1
|
Mayr L, Neyazi S, Schwark K, Trissal M, Beck A, Labelle J, Eder SK, Weiler-Wichtl L, Marques JG, de Biagi-Junior CAO, Lo Cascio C, Chapman O, Sridhar S, Kenkre R, Dutta A, Wang S, Wang J, Hack O, Nascimento A, Nguyen CM, Castellani S, Rozowsky JS, Groves A, Panditharatna E, Cruzeiro GAV, Haase RD, Tabatabai K, Madlener S, Wadden J, Adam T, Kong S, Miclea M, Patel T, Bruckner K, Senfter D, Lämmerer A, Supko J, Guntner AS, Palova H, Neradil J, Stepien N, Lötsch-Gojo D, Berger W, Leiss U, Rosenmayr V, Dorfer C, Dieckmann K, Peyrl A, Azizi AA, Baumgartner A, Slaby O, Pokorna P, Clark LM, Cameron A, Nguyen QD, Wakimoto H, Dubois F, Greenwald NF, Bandopadhayay P, Beroukhim R, Ligon K, Kramm C, Bronsema A, Bailey S, Stucklin AG, Mueller S, Skrypek M, Martinez N, Bowers DC, Jones DTW, Jones C, Jäger N, Sterba J, Müllauer L, Haberler C, Kumar-Sinha C, Chinnaiyan A, Mody R, Chavez L, Furtner J, Koschmann C, Gojo J, Filbin MG. Effective targeting of PDGFRA-altered high-grade glioma with avapritinib. Cancer Cell 2025; 43:740-756.e8. [PMID: 40086436 DOI: 10.1016/j.ccell.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/27/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
PDGFRA is crucial to tumorigenesis and frequently genomically altered in high-grade glioma (HGG). In a comprehensive dataset of pediatric HGG (n = 261), we detect PDGFRA mutations and/or amplifications in 15% of cases, suggesting PDGFRA as a therapeutic target. We reveal that the PDGFRA/KIT inhibitor avapritinib shows (1) selectivity for PDGFRA inhibition, (2) distinct patterns of subcellular effects, (3) in vitro and in vivo activity in patient-derived HGG models, and (4) effective blood-brain barrier penetration in mice and humans. Furthermore, we report preliminary clinical real-world experience using avapritinib in pediatric and young adult patients with predominantly recurrent/refractory PDGFRA-altered HGG (n = 8). Our early data demonstrate that avapritinib is well tolerated and results in radiographic response in 3/7 cases, suggesting a potential role for avapritinib in the treatment of HGG with specific PDGFRA alterations. Overall, these translational results underscore the therapeutic potential of PDGFRA inhibition with avapritinib in HGG.
Collapse
Affiliation(s)
- Lisa Mayr
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Kallen Schwark
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria Trissal
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Alexander Beck
- Center for Neuropathology and Prion Research, Ludwig Maximilians University Munich, Faculty of Medicine, Muenchen, 80539 Bayern, Germany
| | - Jenna Labelle
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sebastian K Eder
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna and St. Anna Children's Cancer Research Institute (CCRI), 1090 Vienna, Austria
| | - Liesa Weiler-Wichtl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Joana G Marques
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Carlos A O de Biagi-Junior
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Costanza Lo Cascio
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Owen Chapman
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Sunita Sridhar
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Rishaan Kenkre
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Aditi Dutta
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Shanqing Wang
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Jessica Wang
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Olivia Hack
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Cuong M Nguyen
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jacob S Rozowsky
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Groves
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca D Haase
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Kuscha Tabatabai
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Jack Wadden
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tiffany Adam
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Seongbae Kong
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Madeline Miclea
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tirth Patel
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katharina Bruckner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Lämmerer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Jeffrey Supko
