Britz FC, Hirth IC, Deitmer JW. Second messenger cascade of glial responses evoked by interneuron activity and by a myomodulin peptide in the leech central nervous system.
Eur J Neurosci 2004;
19:983-92. [PMID:
15009146 DOI:
10.1111/j.0953-816x.2004.03192.x]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The giant glial cell in the neuropil of segmental ganglia of the leech Hirudo medicinalis responds to the activity of the Leydig interneuron and to a peptide of the myomodulin family, the presumed transmitter mediating the Leydig neuron-to-giant glial cell transmission, with a membrane hyperpolarization due to an increased membrane K+ conductance [Britz et al. (2002) Glia, 38, 215-227]. We have now studied the second messenger cascade initiated by Leydig neuron stimulation and by the endogenous myomodulin (MMHir) in the voltage-clamped giant glial cell. Glial responses to both stimuli are mediated by a G-protein-coupled receptor linked to adenylyl cyclase by the following criteria: (i) injection of GDP-beta-S, but not GDP, resulted in an irreversible decrease of the glial responses to both stimuli; (ii) the responses to both stimuli were reversibly inhibited by the adenylyl cyclase inhibitor SQ22,536; and (3) bath-applied di-butyryl-cyclic AMP, but not di-butyryl-cyclic GMP, elicited an outward current, which reduced the responses elicited by neuronal stimulation or myomodulin. A cocktail of protein kinase (PK) inhibitors (H-8, KT5720), the PKA antagonist Rp-cAMPS, or presumed inhibitors of cyclic nucleotide channels, LY83583 and l-cis-diltiazem, had no effect on the glial responses. Our results suggest that Leydig neuron stimulation and MMHir activate a cAMP-mediated K+ conductance in the glial cell, which appeared neither to be due to the activation of PKA nor of known cyclic nucleotide-gated channels directly.
Collapse