1
|
Chen X, Lv Z, Xie G, Zhao C, Zhou Y, Fu F, Li J, Zhang X, Qi F, Xu Y, Chen Y. Unleashing the potential: 40 Hz multisensory stimulation therapy for cognitive impairment. J Cent Nerv Syst Dis 2025; 17:11795735251328029. [PMID: 40160278 PMCID: PMC11952037 DOI: 10.1177/11795735251328029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Cognitive impairment encompasses a spectrum of disorders marked by acquired deficits in cognitive function, potentially leading to diminished daily functioning and work capacity, often accompanied by psychiatric and behavioral disturbances. Alzheimer's disease (AD) and Post-stroke cognitive impairment (PSCI) are significant causes of cognitive decline. With the global population getting older, AD and PSCI are becoming major health concerns, underscoring the critical necessity for successful treatment options. In recent years, various non-invasive biophysical stimulation techniques, including ultrasound, light, electric, and magnetic stimulation, have been developed for the treatment of central nervous system diseases. Preliminary clinical studies have demonstrated the feasibility and safety of these techniques. This review discuss the impact of 40 Hz multisensory stimulation on cerebral function, behavioral outcomes, and disease progression in both animal models and individuals exhibiting cognitive deficits, such as AD and PSCI. Furthermore, it summarizes the potential neural pathways involved in this therapeutic modality by synthesizing evidence from a variety of studies within the field. Subsequently, it evaluates the existing constraints of this technique and underscores the potential advantages of 40 Hz multisensory stimulation therapy for individuals with cognitive deficits, with the goal of enhancing the management and care of AD and PSCI.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoling Zhang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Xu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yifu Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Lapin D, Sharma A, Wang P. Extracellular cold-inducible RNA-binding protein in CNS injury: molecular insights and therapeutic approaches. J Neuroinflammation 2025; 22:12. [PMID: 39838468 PMCID: PMC11752631 DOI: 10.1186/s12974-025-03340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells. Extracellular cold-inducible RNA-binding protein (eCIRP) is a DAMP which acts through multiple immune and non-immune cells to promote inflammation. Despite the well-established role of eCIRP in systemic and sterile inflammation, its role in CNS injury is less elucidated. Recent literature suggests that eCIRP is a pleiotropic inflammatory mediator in CNS injury. eCIRP is also being evaluated as a clinical biomarker to indicate prognosis in CNS injuries. This review provides a broad overview of CNS injury, with a focus on immune-mediated secondary injury and neuroinflammation. We then review what is known about eCIRP in CNS injury, and its known mechanisms in both CNS and non-CNS cells, identifying opportunities for further study. We also explore eCIRP's potential as a prognostic marker of CNS injury severity and outcome. Next, we provide an overview of eCIRP-targeting therapeutics and suggest strategies to develop these agents to ameliorate CNS injury. Finally, we emphasize exploring novel molecular mechanisms, aside from neuroinflammation, by which eCIRP acts as a critical mediator with significant potential as a therapeutic target and prognostic biomarker in CNS injury.
Collapse
Affiliation(s)
- Dmitriy Lapin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
3
|
Liu YF, Liu HT, Chang C, Yang CX, Liu XN, Wang X, Ge W, Wang RZ, Bao XJ. Stereotactically intracerebral transplantation of neural stem cells for ischemic stroke attenuated inflammatory responses and promoted neurogenesis: an experimental study with monkeys. Int J Surg 2024; 110:5417-5433. [PMID: 38874473 PMCID: PMC11392141 DOI: 10.1097/js9.0000000000001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Ischemic stroke is a common neurovascular disorder with high morbidity and mortality. However, the underlying mechanism of stereotactically intracerebral transplantation of human neural stem cells (hNSCs) is not well elucidated. MATERIALS AND METHODS Four days after ischemic stroke induced by Rose Bengal photothrombosis, seven cynomolgus monkeys were transplanted with hNSCs or vehicles stereotactically and followed up for 84 days. Behavioral assessments, magnetic resonance imaging, blood tests, and pathological analysis were performed before and after treatment. The proteome profiles of the left and right precentral gyrus and hippocampus were evaluated. Extracellular vesicle micro-RNA (miRNA) from the peripheral blood was extracted and analyzed. RESULTS hNSC transplantation reduced the remaining infarcted lesion volume of cynomolgus monkeys with ischemic stroke without remarkable side effects. Proteomic analyses indicated that hNSC transplantation promoted GABAergic and glutamatergic neurogenesis and restored the mitochondrial electron transport chain function in the ischemic infarcted left precentral gyrus or hippocampus. Immunohistochemical staining and quantitative real-time reverse transcription PCR confirmed the promoting effects on neurogenesis and revealed that hNSCs attenuated post-infarct inflammatory responses by suppressing resident glia activation and mediating peripheral immune cell infiltration. Consistently, miRNA-sequencing revealed the miRNAs that were related to these pathways were downregulated after hNSC transplantation. CONCLUSIONS This study indicates that hNSCs can be effectively and safely used to treat ischemic stroke by promoting neurogenesis, regulating post-infarct inflammatory responses, and restoring mitochondrial function in both the infarct region and hippocampus.