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Armin S Guntner
- Institute for Analytical and General Chemistry, Johannes Kepler University, 4040 Linz, Austria
| | - Hana Palova
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Leiss
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Rosenmayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Dieckmann
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicia Baumgartner
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Petra Pokorna
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Louise M Clark
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Frank Dubois
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Noah F Greenwald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cancer Biology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02115, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA 02115, USA
| | - Keith Ligon
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA
| | - Christof Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Annika Bronsema
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Simon Bailey
- Great North Childrens Hospital and Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, NE1 4LP Newcastle, UK
| | - Ana Guerreiro Stucklin
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, 8008 Zurich, Switzerland
| | - Sabine Mueller
- Departments of Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mary Skrypek
- Department of Pediatric Hematology-Oncology, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Nina Martinez
- Department of Neurology & Neurological Surgery, Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel C Bowers
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, SM2 5NG London, UK
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 662630 Brno, Czech Republic
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rajen Mody
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lukas Chavez
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Julia Furtner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; Research Center of Medical Image Analysis and Artificial Intelligence, Danube Private University, 3500 Krems an der Donau, Austria
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Wu SR, Sharpe J, Tolliver J, Groth AJ, Chen R, Guerra García ME, Valentine V, Williams NT, Jacob S, Reitman ZJ. Combining the RCAS/tv-a retrovirus and CRISPR/Cas9 gene editing systems to generate primary mouse models of diffuse midline glioma. Neoplasia 2025; 62:101139. [PMID: 40056601 PMCID: PMC11930108 DOI: 10.1016/j.neo.2025.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025]
Abstract
Diffuse midline gliomas (DMGs) are lethal brain tumors that arise in children and young adults, resulting in a median survival of less than two years. Genetically engineered mouse models (GEMMs) are critical to studying tumorigenesis and tumor-immune interactions, which may inform new treatment approaches. However, current midline glioma GEMM approaches are limited in their ability to multiplex perturbations and/or target specific cell lineages in the brain for genetic manipulation. Here, we combined the RCAS/tv-a avian retrovirus system and CRISPR/Cas9 genetic engineering to drive midline glioma formation in mice. CRISPR/Cas9-based disruption of Trp53, a tumor suppressor that is frequently disrupted in midline gliomas, along with the oncogene PDGF-B resulted in high grade tumor formation with moderate latency (median time to tumor formation of 12 weeks). We confirmed CRISPR-mediated Trp53 disruption using next-generation sequencing (NGS) and immunohistochemistry (IHC). Next, we disrupted multiple midline glioma tumor suppressor genes (Trp53, Pten, Atm, Cdkn2a) in individual mouse brains. These mini-pooled in vivo experiments generated primary midline gliomas with decreased tumor latency (median time to tumor formation of 3.6 weeks, P < 0.0001, log-rank test compared to single-plex gRNA). Quantification of gRNA barcodes and CRISPR editing events revealed that all tumors contained cells with various disruptions of all target genes and suggested a multiclonal origin for the tumors as well as stronger selection for Trp53 disruption compared to disruption of the other genes. This mouse modeling approach will streamline midline glioma research and enable complex experiments to understand tumor evolution and therapeutics.
