1
|
Shen W, Chen F, Tang Y, Zhao Y, Zhu L, Xiang L, Ning L, Zhou W, Chen Y, Wang L, Li J, Huang H, Zeng LH. mGluR5-mediated astrocytes hyperactivity in the anterior cingulate cortex contributes to neuropathic pain in male mice. Commun Biol 2025; 8:266. [PMID: 39979531 PMCID: PMC11842833 DOI: 10.1038/s42003-025-07733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Astrocytes regulate synaptic transmission in healthy and pathological conditions, but their involvement in modulating synaptic transmission in chronic pain is unknown. Our study demonstrates that astrocytes in the anterior cingulate cortex (ACC) exhibit abnormal calcium signals and induce the release of glutamate in male mice. This leads to an elevation in extracellular glutamate concentration, activation of presynaptic kainate receptors, and an increase in synaptic transmission following neuropathic pain. We discovered that the abnormal calcium signals are caused by the reappearance of metabotropic glutamate receptor type 5 (mGluR5) in astrocytes in male mice. Importantly, when we specifically inhibit the Gq pathway using iβARK and reduce the expression of mGluR5 in astrocytes through shRNA, we observe a restoration of astrocytic calcium activity, normalization of synaptic transmission and extracellular concentration of glutamate, and improvement in mechanical allodynia in male mice. Furthermore, the activation of astrocytes through chemogenetics results in an overabundance of excitatory synaptic transmission, exacerbating mechanical allodynia in mice with neuropathic pain, but not in sham-operated male mice. In summary, our findings suggest that the abnormal calcium signaling in astrocytes, mediated by mGluR5, plays a crucial role in enhancing synaptic transmission in ACC and contributing to mechanical allodynia in male mice.
Collapse
Affiliation(s)
- Weida Shen
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| | - Fujian Chen
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yejiao Tang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yulu Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Linjing Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Liyang Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Li Ning
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yiran Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Liangxue Wang
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Li
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Hui Huang
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Hui Zeng
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
2
|
Zinsmaier AK, Nestler EJ, Dong Y. Astrocytic G Protein-Coupled Receptors in Drug Addiction. ENGINEERING (BEIJING, CHINA) 2025; 44:256-265. [PMID: 40109668 PMCID: PMC11922559 DOI: 10.1016/j.eng.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the cellular mechanisms of drug addiction remains a key task in current brain research. While neuron-based mechanisms have been extensively explored over the past three decades, recent evidence indicates a critical involvement of astrocytes, the main type of non-neuronal cells in the brain. In response to extracellular stimuli, astrocytes modulate the activity of neurons, synaptic transmission, and neural network properties, collectively influencing brain function. G protein-coupled receptors (GPCRs) expressed on astrocyte surfaces respond to neuron- and environment-derived ligands by activating or inhibiting astrocytic signaling, which in turn regulates adjacent neurons and their circuitry. In this review, we focus on the dopamine D1 receptors (D1R) and metabotropic glutamate receptor 5 (mGLUR5 or GRM5)-two GPCRs that have been critically implicated in the acquisition and maintenance of addiction-related behaviors. Positioned as an introductory-level review, this article briefly discusses astrocyte biology, outlines earlier discoveries about the role of astrocytes in substance-use disorders (SUDs), and provides detailed discussion about astrocytic D1Rs and mGLUR5s in regulating synapse and network functions in the nucleus accumbens (NAc)-a brain region that mediates addiction-related emotional and motivational responses. This review serves as a stepping stone for readers of Engineering to explore links between astrocytic GPCRs and drug addiction and other psychiatric disorders.
Collapse
Affiliation(s)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Kubota Y, Shigetomi E, Saito K, Shinozaki Y, Kobayashi K, Tanaka M, Parajuli B, Tanaka KF, Koizumi S. Establishment and Use of Primary Cultured Astrocytes from Alexander Disease Model Mice. Int J Mol Sci 2024; 25:12100. [PMID: 39596168 PMCID: PMC11595037 DOI: 10.3390/ijms252212100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disease caused by mutations in glial fibrillary acidic protein (GFAP), which is predominantly expressed in astrocytes. Thus, AxD is a primary astrocyte disease. However, it remains unclear how GFAP mutations affect astrocytes and cause AxD pathology. Three features are characteristic of AxD astrocytes in vivo: (1) Rosenthal fibers (RFs), the hallmark of AxD; (2) aberrant Ca2+ signals (AxCa); and (3) upregulation of disease-associated genes (AxGen). We established a primary culture system for astrocytes from an AxD transgenic mouse model, and used it to analyze the above features of AxD pathogenesis in astrocytes in vitro. We observed the formation of RFs in AxD primary cultures. The abundance of RFs was greater in AxD-transgene-homozygous compared with -hemizygous astrocytes, indicating a gene dosage effect, and this abundance increased with time in culture, indicating a developmental process effect. However, cultured AxD astrocytes did not exhibit changes in either AxCa or AxGen. We therefore conclude that RFs in astrocytes form via a cell-autonomous mechanism, whereas AxCa and AxGen are likely to occur via a non-cell-autonomous mechanism through interactions with other cells, such as neurons, microglia, and vascular cells. Although primary cultured AxD astrocytes are suitable for elucidating the mechanisms of RFs formation and for intervention studies, it should be noted that they cannot reflect the pathophysiology of non-cell-autonomous events in astrocytes.
