1
|
Kim GS, Chandio BQ, Benavidez SM, Feng Y, Thompson PM, Lawrence KE. Mapping Along-Tract White Matter Microstructural Differences in Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644498. [PMID: 40196471 PMCID: PMC11974747 DOI: 10.1101/2025.03.21.644498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previous diffusion magnetic resonance imaging (dMRI) research has indicated altered white matter microstructure in autism, but the implicated regions are highly inconsistent across studies. Such prior work has largely used conventional dMRI analysis methods, including the traditional microstructure model, based on diffusion tensor imaging (DTI). However, these methods are limited in their ability to precisely map microstructural differences and accurately resolve complex fiber configurations. In our study, we investigated white matter microstructure alterations in autism using the refined along-tract analytic approach, BUndle ANalytics (BUAN), and an advanced microstructure model, the tensor distribution function (TDF). We analyzed dMRI data from 365 autistic and neurotypical participants (5-24 years; 34% female) from 10 cohorts to examine commissural and association tracts. Autism was associated with lower fractional anisotropy and higher diffusivity in localized portions of nearly every commissural and association tract examined; these tracts inter-connected a wide range of brain regions, including frontal, temporal, parietal, and occipital. Taken together, BUAN and TDF allow robust and spatially precise mapping of microstructural properties in autism. Our findings rigorously demonstrate that white matter microstructure alterations in autism may be greater within specific regions of individual tracts, and that the implicated tracts are distributed across the brain.
Collapse
Affiliation(s)
- Gaon S Kim
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Sebastian M Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| |
Collapse
|
2
|
Sakakura K, Pertsch N, Mueller J, Borghei A, Rubert N, Sani S. Technical Feasibility of Delineating the Thalamic Gustatory Tract Using Tractography. Neurosurgery 2025; 96:454-462. [PMID: 39471091 DOI: 10.1227/neu.0000000000003227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/01/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Magnetic resonance-guided focused ultrasound (MRgFUS) has been increasingly performed in recent years as a minimally invasive treatment of essential tremor and tremor-dominant Parkinson disease. One of the side effects after treatment is dysgeusia. Some centers use tractography to facilitate the treatment planning. However, there have been no reports of identifying gustatory tracts so far. Our aim was to investigate the technical feasibility of isolating and visualizing the gustatory tracts, as well as to explore the relationship between the gustatory tract and the MRgFUS lesion using actual patient data. METHODS We used 20 randomly selected individuals from the Human Connectome Project database to perform tractography of the gustatory tracts. We defined region of interest as the dorsal region of the brainstem, Brodmann area 43 associated with taste perception, and a sphere with a 3-mm radius centered around the ventral intermediate nucleus in the anterior commissure-posterior commissure plane. We also examined the position of the gustatory tract in relation with other tracts, including the medial lemniscus, the pyramidal tract, and the dentatorubrothalamic tract. In addition, using the data of real patients with essential tremor, we investigated the distance between MRgFUS lesions and the gustatory tract and its association with the development of dysgeusia. RESULTS We delineated a mean of 15 streamlines of the gustatory tracts per subject in each hemisphere. There was no statistical difference in the localization of the gustatory tracts between the left and right cerebral hemispheres. The gustatory tract was located anteromedial to the medial lemniscus and posteromedial to the dentatorubrothalamic tract in the anterior commissure-posterior commissure plane. The distance from the MRgFUS lesion to the gustatory tract was significantly shorter in the case where dysgeusia occurred compared with nondysgeusia cases ( P -value: .0068). CONCLUSION The thalamic gustatory tracts can be reliably visualized using tractography.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba , Japan
| | - Nathan Pertsch
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Julia Mueller
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Alireza Borghei
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| | - Nicholas Rubert
- Department of Radiology, Rush University Medical Center, Chicago , Illinois , USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago , Illinois , USA
| |
Collapse
|
3
|
Al-Juboori AA, Badran SA, Sulaiman II, Shahadha AA, Alsamok AS, Al-Badri SG, Al-Taie RH, Ismail M. Clinical implications of sagittal stratum damage: Laterality, neuroanatomical developmental considerations, and functional outcomes. Surg Neurol Int 2025; 16:4. [PMID: 39926445 PMCID: PMC11799695 DOI: 10.25259/sni_955_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 02/11/2025] Open
Abstract
Background The sagittal stratum (SS) is an important white matter (WM) structure that provides the anatomic substrate for cortico-cortical and cortico-subcortical axial interconnections necessary to overcome sensory, cognitive and motor processes. SS damage due to diseases or surgical lesions often results in significant functional losses, mainly involving serious language, visual processing, and cognitive deficits. These risks are maximized in older adults because of age-related WM degeneration. Methods In this comprehensive review, the research aims to synthesize research conducted on anatomy-functional roles that concern the SS, damage, and surgical outcomes. This would then separate studies that employed high neuroimaging advanced techniques, such as diffusion tensor imaging, combined with intraoperative mapping performed during awake surgery. Key attention areas will, therefore, be trajectories pointing toward lateralization of the SS tracts, age-related vulnerabilities, and the effectiveness of surgical strategies in preserving SS integrity. Results The review indicates that the pattern of SS damage is associated with lateralized deficits stemming from left-sided lesions, while language and vision are affected by right-sided. Older adults, already bearing significant WM degeneration, therefore, stand at a significantly greater risk of overall cognitive decline from compounding losses due to SS damage. However, advanced neuroimaging tools and refined surgical techniques have made the preservation of SS pathways much more effective, reducing long-term deficits. Conclusion Intraoperative preservation of SS integrity is crucial for the reduction of functional deficits and enhancement of the outcomes. Customized surgical techniques that consider tract lateralization and age-related changes are required. Further research in this area is needed.