Collapse
Affiliation(s)
- Sophie R Wu
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Julianne Sharpe
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506, United States
| | - Joshua Tolliver
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Abigail J Groth
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Reid Chen
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - María E Guerra García
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Vennesa Valentine
- Department of Pharmacology, Duke University, Durham, NC 27710, United States
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States
| | - Sheeba Jacob
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024; 34:1044-1055. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Huang C, Chai X, Han Y, Lai K, Ye Y, Xu S. Ascites production and prognosis after ventriculoperitoneal shunt for diffuse midline gliomas in children: A case series. Medicine (Baltimore) 2024; 103:e39977. [PMID: 39465699 PMCID: PMC11460877 DOI: 10.1097/md.0000000000039977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 10/29/2024] Open
Abstract
RATIONALE DMG is a highly invasive and lethal type of brain tumor. As these tumors progress, they often compromise the CSF circulation, leading to hydrocephalus. Ventriculoperitoneal shunt (VPS) is commonly employed to manage hydrocephalus; however, the complication of VPS-induced ascites, particularly in the presence of tumor cells, is a significant concern that merits attention. PATIENT CONCERNS This case series details 3 pediatric patients diagnosed with brainstem DMG harboring the H3 K27M mutation. Each developed hydrocephalus underwent VPS insertion. Post-operatively, all patients developed carcinomatous ascites with tumor cells detected within the ascitic fluid. DIAGNOSES All 3 patients were diagnosed with intra-abdominal metastasis of DMG H3K27M mutant cancer cells, each presenting with distinct complications. INTERVENTIONS Initially, the patients' primary head tumors responded to treatment, and their hydrocephalus resolved. However, some time after discharge, each patient developed malignant ascites and received palliative chemotherapy to control symptoms and improve quality of life. OUTCOMES Despite the interventions, all 3 patients died within 1 month of developing malignant ascites, with central respiratory failure being the direct cause of death. LESSONS These cases underscore the importance of continuous monitoring of both the CSF and ascitic fluid in patients with gliomas. Regular assessments of biochemical composition, cytology, and other diagnostic tests are crucial for early detection of disease progression. This proactive approach facilitates timely clinical judgment and intervention, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Xubin Chai
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Han
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Keyuan Lai
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Yuanyang Ye
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Shaoqiang Xu
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| |
Collapse
|
5
|
Furst LM, Roussel EM, Leung RF, George AM, Best SA, Whittle JR, Firestein R, Faux MC, Eisenstat DD. The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. BIOLOGY 2024; 13:424. [PMID: 38927304 PMCID: PMC11200883 DOI: 10.3390/biology13060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Liam M. Furst
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Enola M. Roussel
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan F. Leung
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Ankita M. George
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Sarah A. Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James R. Whittle
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ron Firestein
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree C. Faux
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia
| | - David D. Eisenstat
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Mandorino M, Maitra A, Armenise D, Baldelli OM, Miciaccia M, Ferorelli S, Perrone MG, Scilimati A. Pediatric Diffuse Midline Glioma H3K27-Altered: From Developmental Origins to Therapeutic Challenges. Cancers (Basel) 2024; 16:1814. [PMID: 38791893 PMCID: PMC11120159 DOI: 10.3390/cancers16101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), now referred to as diffuse midline glioma (DMG), is a highly aggressive pediatric cancer primarily affecting children aged 4 to 9 years old. Despite the research and clinical trials conducted to identify a possible treatment for DIPG, no effective drug is currently available. These tumors often affect deep midline brain structures in young children, suggesting a connection to early brain development's epigenetic regulation targets, possibly affecting neural progenitor functions and differentiation. The H3K27M mutation is a known DIPG trigger, but the exact mechanisms beyond epigenetic regulation remain unclear. After thoroughly examining the available literature, we found that over 85% of DIPG tumors contain a somatic missense mutation, K27M, in genes encoding histone H3.3 and H3.1, leading to abnormal gene expression that drives tumor growth and spread. This mutation impacts crucial brain development processes, including the epithelial-mesenchymal transition (EMT) pathway, and may explain differences between H3K27M and non-K27M pediatric gliomas. Effects on stem cells show increased proliferation and disrupted differentiation. The genomic organization of H3 gene family members in the developing brain has revealed variations in their expression patterns. All these observations suggest a need for global efforts to understand developmental origins and potential treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.M.); (D.A.); (O.M.B.); (M.M.); (S.F.); (M.G.P.)