Collapse
Affiliation(s)
- Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Masayoshi Tanaka
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan;
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| |
Collapse
|
4
|
Lemes Dos Santos Sanna P, Bernardes Carvalho L, Cristina Dos Santos Afonso C, de Carvalho K, Aires R, Souza J, Rodrigues Ferreira M, Birbrair A, Martha Bernardi M, Latini A, Foganholi da Silva RA. Adora2A downregulation promotes caffeine neuroprotective effect against LPS-induced neuroinflammation in the hippocampus. Brain Res 2024; 1833:148866. [PMID: 38494098 DOI: 10.1016/j.brainres.2024.148866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1β. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.
Collapse
Affiliation(s)
| | | | | | - Kassia de Carvalho
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Rogério Aires
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Jennyffer Souza
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unity, Botucatu Medical School, São Paulo State University, Brazil.
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Maria Martha Bernardi
- Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress - LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rodrigo A Foganholi da Silva
- Dentistry, University of Taubaté, Taubaté, São Paulo, São Paulo, Brazil; Center for Epigenetic Study and Genic Regulation - CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Liu Z, Wang Z, Wei Y, Shi J, Shi T, Chen X, Li L. Transcriptomic Profiling of Tetrodotoxin-Induced Neurotoxicity in Human Cerebral Organoids. Mar Drugs 2023; 21:588. [PMID: 37999412 PMCID: PMC10672545 DOI: 10.3390/md21110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Tetrodotoxin (TTX) is an exceedingly toxic non-protein biotoxin that demonstrates remarkable selectivity and affinity for sodium channels on the excitation membrane of nerves. This property allows TTX to effectively obstruct nerve conduction, resulting in nerve paralysis and fatality. Although the mechanistic aspects of its toxicity are well understood, there is a dearth of literature addressing alterations in the neural microenvironment subsequent to TTX poisoning. In this research endeavor, we harnessed human pluripotent induced stem cells to generate cerebral organoids-an innovative model closely mirroring the structural and functional intricacies of the human brain. This model was employed to scrutinize the comprehensive transcriptomic shifts induced by TTX exposure, thereby delving into the neurotoxic properties of TTX and its potential underlying mechanisms. Our findings revealed 455 differentially expressed mRNAs (DEmRNAs), 212 differentially expressed lncRNAs (DElncRNAs), and 18 differentially expressed miRNAs (DEmiRNAs) in the TTX-exposed group when juxtaposed with the control cohort. Through meticulous Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis, we ascertained that these differential genes predominantly participate in the regulation of voltage-gated channels and synaptic homeostasis. A comprehensive ceRNA network analysis unveiled that DEmRNAs exert control over the expression of ion channels and neurocytokines, suggesting their potential role in mediating apoptosis.
Collapse
Affiliation(s)
- Zhanbiao Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yue Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China (J.S.)
| |
Collapse
|
6
|
Wei J, Lambert TY, Valada A, Patel N, Walker K, Lenders J, Schmidt CJ, Iskhakova M, Alazizi A, Mair-Meijers H, Mash DC, Luca F, Pique-Regi R, Bannon MJ, Akbarian S. Single nucleus transcriptomics of ventral midbrain identifies glial activation associated with chronic opioid use disorder. Nat Commun 2023; 14:5610. [PMID: 37699936 PMCID: PMC10497570 DOI: 10.1038/s41467-023-41455-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Dynamic interactions of neurons and glia in the ventral midbrain mediate reward and addiction behavior. We studied gene expression in 212,713 ventral midbrain single nuclei from 95 individuals with history of opioid misuse, and individuals without drug exposure. Chronic exposure to opioids was not associated with change in proportions of glial and neuronal subtypes, however glial transcriptomes were broadly altered, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes. Genes associated with activation of the immune response including interferon, NFkB signaling, and cell motility pathways were upregulated, contrasting with down-regulated expression of synaptic signaling and plasticity genes in ventral midbrain non-dopaminergic neurons. Ventral midbrain transcriptomic reprogramming in the context of chronic opioid exposure included 325 genes that previous genome-wide studies had linked to risk of substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.