Collapse
Affiliation(s)
| | - Saif Anmar Badran
- Department of Surgery, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| | | | - Ali Akram Shahadha
- Department of Neurosurgery, Dr. Sa’ad AL-Witri Hospital for Neurosciences, Baghdad, Iraq
| | - Ali Sabah Alsamok
- Department of Neurosurgery, Dr. Sa’ad AL-Witri Hospital for Neurosciences, Baghdad, Iraq
| | - Sajjad G. Al-Badri
- Department of Surgery, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Rania H. Al-Taie
- Department of Surgery, University of Mustansiriyah, College of Medicine, Baghdad, Iraq
| | - Mustafa Ismail
- Department of Surgery, Baghdad Teaching Hospital, Baghdad, Iraq
| |
Collapse
|
4
|
Trettenbrein PC, Friederici AD. Functional and structural brain asymmetries in language processing. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:269-287. [PMID: 40074402 DOI: 10.1016/b978-0-443-15646-5.00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The lateralization of language to the left hemisphere of the human brain constitutes one of the classic examples of asymmetry in biology. At the same time, it is also commonly understood that damage to the left hemisphere does not lead to a complete loss of all linguistic abilities. These seemingly contradictory findings indicate that neither our cognitive capacity for language nor its neural substrates are monolithic. This chapter reviews the functional and structural lateralization of the neural substrates of different aspects of language as revealed in the past decades by neuroimaging research. Most aspects of language processing indeed tend to be functionally lateralized to the left hemisphere in the adult human brain. Nevertheless, both hemispheres exhibit a certain equipotentiality with regard to some aspects of language processing, especially with regard to processing meaning and sound. In contrast, the so-called "core language network" in the left hemisphere constitutes a functional and structural asymmetry: This network (i) is crucial for a core aspect of language processing, namely syntax, which refers to the generation of hierarchically structured representations of utterances linking meaning and sound, (ii) matures in accordance with a genetically determined biologic matrix, and (iii) its emergence may have constituted a prerequisite for the evolution of the human language capacity.
Collapse
Affiliation(s)
- Patrick C Trettenbrein
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Structure, Function, and Plasticity (IMPRS NeuroCom), Leipzig, Germany; Experimental Sign Language Laboratory (SignLab), Department of German Philology, University of Göttingen, Göttingen, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
5
|
Zhao J, Zhao Y, Song Z, Liu J, Thiebaut de Schotten M, Ramus F. A decade of white matter connectivity studies in developmental dyslexia. PSYCHORADIOLOGY 2024; 4:kkae029. [PMID: 39802423 PMCID: PMC11718513 DOI: 10.1093/psyrad/kkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Affiliation(s)
- Jingjing Zhao
- Department of Psychology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yueye Zhao
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Zujun Song
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Jianyi Liu
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Michel Thiebaut de Schotten
- Institut des Maladies Neurodégénératives-UMR5293, CNRS, CEA, University of Bordeaux, Bordeaux 33000, France
- Brain Connectivity and Behavior Laboratory, Paris 75013, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris 75005, France
| |
Collapse
|
6
|
Ekerdt C, Menks WM, Fernández G, McQueen JM, Takashima A, Janzen G. White matter connectivity linked to novel word learning in children. Brain Struct Funct 2024; 229:2461-2477. [PMID: 39325144 PMCID: PMC11612013 DOI: 10.1007/s00429-024-02857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Children and adults are excellent word learners. Increasing evidence suggests that the neural mechanisms that allow us to learn words change with age. In a recent fMRI study from our group, several brain regions exhibited age-related differences when accessing newly learned words in a second language (L2; Takashima et al. Dev Cogn Neurosci 37, 2019). Namely, while the Teen group (aged 14-16 years) activated more left frontal and parietal regions, the Young group (aged 8-10 years) activated right frontal and parietal regions. In the current study we analyzed the structural connectivity data from the aforementioned study, examining the white matter connectivity of the regions that showed age-related functional activation differences. Age group differences in streamline density as well as correlations with L2 word learning success and their interaction were examined. The Teen group showed stronger connectivity than the Young group in the right arcuate fasciculus (AF). Furthermore, white matter connectivity and memory for L2 words across the two age groups correlated in the left AF and the right anterior thalamic radiation (ATR) such that higher connectivity in the left AF and lower connectivity in the right ATR was related to better memory for L2 words. Additionally, connectivity in the area of the right AF that exhibited age-related differences predicted word learning success. The finding that across the two age groups, stronger connectivity is related to better memory for words lends further support to the hypothesis that the prolonged maturation of the prefrontal cortex, here in the form of structural connectivity, plays an important role in the development of memory.
