1
|
Yu X, Yang T, Wu D, Xu C, Li Z, Sun A, Gao S, Li H, Fan Z, Huang R. PARP14 inhibits microglial activation via NNT to alleviate depressive-like behaviors in mice. Brain Behav Immun 2025; 126:235-246. [PMID: 39978699 DOI: 10.1016/j.bbi.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Microglial inflammation has been implicated in the pathophysiology of major depressive disorder; however, the underlying biological mechanisms remain inadequately understood. Consequently, we conducted a screening of the Poly ADP-ribose (PAR) polymerase (PARP) family expression in the hippocampus of chronic unpredictable stress (CUS) mouse models and investigated the specific role of PARP14 in microglial inflammation and its association with depression. Here, this study demonstrated the elevated PARP14 expression in the hippocampus of CUS mice. The knockdown of PARP14 in the hippocampus did not mitigate depressive-like behaviors in mice, whereas overexpression of PARP14 significantly mitigated these behaviors. Furthermore, PARP14 was abundant in microglia, and microglial-targeted PARP14 overexpression significantly alleviated depressive-behaviors in CUS, reduced microglial activation, and inhibited the central inflammatory responses. Mechanistically, PARP14 positively regulated nicotinamide nucleotide transhydrogenase (NNT) expression in microglia, and the inflammatory response of microglia induced by PARP14 knockdown was suppressed through NNT overexpression. Additionally, deficiency in NNT led to an accumulation of reactive oxygen species (ROS) and subsequent microglial inflammation, which was effectively inhibited by the ROS inhibitor N-Acetylcysteine. These findings suggest that PARP14 alleviates depressive-like behaviors in mice by inhibiting microglial activation via NTT-mediated clearance of ROS.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Tingting Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Di Wu
- Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Chenxue Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhuoran Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Ao Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shulei Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Heng Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Fan
- Deparment of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Rongrong Huang
- Deparment of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Yao J, Deng H, Wang P, Li B, Qin Z. Dynamic changes in lactate-related genes in microglia and their role in immune cell interactions after ischemic stroke. Open Med (Wars) 2025; 20:20251178. [PMID: 40292254 PMCID: PMC12032981 DOI: 10.1515/med-2025-1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives This study aims to elucidate the dynamic changes in lactate-related genes (LRGs) in microglia following ischemic stroke (IS) and their associations with immune cells. Methods We performed differential expression analysis on bulk-sequencing (GSE30655 and GSE35338) and scRNA-seq data (GSE174574) to identify differentially expressed genes. These genes were intersected with lactate genes from MSigDB to identify post-stroke LRGs. We used t-SNE to visualize LRG distribution across cell types and selected microglia for cell-cell communication, pseudo time, and functional enrichment analyses. These findings were integrated with the GSE225948 scRNA-seq dataset to examine LRG trends in the chronic phase of IS. Finally, CIBERSORT was used to explore immune cell infiltration changes and LRG-immune cell associations post-IS. Results Nine LRGs were identified, including Spp1, Per2, Col4a1, Sfxn4, C1qbp, Myc, Apln, Cdo1, and Cav1, with Spp1, C1qbp, and Myc highly expressed in microglia. C1qbp and Myc are crucial in the acute phase, while Spp1 impacts both acute and chronic phases of IS. Microglia subcluster analysis revealed four subclusters (MG0-MG3). Immune cell infiltration analysis showed significant associations between these genes and immune cells. Conclusion In summary, Spp1, C1qbp, and Myc are LRGs that are predominantly expressed in microglia and play regulatory roles in various stages of IS.
