Systems ToxicologyLeibniz Research Center for Working Environment and Human Factors at the Technical University DortmundDortmundGermany
| | - Benjamin Jenkins
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Kylie Karnebeek
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Deirdre A. Kelly
- Liver UnitBirmingham Womens and Children’s Hospital TrustBirminghamUK
| | - Bart G. Koot
- Department of Pediatric Gastroenterology and NutritionAmsterdam University Medical CenterEmma Children’s HospitalUniversity of AmsterdamAmsterdamthe Netherlands
| | - Albert Koulman
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - David Meierhofer
- Max Planck Institute for Molecular GeneticsMass Spectrometry FacilityBerlinGermany
| | - Phillip E. Melton
- School of Global Population HealthFaculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
- School of Pharmacy and Biomedical SciencesFaculty of Health SciencesCurtin UniversityPerthAustralia
- Menzies Institute for Medical ResearchCollege of Health and MedicineUniversity of TasmaniaHobartAustralia
| | - Trevor A. Mori
- Medical SchoolUniversity of Western AustraliaPerthAustralia
| | - Stuart G. Snowden
- Core Metabolomics and Lipidomics LaboratoryWellcome Trust–Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | - Indra van Mourik
- Liver UnitBirmingham Womens and Children’s Hospital TrustBirminghamUK
| | - Anita Vreugdenhil
- Center for Overweight Adolescent and Children's Health CareDepartment of PediatricsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Susanna Wiegand
- Center for Chronically Sick ChildrenCharité Universitätsmedizin BerlinBerlinGermany
| | - Jake P. Mann
- Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| |
Collapse
|