Collapse
Affiliation(s)
- Clara Ekerdt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Willeke M Menks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - James M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Atsuko Takashima
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gabriele Janzen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Centre, Nijmegen, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Cui AX, Kraeutner SN, Kepinska O, Motamed Yeganeh N, Hermiston N, Werker JF, Boyd LA. Musical Sophistication and Multilingualism: Effects on Arcuate Fasciculus Characteristics. Hum Brain Mapp 2024; 45:e70035. [PMID: 39360580 PMCID: PMC11447524 DOI: 10.1002/hbm.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The processing of auditory stimuli which are structured in time is thought to involve the arcuate fasciculus, the white matter tract which connects the temporal cortex and the inferior frontal gyrus. Research has indicated effects of both musical and language experience on the structural characteristics of the arcuate fasciculus. Here, we investigated in a sample of n = 84 young adults whether continuous conceptualizations of musical and multilingual experience related to structural characteristics of the arcuate fasciculus, measured using diffusion tensor imaging. Probabilistic tractography was used to identify the dorsal and ventral parts of the white matter tract. Linear regressions indicated that different aspects of musical sophistication related to the arcuate fasciculus' volume (emotional engagement with music), volumetric asymmetry (musical training and music perceptual abilities), and fractional anisotropy (music perceptual abilities). Our conceptualization of multilingual experience, accounting for participants' proficiency in reading, writing, understanding, and speaking different languages, was not related to the structural characteristics of the arcuate fasciculus. We discuss our results in the context of other research on hemispheric specializations and a dual-stream model of auditory processing.
Collapse
Affiliation(s)
- Anja-Xiaoxing Cui
- Department of Musicology, University of Vienna, Vienna, Austria
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Sarah N Kraeutner
- Department of Psychology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Olga Kepinska
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Negin Motamed Yeganeh
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Hermiston
- School of Music, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Seidel K, Wermelinger J, Alvarez-Abut P, Deletis V, Raabe A, Zhang D, Schucht P. Cortico-cortical evoked potentials of language tracts in minimally invasive glioma surgery guided by Penfield stimulation. Clin Neurophysiol 2024; 161:256-267. [PMID: 38521679 DOI: 10.1016/j.clinph.2023.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/19/2023] [Accepted: 12/23/2023] [Indexed: 03/25/2024]
Abstract
OBJECTIVE We investigated the feasibility of recording cortico-cortical evoked potentials (CCEPs) in patients with low- and high-grade glioma. We compared CCEPs during awake and asleep surgery, as well as those stimulated from the functional Broca area and recorded from the functional Wernicke area (BtW), and vice versa (WtB). We also analyzed CCEP properties according to tumor location, histopathology, and aphasia. METHODS We included 20 patients who underwent minimally invasive surgery in an asleep-awake-asleep setting. Strip electrode placement was guided by classical Penfield stimulation of positive language sites and fiber tracking of the arcuate fascicle. CCEPs were elicited with alternating monophasic single pulses of 1.1 Hz frequency and recorded as averaged signals. Intraoperatively, there was no post-processing of the signal. RESULTS Ninety-seven CCEPs from 19 patients were analyzed. There was no significant difference in CCEP properties when comparing awake versus asleep, nor BtW versus WtB. CCEP amplitude and latency were affected by tumor location and histopathology. CCEP features after tumor resection correlated with short- and long-term postoperative aphasia. CONCLUSION CCEP recordings are feasible during minimally invasive surgery. CCEPs might be surrogate markers for altered connectivity of the language tracts. SIGNIFICANCE This study may guide the incorporation of CCEPs into intraoperative neurophysiological monitoring.
Collapse
Affiliation(s)
- Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Jonathan Wermelinger
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pablo Alvarez-Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vedran Deletis
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia; Albert Einstein College of Medicine, New York, NY, USA
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Zhang
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Eichner C, Berger P, Klein CC, Friederici AD. Lateralization of dorsal fiber tract targeting Broca's area concurs with language skills during development. Prog Neurobiol 2024; 236:102602. [PMID: 38582324 DOI: 10.1016/j.pneurobio.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/26/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Language is bounded to the left hemisphere in the adult brain and the functional lateralization can already be observed early during development. Here we investigate whether this is paralleled by a lateralization of the white matter structural language network. We analyze the strength and microstructural properties of language-related fiber tracts connecting temporal and frontal cortices with a separation of two dorsal tracts, one targeting the posterior Broca's area (BA44) and one targeting the precentral gyrus (BA6). In a large sample of young children (3-6 years), we demonstrate that, in contrast to the BA6-targeting tract, the microstructural asymmetry of the BA44-targeting fiber tract significantly correlates locally with different aspects of development. While the asymmetry in its anterior segment reflects age, the asymmetry in its posterior segment is associated with the children's language skills. These findings demonstrate a fine-grained structure-to-function mapping in the lateralized network and go beyond our current view of language-related human brain maturation.