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Hao-Tian Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Cheng-Xian Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Orthopaedics, Peking University First Hospital, Beijing
| | - Xin-Nan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Xia Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Wei Ge
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Ren-Zhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong
| | - Xin-Jie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| |
Collapse
|
4
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Kalinina TS, Shishkina GT, Lanshakov DA, Sukhareva EV, Onufriev MV, Moiseeva YV, Gulyaeva NV, Dygalo NN. Comparative Investigation of Expression of Glutamatergic and GABAergic Genes in the Rat Hippocampus after Focal Brain Ischemia and Central LPS Administration. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:539-550. [PMID: 37080939 DOI: 10.1134/s0006297923040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Among the responses in the early stages of stroke, activation of neurodegenerative and proinflammatory processes in the hippocampus is of key importance for the development of negative post-ischemic functional consequences. However, it remains unclear, what genes are involved in these processes. The aim of this work was a comparative study of the expression of genes encoding glutamate and GABA transporters and receptors, as well as inflammation markers in the hippocampus one day after two types of middle cerebral artery occlusion (according to Koizumi et al. method, MCAO-MK, and Longa et al. method, MCAO-ML), and direct pro-inflammatory activation by central administration of bacterial lipopolysaccharide (LPS). Differences and similarities in the effects of these challenges on gene expression were observed. Expression of a larger number of genes associated with activation of apoptosis and neuroinflammation, glutamate reception, and markers of the GABAergic system changed after the MCAO-ML and LPS administration than after the MCAO-MK. Compared with the MCAO-ML, the MCAO-MK and LPS challenges caused changes in the expression of more genes involved in glutamate transport. The most pronounced difference between the responses to different challenges was the changes in expression of calmodulin and calmodulin-dependent kinases genes observed after MCAO, especially MCAO-ML, but not after LPS. The revealed specific features of the hippocampal gene responses to the two types of ischemia and a pro-inflammatory stimulus could contribute to further understanding of the molecular mechanisms underlying diversity of the post-stroke consequences both in the model studies and in the clinic.
Collapse
Affiliation(s)
- Tatyana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Dmitriy A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Ekaterina V Sukhareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Yulia V Moiseeva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117485, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
7
|
Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed Pharmacother 2023; 161:114534. [PMID: 36933376 DOI: 10.1016/j.biopha.2023.114534] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chrysin is a natural flavonoid compound that has antioxidant and neuroprotective effects. Cerebral ischemia reperfusion (CIR) is closely connected with increased oxidative stress in the hippocampal CA1 region and homeostasis disorder of transition elements such as iron (Fe), copper (Cu) and zinc (Zn). This exploration was conducted to elucidate the antioxidant and neuroprotective effects of chrysin based on transient middle cerebral artery occlusion (tMCAO) in rats. Experimentally, sham group, model group, chrysin (50.0 mg/kg) group, Ginaton (21.6 mg/kg) group, Dimethyloxallyl Glycine (DMOG, 20.0 mg/kg) + chrysin group and DMOG group were devised. The rats in each group were performed to behavioral evaluation, histological staining, biochemical kit detection, and molecular biological detection. The results indicated that chrysin restrained oxidative stress and the rise of transition element levels, and regulated transition element transporter levels in tMCAO rats. DMOG activated hypoxia-inducible factor-1 subunit alpha (HIF-1α), reversed the antioxidant and neuroprotective effects of chrysin, and increased transition element levels. In a word, our findings emphasize that chrysin plays a critical role in protecting CIR injury via inhibiting HIF-1α against enhancive oxidative stress and raised transition metal levels.