Collapse
Affiliation(s)
- Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Tova Y Lambert
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nikhil Patel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kellie Walker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jayna Lenders
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Carl J Schmidt
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Marina Iskhakova
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Henriette Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
- Department of Biology, University of Tor Vergata, Rome, 00133, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Rimbert S, Moreira JB, Xapelli S, Lévi S. Role of purines in brain development, from neuronal proliferation to synaptic refinement. Neuropharmacology 2023:109640. [PMID: 37348675 DOI: 10.1016/j.neuropharm.2023.109640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The purinergic system includes P1 and P2 receptors, which are activated by ATP and its metabolites. They are expressed in adult neuronal and glial cells and are crucial in brain function, including neuromodulation and neuronal signaling. As P1 and P2 receptors are expressed throughout embryogenesis and development, purinergic signaling also has an important role in the development of the peripheral and central nervous system. In this review, we present the expression pattern and activity of purinergic receptors and of their signaling pathways during embryonic and postnatal development of the nervous system. In particular, we review the involvement of the purinergic signaling in all the crucial steps of brain development i.e. in neural stem cell proliferation, neuronal differentiation and migration as well as in astrogliogenesis and oligodendrogenesis. Then, we review data showing a crucial role of the ATP and adenosine signaling pathways in the formation of the peripheral neuromuscular junction and of central GABAergic and glutamatergic synapses. Finally, we examine the consequences of deregulation of the purinergic system during development and discuss the therapeutic potential of targeting it at adult stage in diseases with reactivation of the ATP and adenosine pathway.
Collapse
Affiliation(s)
- Solen Rimbert
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France
| | - João B Moreira
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular - João Lobo Antunes (iMM - JLA), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular - João Lobo Antunes (iMM - JLA), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sabine Lévi
- INSERM UMR-S 1270, Sorbonne Université, Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
8
|
Wei J, Lambert TY, Valada A, Patel N, Walker K, Lenders J, Schmidt CJ, Iskhakova M, Alazizi A, Mair-Meijers H, Mash DC, Luca F, Pique-Regi R, Bannon MJ, Akbarian S. Single Nucleus Transcriptomics Reveals Pervasive Glial Activation in Opioid Overdose Cases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531400. [PMID: 36945611 PMCID: PMC10028861 DOI: 10.1101/2023.03.07.531400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Dynamic interactions of neurons and glia in the ventral midbrain (VM) mediate reward and addiction behavior. We studied gene expression in 212,713 VM single nuclei from 95 human opioid overdose cases and drug-free controls. Chronic exposure to opioids left numerical proportions of VM glial and neuronal subtypes unaltered, while broadly affecting glial transcriptomes, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes, with prominent activation of the immune response including interferon, NFkB signaling, and cell motility pathways, sharply contrasting with down-regulated expression of synaptic signaling and plasticity genes in VM non-dopaminergic neurons. VM transcriptomic reprogramming in the context of opioid exposure and overdose included 325 genes with genetic variation linked to substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.
Collapse
Affiliation(s)
- Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Tova Y. Lambert
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aditi Valada
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nikhil Patel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kellie Walker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jayna Lenders
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Carl J. Schmidt
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Marina Iskhakova
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Henriette Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
- Department of Biology, University of Tor Vergata, Rome, Italy, 00133
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
9
|
Kim J, Kaang BK. Cyclic AMP response element-binding protein (CREB) transcription factor in astrocytic synaptic communication. Front Synaptic Neurosci 2023; 14:1059918. [PMID: 36685081 PMCID: PMC9845270 DOI: 10.3389/fnsyn.2022.1059918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are known to actively participate in synaptic communication by forming structures called tripartite synapses. These synapses consist of presynaptic axon terminals, postsynaptic dendritic spines, and astrocytic processes where astrocytes release and receive transmitters. Although the transcription factor cyclic AMP response element (CRE)-binding protein (CREB) has been actively studied as an important factor for mediating synaptic activity-induced responses in neurons, its role in astrocytes is relatively unknown. Synaptic signals are known to activate various downstream pathways in astrocytes, which can activate the CREB transcription factor. Therefore, there is a need to summarize studies on astrocytic intracellular pathways that are induced by synaptic communication resulting in activation of the CREB pathway. In this review, we discuss the various neurotransmitter receptors and intracellular pathways that can induce CREB activation and CREB-induced gene regulation in astrocytes.