Collapse
Affiliation(s)
- Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Philipp Berger
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Cheslie C Klein
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| |
Collapse
|
10
|
Economou M, Bempt FV, Van Herck S, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Myelin plasticity during early literacy training in at-risk pre-readers. Cortex 2023; 167:86-100. [PMID: 37542803 DOI: 10.1016/j.cortex.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 08/07/2023]
Abstract
A growing body of neuroimaging evidence shows that white matter can change as a result of experience and structured learning. Although the majority of previous work has used diffusion MRI to characterize such changes in white matter, diffusion metrics offer limited biological specificity about which microstructural features may be driving white matter plasticity. Recent advances in myelin-specific MRI techniques offer a promising opportunity to assess the specific contribution of myelin in learning-related plasticity. Here we describe the application of such an approach to examine structural plasticity during an early intervention in preliterate children at risk for dyslexia. To this end, myelin water imaging data were collected before and after a 12-week period in (1) at-risk children following early literacy training (n = 13-24), (2) at-risk children engaging with other non-literacy games (n = 10-17) and (3) children without a risk receiving no training (n = 11-22). Before the training, regional risk-related differences were identified, showing higher myelin water fraction (MWF) in right dorsal white matter in at-risk children compared to the typical control group. Concerning intervention-specific effects, our results revealed an increase across left-hemispheric and right ventral MWF over the course of training in the at-risk children receiving early literacy training, but not in the at-risk active control group or the no-risk typical control group. Overall, our results provide support for the use of myelin water imaging as a sensitive tool to investigate white matter and offer a first indication of myelin plasticity in young children at the onset of literacy acquisition.
Collapse
Affiliation(s)
- Maria Economou
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Shauni Van Herck
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium
| | - Jolijn Vanderauwera
- Psychological Sciences Research Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; KU Leuven Child and Youth Institute, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Sondergaard RE, Rockel CP, Cortese F, Pike GB, Kiss ZHT, Martino D. Asymmetry of the Dentato-Rubro-Thalamic Tracts in Cervical Dystonia. Mov Disord 2023; 38:1970-1972. [PMID: 37658644 DOI: 10.1002/mds.29594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Affiliation(s)
- Rachel E Sondergaard
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Conrad P Rockel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Neuroimaging Research Unit, Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Neophytou K, Wiley R, Litovsky C, Tsapkini K, Rapp B. The right hemisphere's capacity for language: evidence from primary progressive aphasia. Cereb Cortex 2023; 33:9971-9985. [PMID: 37522277 PMCID: PMC10502784 DOI: 10.1093/cercor/bhad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
The role of the right hemisphere (RH) in core language processes is still a matter of intense debate. Most of the relevant evidence has come from studies of gray matter, with relatively little research on RH white matter (WM) connectivity. Using Diffusion Tensor Imaging-based tractography, the current work examined the role of the two hemispheres in language processing in 33 individuals with Primary Progressive Aphasia (PPA), aiming to better characterize the contribution of the RH to language processing in the context of left hemisphere (LH) damage. The findings confirm the impact of PPA on the integrity of the WM language tracts in the LH. Additionally, an examination of the relationship between tract integrity and language behaviors provides robust evidence of the involvement of the WM language tracts of both hemispheres in language processing in PPA. Importantly, this study provides novel evidence of a unique contribution of the RH to language processing (i.e. a contribution independent from that of the language-dominant LH). Finally, we provide evidence that the RH contribution is specific to language processing rather than being domain general. These findings allow us to better characterize the role of RH in language processing, particularly in the context of LH damage.
Collapse
Affiliation(s)
- Kyriaki Neophytou
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Robert Wiley
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Celia Litovsky
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Shams B, Reisch K, Vajkoczy P, Lippert C, Picht T, Fekonja LS. Improved prediction of glioma-related aphasia by diffusion MRI metrics, machine learning, and automated fiber bundle segmentation. Hum Brain Mapp 2023. [PMID: 37318944 PMCID: PMC10365236 DOI: 10.1002/hbm.26393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.