Collapse
|
8
|
Post-Stroke Environmental Enrichment Improves Neurogenesis and Cognitive Function and Reduces the Generation of Aberrant Neurons in the Mouse Hippocampus. Cells 2023; 12:cells12040652. [PMID: 36831319 PMCID: PMC9954243 DOI: 10.3390/cells12040652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Ischemic lesions stimulate adult neurogenesis in the dentate gyrus, however, this is not associated with better cognitive function. Furthermore, increased neurogenesis is associated with the formation of aberrant neurons. In a previous study, we showed that a running task after a stroke not only increases neurogenesis but also the number of aberrant neurons without improving general performance. Here, we determined whether stimulation in an enriched environment after a lesion could increase neurogenesis and cognitive function without enhancing the number of aberrant neurons. After an ischemic stroke induced by MCAO, animals were transferred to an enriched environment containing a running wheel, tunnels and nest materials. A GFP-retroviral vector was delivered on day 3 post-stroke and a modified water maze test was performed 6 weeks after the lesion. We found that the enriched environment significantly increased the number of new neurons compared with the unstimulated stroke group but not the number of aberrant cells after a lesion. Increased neurogenesis after environmental enrichment was associated with improved cognitive function. Our study showed that early placement in an enriched environment after a stroke lesion markedly increased neurogenesis and flexible learning but not the formation of aberrant neurons, indicating that rehabilitative training, as a combination of running wheel training and enriched environment housing, improved functional and structural outcomes after a stroke.
Collapse
|
9
|
Beccari S, Sierra-Torre V, Valero J, Pereira-Iglesias M, García-Zaballa M, Soria FN, De Las Heras-Garcia L, Carretero-Guillen A, Capetillo-Zarate E, Domercq M, Huguet PR, Ramonet D, Osman A, Han W, Dominguez C, Faust TE, Touzani O, Pampliega O, Boya P, Schafer D, Mariño G, Canet-Soulas E, Blomgren K, Plaza-Zabala A, Sierra A. Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy. Autophagy 2023:1-30. [PMID: 36622892 DOI: 10.1080/15548627.2023.2165313] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Sol Beccari
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Virginia Sierra-Torre
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Jorge Valero
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Neural Plasticity and Neurorepair Group, Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), and Institute for Biomedical Research of Salamanca, University of Salamanca, 37007, Salamanca, Spain
| | - Marta Pereira-Iglesias
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Mikel García-Zaballa
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Federico N Soria
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain
| | - Laura De Las Heras-Garcia
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Alejandro Carretero-Guillen
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain
| | - Estibaliz Capetillo-Zarate
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Maria Domercq
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Paloma R Huguet
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - David Ramonet
- INSERM U1060 CarMeN, Université Claude Bernard Lyon 1 - IRIS team, CarMeN, bat. B13, gpt hosp. Est, 59 bld Pinel, 69500, Bron, Auvergne-Rhône-Alpes, France
| | - Ahmed Osman
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Wei Han
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Cecilia Dominguez
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Travis E Faust
- Department of Neurobiology, University of Massachusetts Medical School, 01605, Worcester, MA, USA
| | - Omar Touzani
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000, Caen, Normandie, France
| | - Olatz Pampliega
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Patricia Boya
- Laboratory of Autophagy, Centro de Investigaciones Biológicas Margarita Salas, Madrid 28040, Spain.,Department of Medicine, University of Fribourg, 1700, Freiburg, Switzerland
| | - Dorothy Schafer
- Department of Neurobiology, University of Massachusetts Medical School, 01605, Worcester, MA, USA
| | - Guillermo Mariño
- Department of Medicine, University of Fribourg, 1700, Freiburg, Switzerland.,Department of Functional Biology, University of Oviedo, 33003, Oviedo, Asturias, Spain
| | - Emmanuelle Canet-Soulas
- INSERM U1060 CarMeN, Université Claude Bernard Lyon 1 - IRIS team, CarMeN, bat. B13, gpt hosp. Est, 59 bld Pinel, 69500, Bron, Auvergne-Rhône-Alpes, France
| | - Klas Blomgren
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, 171 64, Stockholm, Södermanland and Uppland, Sweden
| | - Ainhoa Plaza-Zabala
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Amanda Sierra
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain
| |
Collapse
|
10
|
Chen B, Xie C, Shi T, Yue S, Li W, Huang G, Zhang Y, Liu W. Activation of Swell1 in microglia suppresses neuroinflammation and reduces brain damage in ischemic stroke. Neurobiol Dis 2023; 176:105936. [PMID: 36511337 DOI: 10.1016/j.nbd.2022.105936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cl- movement and Cl--sensitive signal pathways contributes to the survival and switch of inflammatory phenotype of microglia and are believed to play a key role in the inflammatory brain injury after ischemic stroke. Here, we demonstrated an important role of Cl- transmembrane transporter Swell1, in the survival and M2-like polarization of microglia in ischemic stroke. Knockdown or overexpression of Swell1 in cultured microglia inhibited or increased hypotonic-activated Cl- currents, respectively, and these changes were completely blocked by the volume-regulated anion channels (VRACs) inhibitor DCPIB. Swell1 conditional knock-in mice promoted microglia survival in ischemic brain region and resulted in significant reductions in neural cell death, infarction volume and neurological deficits following transient middle cerebral artery occlusion (tMCAO). Using gene manipulating technique and pharmacological inhibitors, we further revealed that Swell1 opening led to SGK1 (a Cl--sensitive kinase)-mediated activation of FOXO3a/CREB as well as WNK1 (another Cl--sensitive kinase)-mediated SPAK/OSR1-CCCs activation, which promoted microglia survival and M2-like polarization, thereby attenuating neuroinflammation and ischemic brain injury. Taken together, our results demonstrated that Swell1 is an essential component of microglia VRACs and its activation protects against ischemic brain injury through promoting microglia survival and M2-like polarization.