Collapse
|
10
|
de Lima IB, Ribeiro FM. The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:164-182. [PMID: 34951388 PMCID: PMC10190153 DOI: 10.2174/1570159x20666211223140303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) was first identified more than 100 years ago, yet aspects pertaining to its origin and the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease-modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning, as well as its role in pathological conditions, remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD, and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. AD-related alterations in Ca2+ signalling, APP processing, and Aβ load, as well as AD-related neurodegeneration, are influenced by glial mGluRs. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review, we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.
Collapse
Affiliation(s)
- Izabella B.Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Kawabe Y, Tanaka T, Isonishi A, Nakahara K, Tatsumi K, Wanaka A. Characterization of Glial Populations in the Aging and Remyelinating Mouse Corpus Callosum. Neurochem Res 2022; 47:2826-2838. [PMID: 35859078 DOI: 10.1007/s11064-022-03676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Cells in the white matter of the adult brain have a characteristic distribution pattern in which several cells are contiguously connected to each other, making a linear array (LA) resembling pearls-on-a-string parallel to the axon axis. We have been interested in how this pattern of cell distribution changes during aging and remyelination after demyelination. In the present study, with a multiplex staining method, semi-quantitative analysis of the localization of oligodendrocyte lineage cells (oligodendrocyte progenitors, premyelinating oligodendrocytes, and mature oligodendrocytes), astrocytes, and microglia in 8-week-old (young adult) and 32-week-old (aged) corpus callosum showed that young adult cells still include immature oligodendrocytes and that LAs contain a higher proportion of microglia than isolated cells. In aged mice, premyelinating oligodendrocytes were decreased, but microglia continued to be present in the LAs. These results suggest that the presence of microglia is important for the characteristic cell localization pattern of LAs. In a cuprizone-induced demyelination model, we observed re-formation of LAs after completion of cuprizone treatment, concurrent with remyelination. These re-formed LAs again contained more microglia than the isolated cells. This finding supports the hypothesis that microglia contribute to the formation and maintenance of LAs. In addition, regardless of the distribution of cells (LAs or isolated cells), astrocytes were found to be more abundant than in the normal corpus callosum at 24 weeks after cuprizone treatment when remyelination is completed. This suggests that astrocytes are involved in maintaining the functions of remyelinated white matter.
Collapse
Affiliation(s)
- Yoshie Kawabe
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Kazuki Nakahara
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan.
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Faculty of Medicine, 840 Shijo-cho, Kashihara City, Nara, 634-8521, Japan
| |
Collapse
|
12
|
Danjo Y, Shigetomi E, Hirayama YJ, Kobayashi K, Ishikawa T, Fukazawa Y, Shibata K, Takanashi K, Parajuli B, Shinozaki Y, Kim SK, Nabekura J, Koizumi S. Transient astrocytic mGluR5 expression drives synaptic plasticity and subsequent chronic pain in mice. J Exp Med 2022; 219:213089. [PMID: 35319723 PMCID: PMC8952801 DOI: 10.1084/jem.20210989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Activation of astrocytes has a profound effect on brain plasticity and is critical for the pathophysiology of several neurological disorders including neuropathic pain. Here, we show that metabotropic glutamate receptor 5 (mGluR5), which reemerges in astrocytes in a restricted time frame, is essential for these functions. Although mGluR5 is absent in healthy adult astrocytes, it transiently reemerges in astrocytes of the somatosensory cortex (S1). During a limited spatiotemporal time frame, astrocytic mGluR5 drives Ca2+ signals; upregulates multiple synaptogenic molecules such as Thrombospondin-1, Glypican-4, and Hevin; causes excess excitatory synaptogenesis; and produces persistent alteration of S1 neuronal activity, leading to mechanical allodynia. All of these events were abolished by the astrocyte-specific deletion of mGluR5. Astrocytes dynamically control synaptic plasticity by turning on and off a single molecule, mGluR5, which defines subsequent persistent brain functions, especially under pathological conditions.
Collapse
Affiliation(s)
- Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Yukiho J Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Tatsuya Ishikawa
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenta Takanashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Kanagawa, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|