Collapse
Affiliation(s)
- Boshra Shams
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Klara Reisch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam, Digital Engineering Faculty, Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
14
|
Ostertag C, Reynolds JE, Kar P, Dewey D, Gibbard WB, Tortorelli C, Lebel C. Arcuate fasciculus and pre-reading language development in children with prenatal alcohol exposure. Front Neurosci 2023; 17:1174165. [PMID: 37332878 PMCID: PMC10272404 DOI: 10.3389/fnins.2023.1174165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Prenatal alcohol exposure (PAE) contributes to widespread neurodevelopmental challenges, including reading, and has been associated with altered white matter. Here, we aimed to investigate whether arcuate fasciculus (AF) development is associated with pre-reading language skills in young children with PAE. Methods A total of 51 children with confirmed PAE (25 males; 5.6 ± 1.1 years) and 116 unexposed controls (57 males; 4.6 ± 1.2 years) underwent longitudinal diffusion tensor imaging (DTI), for a total of 111 scans from participants with PAE and 381 scans in the unexposed control group. We delineated the left and right AF and extracted mean fractional anisotropy (FA) and mean diffusivity (MD). Pre-reading language ability was assessed using age-standardized phonological processing (PP) and speeded naming (SN) scores of the NEPSY-II. Linear mixed effects models were run to determine the relationship between diffusion metrics and age, group, sex, and age-by-group interactions, with subject modeled as a random factor. A secondary mixed effect model analysis assessed the influence of white matter microstructure and PAE on pre-reading language ability using diffusion metric-by-age-by-group interactions, with 51 age- and sex-matched unexposed controls. Results Phonological processing (PP) and SN scores were significantly lower in the PAE group (p < 0.001). In the right AF, there were significant age-by-group interactions for FA (p < 0.001) and MD (p = 0.0173). In the left AF, there was a nominally significant age-by-group interaction for MD that failed to survive correction (p = 0.0418). For the pre-reading analysis, a significant diffusion-by-age-by-group interaction was found for left FA (p = 0.0029) in predicting SN scores, and for the right FA (p = 0.00691) in predicting PP scores. Discussion Children with PAE showed altered developmental trajectories for the AF, compared with unexposed controls. Children with PAE, regardless of age, showed altered brain-language relationships that resembled those seen in younger typically developing children. Our findings support the contention that altered developmental trajectories in the AF may be associated with functional outcomes in young children with PAE.
Collapse
Affiliation(s)
- Curtis Ostertag
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E. Reynolds
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Preeti Kar
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - W. Ben Gibbard
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | | | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Olivé G, Peñaloza C, Vaquero L, Laine M, Martin N, Rodriguez-Fornells A. The right uncinate fasciculus supports verbal short-term memory in aphasia. Brain Struct Funct 2023; 228:875-893. [PMID: 37005932 PMCID: PMC10147778 DOI: 10.1007/s00429-023-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/05/2023] [Indexed: 04/04/2023]
Abstract
Verbal short-term memory (STM) deficits are associated with language processing impairments in people with aphasia. Importantly, the integrity of STM can predict word learning ability and anomia therapy gains in aphasia. While the recruitment of perilesional and contralesional homologous brain regions has been proposed as a possible mechanism for aphasia recovery, little is known about the white-matter pathways that support verbal STM in post-stroke aphasia. Here, we investigated the relationships between the language-related white matter tracts and verbal STM ability in aphasia. Nineteen participants with post-stroke chronic aphasia completed a subset of verbal STM subtests of the TALSA battery including nonword repetition (phonological STM), pointing span (lexical-semantic STM without language output) and repetition span tasks (lexical-semantic STM with language output). Using a manual deterministic tractography approach, we investigated the micro- and macrostructural properties of the structural language network. Next, we assessed the relationships between individually extracted tract values and verbal STM scores. We found significant correlations between volume measures of the right Uncinate Fasciculus and all three verbal STM scores, with the association between the right UF volume and nonword repetition being the strongest one. These findings suggest that the integrity of the right UF is associated with phonological and lexical-semantic verbal STM ability in aphasia and highlight the potential compensatory role of right-sided ventral white matter language tracts in supporting verbal STM after aphasia-inducing left hemisphere insult.
Collapse
Affiliation(s)
- Guillem Olivé
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Claudia Peñaloza
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Lucía Vaquero
- Legal Medicine, Psychiatry and Pathology Department, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Nadine Martin
- Department of Communication Sciences and Disorders, Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA
| | - Antoni Rodriguez-Fornells
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
17
|
Kumpulainen V, Merisaari H, Silver E, Copeland A, Pulli EP, Lewis JD, Saukko E, Shulist SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Sex differences, asymmetry, and age-related white matter development in infants and 5-year-olds as assessed with tract-based spatial statistics. Hum Brain Mapp 2023; 44:2712-2725. [PMID: 36946076 PMCID: PMC10089102 DOI: 10.1002/hbm.26238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
The rapid white matter (WM) maturation of first years of life is followed by slower yet long-lasting development, accompanied by learning of more elaborate skills. By the age of 5 years, behavioural and cognitive differences between females and males, and functions associated with brain lateralization such as language skills are appearing. Diffusion tensor imaging (DTI) can be used to quantify fractional anisotropy (FA) within the WM and increasing values correspond to advancing brain development. To investigate the normal features of WM development during early childhood, we gathered a DTI data set of 166 healthy infants (mean 3.8 wk, range 2-5 wk; 89 males; born on gestational week 36 or later) and 144 healthy children (mean 5.4 years, range 5.1-5.8 years; 76 males). The sex differences, lateralization patterns and age-dependent changes were examined using tract-based spatial statistics (TBSS). In 5-year-olds, females showed higher FA in wide-spread regions in the posterior and the temporal WM and more so in the right hemisphere, while sex differences were not detected in infants. Gestational age showed stronger association with FA values compared to age after birth in infants. Additionally, child age at scan associated positively with FA around the age of 5 years in the body of corpus callosum, the connections of which are important especially for sensory and motor functions. Lastly, asymmetry of WM microstructure was detected already in infants, yet significant changes in lateralization pattern seem to occur during early childhood, and in 5-year-olds the pattern already resembles adult-like WM asymmetry.