| |
Collapse
|
7
|
Donev K, Sundararajan V, Johnson D, Balan J, Chambers M, Paulson VA, Scherpelz KP, Abdullaev Z, Quezado M, Cimino PJ, Pratt D, Valerio E, Alves de Castro JV, Carraro DM, Torrezan GT, Wolff BM, Kulikowski LD, Costa FD, Aldape K, Ida CM. Diffuse hemispheric glioma with H3 p.K28M (K27M) mutation: Unusual non-midline presentation of diffuse midline glioma, H3 K27M-altered? J Neuropathol Exp Neurol 2024; 83:357-364. [PMID: 38447592 PMCID: PMC11029465 DOI: 10.1093/jnen/nlae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Diffuse midline glioma, H3 K27-altered (DMG-H3 K27) is an aggressive group of diffuse gliomas that predominantly occurs in pediatric patients, involves midline structures, and displays loss of H3 p.K28me3 (K27me3) expression by immunohistochemistry and characteristic genetic/epigenetic profile. Rare examples of a diffuse glioma with an H3 p.K28M (K27M) mutation and without involvement of the midline structures, so-called "diffuse hemispheric glioma with H3 p.K28M (K27M) mutation" (DHG-H3 K27), have been reported. Herein, we describe 2 additional cases of radiologically confirmed DHG-H3 K27 and summarize previously reported cases. We performed histological, immunohistochemical, molecular, and DNA methylation analysis and provided clinical follow-up in both cases. Overall, DHG-H3 K27 is an unusual group of diffuse gliomas that shows similar clinical, histopathological, genomic, and epigenetic features to DMG-H3 K27 as well as enrichment for activating alterations in MAPK pathway genes. These findings suggest that DHG-H3 K27 is closely related to DMG-H3 K27 and may represent an unusual presentation of DMG-H3 K27 without apparent midline involvement and with frequent MAPK pathway activation. Detailed reports of additional cases with clinical follow-up will be important to expand our understanding of this unusual group of diffuse gliomas and to better define the clinical outcome and how to classify DHG-H3 K27.
Collapse
Affiliation(s)
- Kliment Donev
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Vanitha Sundararajan
- OhioHealth Riverside Methodist Hospital, Columbus, Ohio, USA
- CORPath Pathology Services, Columbus, Ohio, USA
| | - Derek Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Meagan Chambers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, Genetics and Solid Tumor Laboratory, University of Washington, Seattle, Washington, USA
| | - Kathryn P Scherpelz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick J Cimino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ediel Valerio
- Department of Pathology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | | | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo, Brazil
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo, Brazil
| | - Beatriz Martins Wolff
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Felipe D’Almeida Costa
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Dasa Laboratories, Sao Paulo, Brazil
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cristiane M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Fernando D, Ahmed AU, Williams BRG. Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas. Front Oncol 2024; 14:1347694. [PMID: 38525424 PMCID: PMC10957575 DOI: 10.3389/fonc.2024.1347694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system's glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs.
Collapse
Affiliation(s)
- Dasun Fernando
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Bryan R. G. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Furnari FB, Anastasaki C, Bian S, Fine HA, Koga T, Le LQ, Rodriguez FJ, Gutmann DH. Stem cell modeling of nervous system tumors. Dis Model Mech 2024; 17:dmm050533. [PMID: 38353122 PMCID: PMC10886724 DOI: 10.1242/dmm.050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Nervous system tumors, particularly brain tumors, represent the most common tumors in children and one of the most lethal tumors in adults. Despite decades of research, there are few effective therapies for these cancers. Although human nervous system tumor cells and genetically engineered mouse models have served as excellent platforms for drug discovery and preclinical testing, they have limitations with respect to accurately recapitulating important aspects of the pathobiology of spontaneously arising human tumors. For this reason, attention has turned to the deployment of human stem cell engineering involving human embryonic or induced pluripotent stem cells, in which genetic alterations associated with nervous system cancers can be introduced. These stem cells can be used to create self-assembling three-dimensional cerebral organoids that preserve key features of the developing human brain. Moreover, stem cell-engineered lines are amenable to xenotransplantation into mice as a platform to investigate the tumor cell of origin, discover cancer evolutionary trajectories and identify therapeutic vulnerabilities. In this article, we review the current state of human stem cell models of nervous system tumors, discuss their advantages and disadvantages, and provide consensus recommendations for future research.