Collapse
Affiliation(s)
- Baoyi Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Cong Xie
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Tengrui Shi
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Shiqin Yue
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518035, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
11
|
Jadhav P, Karande M, Sarkar A, Sahu S, Sarmah D, Datta A, Chaudhary A, Kalia K, Sharma A, Wang X, Bhattacharya P. Glial Cells Response in Stroke. Cell Mol Neurobiol 2023; 43:99-113. [PMID: 35066715 PMCID: PMC11415215 DOI: 10.1007/s10571-021-01183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023]
Abstract
As the second-leading cause of death, stroke faces several challenges in terms of treatment because of the limited therapeutic interventions available. Previous studies primarily focused on metabolic and blood flow properties as a target for treating stroke, including recombinant tissue plasminogen activator and mechanical thrombectomy, which are the only USFDA approved therapies. These interventions have the limitation of a narrow therapeutic time window, the possibility of hemorrhagic complications, and the expertise required for performing these interventions. Thus, it is important to identify the contributing factors that exacerbate the ischemic outcome and to develop therapies targeting them for regulating cellular homeostasis, mainly neuronal survival and regeneration. Glial cells, primarily microglia, astrocytes, and oligodendrocytes, have been shown to have a crucial role in the prognosis of ischemic brain injury, contributing to inflammatory responses. They play a dual role in both the onset as well as resolution of the inflammatory responses. Understanding the different mechanisms driving these effects can aid in the development of therapeutic targets and further mitigate the damage caused. In this review, we summarize the functions of various glial cells and their contribution to stroke pathology. The review highlights the therapeutic options currently being explored and developed that primarily target glial cells and can be used as neuroprotective agents for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Poonam Jadhav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Mayuri Karande
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Abhishek Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Shubhrakanta Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Antra Chaudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Arvind Sharma
- Department of Neurology, Zydus Hospital, Ahmedabad, 380054, Gujarat, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
12
|
Tao T, Chen X, Zhou Y, Zheng Q, Gao S, Wang J, Ding P, Li X, Peng Z, Lu Y, Gao Y, Zhuang Z, Hang C, Li W. Continued P2X7 activation leads to mitochondrial fission and compromising microglial phagocytosis after subarachnoid haemorrhage. J Neurochem 2022; 163:419-437. [PMID: 36269673 PMCID: PMC9828135 DOI: 10.1111/jnc.15712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
Subarachnoid haemorrhage (SAH) has a high rate of disability and mortality. Extremely damaging molecules, including adenosine triphosphate (ATP), are released from extravasated red blood cells and nerve cells, which activate microglia and induce sterile tissue injury and organ dysfunction. P2X purinoceptor 7 (P2X7) is one of the most important purine receptors on the microglial surface and is involved in the proinflammatory activation of microglia. While P2X7 can also affect microglial phagocytosis, the mechanism is not clear. Here, we demonstrated that microglial phagocytosis is progressively impaired under continued BzATP exposure and P2X7 activation. Furthermore, we found that P2X7 activation leads to increased intracellular Ca2+ levels and activates Calcineurin, which dephosphorylates dynamin-related protein 1 (DRP1) S637. The dephosphorylation of DRP1 at S637 leads to increased mitochondrial fission and decreased mitochondrial function, which may be responsible for the decreased microglial phagocytosis. Finally, we pharmacologically inhibited P2X7 activation in mice, which resulted in rescue of mitochondrial function and decreased microglial proliferation, but improved phagocytosis after SAH. Our study confirmed that P2X7 activation after SAH leads to the impairment of microglial phagocytosis through mitochondrial fission and verified that P2X7 inhibition restores microglial phagocytosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Tao Tao
- Department of NeurosurgeryNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Xiangxin Chen
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Qiang Zheng
- Department of NeurosurgeryNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Jinwei Wang
- Department of NeurosurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingJiangsu ProvinceChina
| | - Pengfei Ding
- Department of NeurosurgeryNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Yongyue Gao
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Chun‐hua Hang
- Department of NeurosurgeryNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu ProvinceChina,Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| | - Wei Li