Collapse
Affiliation(s)
- Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Elmo P Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Satu J Shulist
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital and University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital & University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital & University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital & University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Huber E, Corrigan NM, Yarnykh VL, Ferjan Ramírez N, Kuhl PK. Language Experience during Infancy Predicts White Matter Myelination at Age 2 Years. J Neurosci 2023; 43:1590-1599. [PMID: 36746626 PMCID: PMC10008053 DOI: 10.1523/jneurosci.1043-22.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed the effects of parental language input and parent-infant interactions on early brain development. We examined the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6, 10, 14, 18, and 24 months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years (mean = 26.30 months, SD = 1.62, N = 22). Analysis of the white matter focused on dorsal pathways associated with expressive language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Frequency of parent-infant conversational turns (CT) uniquely predicted myelin density estimates in both the AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production. An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specificity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6 months of age, as well as an ongoing effect over infancy. Together, these results link parent-infant conversational turns to white matter myelination at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white matter associated with long-term language ability.SIGNIFICANCE STATEMENT Children's earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest that intervention can increase the quality of parental language input and improve children's learning outcomes. However, important questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience and brain development. We report that parent-infant turn-taking during home language interactions correlates with myelination of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocalizations and evident starting at 6 months of age, suggesting that structured language interactions throughout infancy may uniquely support the ongoing development of brain systems critical to long-term language ability.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Naja Ferjan Ramírez
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Linguistics, University of Washington, Seattle, Washington 98195
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
19
|
Craig BT, Geeraert B, Kinney-Lang E, Hilderley AJ, Yeates KO, Kirton A, Noel M, MacMaster FP, Bray S, Barlow KM, Brooks BL, Lebel C, Carlson HL. Structural brain network lateralization across childhood and adolescence. Hum Brain Mapp 2023; 44:1711-1724. [PMID: 36478489 PMCID: PMC9921220 DOI: 10.1002/hbm.26169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental lateralization of brain function is imperative for behavioral specialization, yet few studies have investigated differences between hemispheres in structural connectivity patterns, especially over the course of development. The present study compares the lateralization of structural connectivity patterns, or topology, across children, adolescents, and young adults. We applied a graph theory approach to quantify key topological metrics in each hemisphere including efficiency of information transfer between regions (global efficiency), clustering of connections between regions (clustering coefficient [CC]), presence of hub-nodes (betweenness centrality [BC]), and connectivity between nodes of high and low complexity (hierarchical complexity [HC]) and investigated changes in these metrics during development. Further, we investigated BC and CC in seven functionally defined networks. Our cross-sectional study consisted of 211 participants between the ages of 6 and 21 years with 93% being right-handed and 51% female. Global efficiency, HC, and CC demonstrated a leftward lateralization, compared to a rightward lateralization of BC. The sensorimotor, default mode, salience, and language networks showed a leftward asymmetry of CC. BC was only lateralized in the salience (right lateralized) and dorsal attention (left lateralized) networks. Only a small number of metrics were associated with age, suggesting that topological organization may stay relatively constant throughout school-age development, despite known underlying changes in white matter properties. Unlike many other imaging biomarkers of brain development, our study suggests topological lateralization is consistent across age, highlighting potential nonlinear mechanisms underlying developmental specialization.