Collapse
Affiliation(s)
- Frank B Furnari
- Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Bian
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Tongji University, 200070 Shanghai, China
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Mangoli A, Wu S, Liu HQ, Aksu M, Jain V, Foreman BE, Regal JA, Weidenhammer LB, Stewart CE, Guerra Garcia ME, Hocke E, Abramson K, Williams NT, Luo L, Deland K, Attardi L, Abe K, Hashizume R, Ashley DM, Becher OJ, Kirsch DG, Gregory SG, Reitman ZJ. Ataxia-telangiectasia mutated ( Atm ) disruption sensitizes spatially-directed H3.3K27M/TP53 diffuse midline gliomas to radiation therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562892. [PMID: 37904990 PMCID: PMC10614905 DOI: 10.1101/2023.10.18.562892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.
Collapse
|
11
|
Lubanszky E, Hawkins C. Modeling the Landscape of Histone-Mutant Pediatric High-Grade Gliomas: A Study in Partner Alterations. Cancer Discov 2023; 13:1516-1517. [PMID: 37416991 DOI: 10.1158/2159-8290.cd-23-0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
SUMMARY Pediatric high-grade gliomas represent a group of deadly, heterogeneous tumors, often driven by histone mutations and the accumulation of clonal mutations, correlating with different tumor types, locations, and age of onset. In this study, McNicholas and colleagues present 16 in vivo models of histone-driven gliomas to investigate subtype-specific tumor biology and treatment options. See related article by McNicholas et al., p. 1592 (7).
Collapse
Affiliation(s)
- Evan Lubanszky
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
13
|
Foss A, Pathania M. Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. Dev Neurosci 2023; 46:22-43. [PMID: 37231843 DOI: 10.1159/000531040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.
Collapse
Affiliation(s)
- Amelia Foss
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manav Pathania
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Murdaugh RL, Anastas JN. Applying single cell multi-omic analyses to understand treatment resistance in pediatric high grade glioma. Front Pharmacol 2023; 14:1002296. [PMID: 37205910 PMCID: PMC10191214 DOI: 10.3389/fphar.2023.1002296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Despite improvements in cancer patient outcomes seen in the past decade, tumor resistance to therapy remains a major impediment to achieving durable clinical responses. Intratumoral heterogeneity related to genetic, epigenetic, transcriptomic, proteomic, and metabolic differences between individual cancer cells has emerged as a driver of therapeutic resistance. This cell to cell heterogeneity can be assessed using single cell profiling technologies that enable the identification of tumor cell clones that exhibit similar defining features like specific mutations or patterns of DNA methylation. Single cell profiling of tumors before and after treatment can generate new insights into the cancer cell characteristics that confer therapeutic resistance by identifying intrinsically resistant sub-populations that survive treatment and by describing new cellular features that emerge post-treatment due to tumor cell evolution. Integrative, single cell analytical approaches have already proven advantageous in studies characterizing treatment-resistant clones in cancers where pre- and post-treatment patient samples are readily available, such as leukemia. In contrast, little is known about other cancer subtypes like pediatric high grade glioma, a class of heterogeneous, malignant brain tumors in children that rapidly develop resistance to multiple therapeutic modalities, including chemotherapy, immunotherapy, and radiation. Leveraging single cell multi-omic technologies to analyze naïve and therapy-resistant glioma may lead to the discovery of novel strategies to overcome treatment resistance in brain tumors with dismal clinical outcomes. In this review, we explore the potential for single cell multi-omic analyses to reveal mechanisms of glioma resistance to therapy and discuss opportunities to apply these approaches to improve long-term therapeutic response in pediatric high grade glioma and other brain tumors with limited treatment options.
Collapse
Affiliation(s)
- Rebecca L. Murdaugh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jamie N. Anastas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Regal JA, Guerra García ME, Jain V, Chandramohan V, Ashley DM, Gregory SG, Thompson EM, López GY, Reitman ZJ. Ganglioglioma deep transcriptomics reveals primitive neuroectoderm neural precursor-like population. Acta Neuropathol Commun 2023; 11:50. [PMID: 36966348 PMCID: PMC10039537 DOI: 10.1186/s40478-023-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.