Collapse
Affiliation(s)
- Jinzhong Yao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou510000, China
| | - Huan Deng
- Department of Anesthesiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Peng Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou510000, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou510000, China
| |
Collapse
|
3
|
Wang J, Guan Z, Li W, Gong Y, Wang H, Zhou T, Liu J. The role of H3K27 acetylation in oxygen-glucose deprivation-induced spinal cord injury and potential for neuroprotective therapies. Brain Res Bull 2025; 220:111152. [PMID: 39643249 DOI: 10.1016/j.brainresbull.2024.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Spinal cord injury (SCI) is a debilitating condition that often results in paralysis and lifelong medical challenges. Research has shown that epigenetic modifications, particularly histone acetylation, play a role in neuroprotection following hypoxic-ischemic events in SCI. The objective of this study was to explore the effects of histone H3K27 acetylation, along with its underlying mechanisms, on the tolerance to hypoxia and ischemia in SCI. METHODS This study employed an organotypic spinal cord slice culture model subjected to oxygen-glucose deprivation (OGD). We assessed cell apoptosis and changes in cellular type patterns under these conditions. Following hypoxia and ischemia, we analyzed the expression and distribution of H3K27ac across various nerve cell types. To identify key downstream genes, we integrated ChIP-seq and RNA-seq analyses, investigating molecular mechanisms driving the response to OGD in this model. RESULTS OGD stimulation increased cell apoptosis and induced time-dependent changes in the expression patterns of neurons, astrocytes, microglia, and oligodendrocytes in organotypic spinal cord slices, accompanied by a significant reduction in H3K27ac levels. Integrated ChIP-seq and RNA-seq analyses revealed that H3K27ac downregulation under hypoxic and ischemic conditions contributes to spinal cord damage by promoting neuroinflammation and disrupting gene regulation. Furthermore, we identified key downstream targets, including Apoc1, Spp1, Aff1, Brd4, KCNN3, and Rgma, which may represent promising therapeutic targets for SCI. CONCLUSION Our data underscore the pivotal role of H3K27ac in the organotypic spinal cord slice culture model following OGD exposure, offering promising avenues for neuroprotective therapies via epigenetic-immune regulation.
Collapse
Affiliation(s)
- Jing Wang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Zheng Guan
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Weina Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yu Gong
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Heying Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Jingjie Liu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
4
|
Du J, Yin Y, Wu D, Diao C, Zhao T, Peng F, Li N, Wang D, Shi J, Wang L, Kong L, Zhou W, Hao A. SIRT6 modulates lesion microenvironment in LPC induced demyelination by targeting astrocytic CHI3L1. J Neuroinflammation 2024; 21:243. [PMID: 39342313 PMCID: PMC11438192 DOI: 10.1186/s12974-024-03241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Demyelination occurs widely in the central nervous system (CNS) neurodegenerative diseases, especially the multiple sclerosis (MS), which with a complex and inflammatory lesion microenvironment inhibiting remyelination. Sirtuin6 (SIRT6), a histone/protein deacetylase is of interest for its promising effect in transcriptional regulation, cell cycling, inflammation, metabolism and longevity. Here we show that SIRT6 participates in the remyelination process in mice subjected to LPC-induced demyelination. Using pharmacological SIRT6 inhibitor or activator, we found that SIRT6 modulated LPC-induced damage in motor or cognitive function. Inhibition of SIRT6 impaired myelin regeneration, exacerbated neurological deficits, and decreased oligodendrocyte precursor cells (OPCs) proliferation and differentiation, whereas activation of SIRT6 reversed behavioral performance in mice, demonstrating a beneficial effect of SIRT6. Importantly, based on RNA sequencing analysis of the corpus callosum tissues, it was further revealed that SIRT6 took charge in regulation of glial activation during remyelination, and significant alterations in CHI3L1 were obtained, a glycoprotein specifically secreted by astrocytes. Impaired proliferation and differentiation of OPCs could be induced in vitro using supernatants from reactive astrocyte, especially when SIRT6 was inhibited. Mechanistically, SIRT6 regulates the secretion of CHI3L1 from reactive astrocytes by histone-H3-lysine-9 acetylation (H3K9Ac). Adeno-associated virus-overexpression of SIRT6 (AAV-SIRT6-OE) in astrocytes improved remyelination and functional recovery after LPC-induced demyelination, whereas together with AAV-CHI3L1-OE inhibits this therapeutic effect. Collectively, our data elucidate the role of SIRT6 in remyelination and further reveal astrocytic SIRT6/CHI3L1 as the key regulator for improving the remyelination environment, which may be a potential target for MS therapy.
Collapse
Affiliation(s)
- Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yue Yin
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Can Diao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Jiaming Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Liyan Wang
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China.