Collapse
Affiliation(s)
- Brandon T Craig
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Bryce Geeraert
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Eli Kinney-Lang
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Alicia J Hilderley
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Keith O Yeates
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Frank P MacMaster
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Strategic Clinical Network for Addictions and Mental Health, Alberta Health Services, Calgary, Alberta, Canada
| | - Signe Bray
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen M Barlow
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian L Brooks
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Helen L Carlson
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Davison KE, Zuk J, Mullin LJ, Ozernov-Palchik O, Norton E, Gabrieli JDE, Yu X, Gaab N. Examining Shared Reading and White Matter Organization in Kindergarten in Relation to Subsequent Language and Reading Abilities: A Longitudinal Investigation. J Cogn Neurosci 2023; 35:259-275. [PMID: 36378907 PMCID: PMC9884137 DOI: 10.1162/jocn_a_01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parent-child language interaction in early childhood carries long-term implications for children's language and reading development. Conversational interaction, in particular, has been linked to white matter organization of neural pathways critical for language and reading. However, shared book reading serves an important role for language interaction as it exposes children to sophisticated vocabulary and syntax. Despite this, it remains unclear whether shared reading also relates to white matter characteristics subserving language and reading development. If so, to what extent do these environmentally associated changes in white matter organization relate to subsequent reading outcomes? This longitudinal study examined shared reading and white matter organization in kindergarten in relation to subsequent language and reading outcomes among 77 typically developing children. Findings reveal positive associations between the number of hours children are read to weekly (shared reading time) and the fractional anisotropy of the left arcuate fasciculus, as well as left lateralization of the superior longitudinal fasciculus (SLF). Furthermore, left lateralization of the SLF in these kindergarteners is associated with subsequent reading abilities in second grade. Mediation analyses reveal that left lateralization of the SLF fully mediates the relationship between shared reading time and second-grade reading abilities. Results are significant when controlling for age and socioeconomic status. This is the first evidence demonstrating how white matter structure, in relation to shared reading in kindergarten, is associated with school-age reading outcomes. Results illuminate shared reading as a key proxy for the home language and literacy environment and further our understanding of how language interaction may support neurocognitive development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University
| | | |
Collapse
|
21
|
Stammen C, Fraenz C, Grazioplene RG, Schlüter C, Merhof V, Johnson W, Güntürkün O, DeYoung CG, Genç E. Robust associations between white matter microstructure and general intelligence. Cereb Cortex 2023:6994402. [PMID: 36682883 DOI: 10.1093/cercor/bhac538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Few tract-based spatial statistics (TBSS) studies have investigated the relations between intelligence and white matter microstructure in healthy (young) adults, and those have yielded mixed observations, yet white matter is fundamental for efficient and accurate information transfer throughout the human brain. We used a multicenter approach to identify white matter regions that show replicable structure-function associations, employing data from 4 independent samples comprising over 2000 healthy participants. TBSS indicated 188 voxels exhibited significant positive associations between g factor scores and fractional anisotropy (FA) in all 4 data sets. Replicable voxels formed 3 clusters, located around the left-hemispheric forceps minor, superior longitudinal fasciculus, and cingulum-cingulate gyrus with extensions into their surrounding areas (anterior thalamic radiation, inferior fronto-occipital fasciculus). Our results suggested that individual differences in general intelligence are robustly associated with white matter FA in specific fiber bundles distributed across the brain, consistent with the Parieto-Frontal Integration Theory of intelligence. Three possible reasons higher FA values might create links with higher g are faster information processing due to greater myelination, more direct information processing due to parallel, homogenous fiber orientation distributions, or more parallel information processing due to greater axon density.
Collapse
Affiliation(s)
- Christina Stammen
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | - Christoph Fraenz
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | | | - Caroline Schlüter
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Viola Merhof
- Chair of Research Methods and Psychological Assessment, University of Mannheim, 68161 Mannheim, Germany
| | - Wendy Johnson
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Erhan Genç
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| |
Collapse
|
22
|
Alexopoulos J, Giordano V, Doering S, Seidl R, Benavides-Varela S, Russwurm M, Greenwood S, Berger A, Bartha-Doering L. Sex differences in neural processing of speech in neonates. Cortex 2022; 157:117-128. [PMID: 36279755 DOI: 10.1016/j.cortex.2022.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/24/2022] [Accepted: 09/04/2022] [Indexed: 12/15/2022]
Abstract
The large majority of studies shows that girls develop their language skills faster than boys in the first few years of life. Are girls born with this advantage in language development? The present study used fNIRS in neonates to investigate sex differences in neural processing of speech within the first days of life. We found that speech stimuli elicited significantly more brain activity than non-speech stimuli in both groups of male and female neonates. However, whereas girls showed significant HbO changes to speech stimuli only within the left hemisphere, boys exhibited simultaneous neural activations in both hemispheres, with a larger and more significant fronto-temporal cluster in the right hemisphere. Furthermore, in boys, the variation in time-to-peak latencies was considerably greater than in girls. These findings suggest an earlier maturation of language-related brain areas in girls and highlight the importance of sex-specific investigations of neural language networks in infants.