Collapse
Affiliation(s)
- Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | | | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Giselle Y López
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Jovanovich N, Habib A, Head J, Hameed F, Agnihotri S, Zinn PO. Pediatric diffuse midline glioma: Understanding the mechanisms and assessing the next generation of personalized therapeutics. Neurooncol Adv 2023; 5:vdad040. [PMID: 37152806 PMCID: PMC10162114 DOI: 10.1093/noajnl/vdad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG) is a pediatric cancer that originates in the midline structures of the brain. Prognosis of DMG patients remains poor due to the infiltrative nature of these tumors and the protection they receive from systemically delivered therapeutics via an intact blood-brain barrier (BBB), making treatment difficult. While the cell of origin remains disputed, it is believed to reside in the ventral pons. Recent research has pointed toward epigenetic dysregulation inducing an OPC-like transcriptomic signature in DMG cells. This epigenetic dysregulation is typically caused by a mutation (K27M) in one of two histone genes-H3F3A or HIST1H3B -and can lead to a differentiation block that increases these cells oncogenic potential. Standard treatment with radiation is not sufficient at overcoming the aggressivity of this cancer and only confers a survival benefit of a few months, and thus, discovery of new therapeutics is of utmost importance. In this review, we discuss the cell of origin of DMGs, as well as the underlying molecular mechanisms that contribute to their aggressivity and resistance to treatment. Additionally, we outline the current standard of care for DMG patients and the potential future therapeutics for this cancer that are currently being tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- Sameer Agnihtroi, PhD, 4401 Penn Avenue, Office 7126, Pittsburgh, PA 15224, USA ()
| | - Pascal O Zinn
- Corresponding Authors: Pascal O. Zinn, MD, PhD, 5150 Centre Ave. Suite 433, Pittsburgh, PA 15232, USA ()
| |
Collapse
|
17
|
Stewart CE, Guerra-García ME, Luo L, Williams NT, Ma Y, Regal JA, Ghosh D, Sansone P, Oldham M, Deland K, Becher OJ, Kirsch DG, Reitman ZJ. The Effect of Atm Loss on Radiosensitivity of a Primary Mouse Model of Pten-Deleted Brainstem Glioma. Cancers (Basel) 2022; 14:4506. [PMID: 36139666 PMCID: PMC9496888 DOI: 10.3390/cancers14184506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse midline gliomas arise in the brainstem and other midline brain structures and cause a large proportion of childhood brain tumor deaths. Radiation therapy is the most effective treatment option, but these tumors ultimately progress. Inhibition of the phosphoinositide-3-kinase (PI3K)-like kinase, ataxia-telangiectasia mutated (ATM), which orchestrates the cellular response to radiation-induced DNA damage, may enhance the efficacy of radiation therapy. Diffuse midline gliomas in the brainstem contain loss-of-function mutations in the tumor suppressor PTEN, or functionally similar alterations in the phosphoinositide-3-kinase (PI3K) pathway, at moderate frequency. Here, we sought to determine if ATM inactivation could radiosensitize a primary mouse model of brainstem glioma driven by Pten loss. Using Cre/loxP recombinase technology and the RCAS/TVA retroviral gene delivery system, we established a mouse model of brainstem glioma driven by Pten deletion. We find that Pten-null brainstem gliomas are relatively radiosensitive at baseline. In addition, we show that deletion of Atm in the tumor cells does not extend survival of mice bearing Pten-null brainstem gliomas after focal brain irradiation. These results characterize a novel primary mouse model of PTEN-mutated brainstem glioma and provide insights into the mechanism of radiosensitization by ATM deletion, which may guide the design of future clinical trials.
Collapse
Affiliation(s)
- Connor E. Stewart
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nerissa T. Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joshua A. Regal
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debosir Ghosh
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Patrick Sansone
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katherine Deland
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Oren J. Becher
- Department of Pediatrics, Mt. Sinai Hospital, New York, NY 10029, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|