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders and Intelligent Control, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
6
|
Lu W, Wen J. Crosstalk Among Glial Cells in the Blood-Brain Barrier Injury After Ischemic Stroke. Mol Neurobiol 2024; 61:6161-6174. [PMID: 38279077 DOI: 10.1007/s12035-024-03939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Blood-brain barrier (BBB) is comprised of brain microvascular endothelial cells (ECs), astrocytes, perivascular microglia, pericytes, neuronal processes, and the basal lamina. As a complex and dynamic interface between the blood and the central nervous system (CNS), BBB is responsible for transporting nutrients essential for the normal metabolism of brain cells and hinders many toxic compounds entering into the CNS. The loss of BBB integrity following stroke induces tissue damage, inflammation, edema, and neural dysfunction. Thus, BBB disruption is an important pathophysiological process of acute ischemic stroke. Understanding the mechanism underlying BBB disruption can uncover more promising biological targets for developing treatments for ischemic stroke. Ischemic stroke-induced activation of microglia and astrocytes leads to increased production of inflammatory mediators, containing chemokines, cytokines, matrix metalloproteinases (MMPs), etc., which are important factors in the pathological process of BBB breakdown. In this review, we discussed the current knowledges about the vital and dual roles of astrocytes and microglia on the BBB breakdown during ischemic stroke. Specifically, we provided an updated overview of phenotypic transformation of microglia and astrocytes, as well as uncovered the crosstalk among astrocyte, microglia, and oligodendrocyte in the BBB disruption following ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol 2024; 15:1389697. [PMID: 38784908 PMCID: PMC11111935 DOI: 10.3389/fneur.2024.1389697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated condition that persistently harms the central nervous system. While existing treatments can slow its course, a cure remains elusive. Stem cell therapy has gained attention as a promising approach, offering new perspectives with its regenerative and immunomodulatory properties. This article reviews the application of stem cells in MS, encompassing various stem cell types, therapeutic potential mechanisms, preclinical explorations, clinical research advancements, safety profiles of clinical applications, as well as limitations and challenges, aiming to provide new insights into the treatment research for MS.
Collapse
Affiliation(s)
- Lei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Tianye Lan
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hanying Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang Peng
- Hunan Provincial People's Hospital, Changsha, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Obenaus A, Noarbe BP, Lee JB, Panchenko PE, Noarbe SD, Lee YC, Badaut J. Progressive lifespan modifications in the corpus callosum following a single juvenile concussion in male mice monitored by diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572925. [PMID: 38187748 PMCID: PMC10769374 DOI: 10.1101/2023.12.21.572925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction The sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi. For the first time, we assess corpus callosum (CC) integrity across the lifespan after a single juvenile concussion utilizing diffusion MRI (dMRI). Methods C57Bl/6 mice were exposed to sham or two severities of closed-head concussion (Grade 1, G1, speed 2 m/sec, depth 1mm; Grade 2, G2, 3m/sec, 3mm) using an electromagnetic impactor at postnatal day 17. In vivo diffusion tensor imaging was conducted at 1, 3, 6, 12 and 18 mpi (21 directions, b=2000 mm2/sec) and processed for dMRI parametric maps: fractional anisotropy (FA), axial (AxD), radial (RD) and mean diffusivity (MD). Whole CC and regional CC data were extracted. To identify the biological basis of altered dMRI metrics, astrocyte and microglia in the CC were characterized at 1 and 12 mpi by immunohistochemistry. Results Whole CC analysis revealed altered FA and RD trajectories following juvenile concussion. Shams exhibited a temporally linear increase in FA with age while G1/G2 mice had plateaued FA values. G2 concussed mice exhibited high variance of dMRI metrics at 12mpi, which was attributed to the heterogeneity of TBI on the anterior CC. Regional analysis of dMRI metrics at the impact site unveiled significant differences between G2 and sham mice. The dMRI findings appear to be driven, in part, by loss of astrocyte process lengths and increased circularity and decreased cell span ratios in microglia. Conclusion For the first time, we demonstrate progressive perturbations to WM of male mice after a single juvenile concussion across the mouse lifespan. The CC alterations were dependent on concussion severity with elevated sensitivity in the anterior CC that was related to astrocyte and microglial morphology. Our findings suggest that long-term monitoring of children with juvenile concussive episodes using dMRI is warranted, focusing on vulnerable WM tracts.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jeong Bin Lee
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, US
| | | | - Sean D. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yu Chiao Lee
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|