- Department of NeurosurgeryNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsu ProvinceChina,Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu ProvinceChina
| |
Collapse
|
13
|
Chen W, Zhang Y, Zhai X, Xie L, Guo Y, Chen C, Li Y, Wang F, Zhu Z, Zheng L, Wan J, Li P. Microglial phagocytosis and regulatory mechanisms after stroke. J Cereb Blood Flow Metab 2022; 42:1579-1596. [PMID: 35491825 PMCID: PMC9441720 DOI: 10.1177/0271678x221098841] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke, including ischemic stroke and hemorrhagic stroke can cause massive neuronal death and disruption of brain structure, which is followed by secondary inflammatory injury initiated by pro-inflammatory molecules and cellular debris. Phagocytic clearance of cellular debris by microglia, the brain's scavenger cells, is pivotal for neuroinflammation resolution and neurorestoration. However, microglia can also exacerbate neuronal loss by phagocytosing stressed-but-viable neurons in the penumbra, thereby expanding the injury area and hindering neurofunctional recovery. Microglia constantly patrol the central nervous system using their processes to scour the cellular environment and start or cease the phagocytosis progress depending on the "eat me" or "don't eat me'' signals on cellular surface. An optimal immune response requires a delicate balance between different phenotypic states to regulate neuro-inflammation and facilitate reconstruction after stroke. Here, we examine the literature and discuss the molecular mechanisms and cellular pathways regulating microglial phagocytosis, their resulting effects in brain injury and neural regeneration, as well as the potential therapeutic targets that might modulate microglial phagocytic activity to improve neurological function after stroke.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fajun Wang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ziyu Zhu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16:980722. [PMID: 36052339 PMCID: PMC9426757 DOI: 10.3389/fncel.2022.980722] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains a major cause of long-term disability and mortality worldwide. The immune system plays an important role in determining the condition of the brain following stroke. As the resident innate immune cells of the central nervous system, microglia are the primary responders in a defense network covering the entire brain parenchyma, and exert various functions depending on dynamic communications with neurons, astrocytes, and other neighboring cells under both physiological or pathological conditions. Microglia activation and polarization is crucial for brain damage and repair following ischemic stroke, and is considered a double-edged sword for neurological recovery. Microglia can exist in pro-inflammatory states and promote secondary brain damage, but they can also secrete anti-inflammatory cytokines and neurotrophic factors and facilitate recovery following stroke. In this review, we focus on the role and mechanisms of microglia-mediated neuroinflammation and neuroplasticity after ischemia and relevant potential microglia-based interventions for stroke therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| | - Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| |
Collapse
|
15
|
Liao S, Luo Y, Chunchai T, Singhanat K, Arunsak B, Benjanuwattra J, Apaijai N, Chattipakorn N, Chattipakorn SC. An apoptosis inhibitor suppresses microglial and astrocytic activation after cardiac ischemia/reperfusion injury. Inflamm Res 2022; 71:861-872. [PMID: 35655102 DOI: 10.1007/s00011-022-01590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Microglial hyperactivation and apoptosis were observed following myocardial infarction and ischemia reperfusion (I/R) injury. This study aimed to test the hypothesis that the apoptosis inhibitor, Z-VAD, attenuates microglial and astrocytic hyperactivation and brain inflammation in rats with cardiac I/R injury. MATERIALS AND METHODS Rats were subjected to either sham or cardiac I/R operation (30 min-ischemia followed by 120-min reperfusion), rats in the cardiac I/R group were given either normal saline solution or Z-VAD at 3.3 mg/kg via intravenous injection 15 min prior to cardiac ischemia. Left ventricular ejection fraction (% LVEF) was determined during the cardiac I/R protocol. The brain tissues were removed and used to determine brain apoptosis, brain inflammation, microglial and astrocyte morphology. RESULTS Cardiac dysfunction was observed in rats with cardiac I/R injury as indicated by decreased %LVEF. In the brain, we found brain apoptosis, brain inflammation, microglia hyperactivation, and reactive astrogliosis occurred following cardiac I/R injury. Pretreatment with Z-VAD effectively increased %LVEF, reduced brain apoptosis, attenuated brain inflammation by decreasing IL-1β mRNA levels, suppressed microglial and astrocytic hyperactivation and proliferation after cardiac I/R injury. CONCLUSION Z-VAD exerts neuroprotective effects against cardiac I/R injury not only targeting apoptosis but also microglial and astrocyte activation.
Collapse
Affiliation(s)
- Suchan Liao
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ying Luo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kodchanan Singhanat
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthipong Benjanuwattra
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
Jia J, Yang L, Chen Y, Zheng L, Chen Y, Xu Y, Zhang M. The Role of Microglial Phagocytosis in Ischemic Stroke. Front Immunol 2022; 12:790201. [PMID: 35082781 PMCID: PMC8784388 DOI: 10.3389/fimmu.2021.790201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system that exert diverse roles in the pathogenesis of ischemic stroke. During the past decades, microglial polarization and chemotactic properties have been well-studied, whereas less attention has been paid to phagocytic phenotypes of microglia in stroke. Generally, whether phagocytosis mediated by microglia plays a beneficial or detrimental role in stroke remains controversial, which calls for further investigations. Most researchers are in favor of the former proposal currently since efficient clearance of tissue debris promotes tissue reconstruction and neuronal network reorganization in part. Other scholars propose that excessively activated microglia engulf live or stressed neuronal cells, which results in neurological deficits and brain atrophy. Upon ischemia challenge, the microglia infiltrate injured brain tissue and engulf live/dead neurons, myelin debris, apoptotic cell debris, endothelial cells, and leukocytes. Cell phagocytosis is provoked by the exposure of "eat-me" signals or the loss of "don't eat-me" signals. We supposed that microglial phagocytosis could be initiated by the specific "eat-me" signal and its corresponding receptor on the specific cell type under pathological circumstances. In this review, we will summarize phagocytic characterizations of microglia after stroke and the potential receptors responsible for this programmed biological progress. Understanding these questions precisely may help to develop appropriate phagocytic regulatory molecules, which are promoting self-limiting inflammation without damaging functional cells.
Collapse
Affiliation(s)
- Junqiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lixuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lili Zheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yanting Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Ceanga M, Dahab M, Witte OW, Keiner S. Adult Neurogenesis and Stroke: A Tale of Two Neurogenic Niches. Front Neurosci 2021; 15:700297. [PMID: 34447293 PMCID: PMC8382802 DOI: 10.3389/fnins.2021.700297] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
In the aftermath of an acute stroke, numerous signaling cascades that reshape the brain both in the perilesional zone as well as in more distal regions are activated. Despite continuous improvement in the acute treatment of stroke and the sustained research efforts into the pathophysiology of stroke, we critically lag in our integrated understanding of the delayed and chronic responses to ischemic injury. As such, the beneficial or maladaptive effect of some stroke-induced cellular responses is unclear, restricting the advancement of therapeutic strategies to target long-term complications. A prominent delayed effect of stroke is the robust increase in adult neurogenesis, which raises hopes for a regenerative strategy to counter neurological deficits in stroke survivors. In the adult brain, two regions are known to generate new neurons from endogenous stem cells: the subventricular zone (SVZ) and the dentate subgranular zone (SGZ) of the hippocampus. While both niches respond with an increase in neurogenesis post-stroke, there are significant regional differences in the ensuing stages of survival, migration, and maturation, which may differently influence functional outcome. External interventions such as rehabilitative training add a further layer of complexity by independently modulating the process of adult neurogenesis. In this review we summarize the current knowledge regarding the effects of ischemic stroke on neurogenesis in the SVZ and in the SGZ, and the influence of exogenous stimuli such as motor activity or enriched environment (EE). In addition, we discuss the contribution of SVZ or SGZ post-stroke neurogenesis to sensory, motor and cognitive recovery.
Collapse
Affiliation(s)
- Mihai Ceanga
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mahmoud Dahab
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|