Collapse
Affiliation(s)
- Johanna Alexopoulos
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Vito Giordano
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Stephan Doering
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization & Department of Neuroscience, University of Padova, Padova, Italy
| | - Magdalena Russwurm
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Stephanie Greenwood
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Weiss Y, Huber E, Ferjan Ramírez N, Corrigan NM, Yarnykh VL, Kuhl PK. Language input in late infancy scaffolds emergent literacy skills and predicts reading related white matter development. Front Hum Neurosci 2022; 16:922552. [PMID: 36457757 PMCID: PMC9705348 DOI: 10.3389/fnhum.2022.922552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Longitudinal studies provide the unique opportunity to test whether early language provides a scaffolding for the acquisition of the ability to read. This study tests the hypothesis that parental language input during the first 2 years of life predicts emergent literacy skills at 5 years of age, and that white matter development observed early in the 3rd year (at 26 months) may help to account for these effects. We collected naturalistic recordings of parent and child language at 6, 10, 14, 18, and 24 months using the Language ENvironment Analysis system (LENA) in a group of typically developing infants. We then examined the relationship between language measures during infancy and follow-up measures of reading related skills at age 5 years, in the same group of participants (N = 53). A subset of these children also completed diffusion and quantitative MRI scans at age 2 years (N = 20). Within this subgroup, diffusion tractography was used to identify white matter pathways that are considered critical to language and reading development, namely, the arcuate fasciculus (AF), superior and inferior longitudinal fasciculi, and inferior occipital-frontal fasciculus. Quantitative macromolecular proton fraction (MPF) mapping was used to characterize myelin density within these separately defined regions of interest. The longitudinal data were then used to test correlations between early language input and output, white matter measures at age 2 years, and pre-literacy skills at age 5 years. Parental language input, child speech output, and parent-child conversational turns correlated with pre-literacy skills, as well as myelin density estimates within the left arcuate and superior longitudinal fasciculus. Mediation analyses indicated that the left AF accounted for longitudinal relationships between infant home language measures and 5-year letter identification and letter-sound knowledge, suggesting that the left AF myelination at 2 years may serve as a mechanism by which early language experience supports emergent literacy.
Collapse
Affiliation(s)
- Yael Weiss
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Elizabeth Huber
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Naja Ferjan Ramírez
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Linguistics, University of Washington, Seattle, WA, United States
| | - Neva M. Corrigan
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Patricia K. Kuhl
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Warrington S, Thompson E, Bastiani M, Dubois J, Baxter L, Slater R, Jbabdi S, Mars RB, Sotiropoulos SN. Concurrent mapping of brain ontogeny and phylogeny within a common space: Standardized tractography and applications. SCIENCE ADVANCES 2022; 8:eabq2022. [PMID: 36260675 PMCID: PMC9581484 DOI: 10.1126/sciadv.abq2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Developmental and evolutionary effects on brain organization are complex, yet linked, as evidenced by the correspondence in cortical area expansion across these vastly different time scales. However, it is still not possible to study concurrently the ontogeny and phylogeny of cortical areal connections, which is arguably more relevant to brain function than allometric measurements. Here, we propose a novel framework that allows the integration of structural connectivity maps from humans (adults and neonates) and nonhuman primates (macaques) onto a common space. We use white matter bundles to anchor the common space and use the uniqueness of cortical connection patterns to these bundles to probe area specialization. This enabled us to quantitatively study divergences and similarities in connectivity over evolutionary and developmental scales, to reveal brain maturation trajectories, including the effect of premature birth, and to translate cortical atlases between diverse brains. Our findings open new avenues for an integrative approach to imaging neuroanatomy.
Collapse
Affiliation(s)
- Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Elinor Thompson
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica Dubois
- Université Paris Cité, Inserm, NeuroDiderot Unit, Paris, France
- University Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Stamatios N. Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| |
Collapse
|
25
|
Manning KY, Reynolds JE, Long X, Llera A, Dewey D, Lebel C. Multimodal brain features at 3 years of age and their relationship with pre-reading measures 1 year later. Front Hum Neurosci 2022; 16:965602. [PMID: 36072890 PMCID: PMC9441575 DOI: 10.3389/fnhum.2022.965602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-reading language skills develop rapidly in early childhood and are related to brain structure and functional architecture in young children prior to formal education. However, the early neurobiological development that supports these skills is not well understood. Here we acquired anatomical, diffusion tensor imaging (DTI) and resting state functional MRI (rs-fMRI) from 35 children at 3.5 years of age. Children were assessed for pre-reading abilities using the NEPSY-II subtests 1 year later (4.5 years). We applied a data-driven linked independent component analysis (ICA) to explore the shared co-variation of gray and white matter measures. Two sources of structural variation at 3.5 years of age demonstrated relationships with Speeded Naming scores at 4.5 years of age. The first imaging component involved volumetric variability in reading-related cortical regions alongside microstructural features of the superior longitudinal fasciculus (SLF). The second component was dominated by cortical volumetric variations within the cerebellum and visual association area. In a subset of children with rs-fMRI data, we evaluated the inter-network functional connectivity of the left-lateralized fronto-parietal language network (FPL) and its relationship with pre-reading measures. Higher functional connectivity between the FPL and the default mode and visual networks at 3.5 years significantly predicted better Phonological Processing scores at 4.5 years. Together, these results suggest that the integration of functional networks, as well as the co-development of white and gray matter brain structures in early childhood, support the emergence of pre-reading measures in preschool children.
Collapse
Affiliation(s)
- Kathryn Y. Manning
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jess E. Reynolds
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Xiangyu Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alberto Llera
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Brignoni-Pérez E, Dubner SE, Ben-Shachar M, Berman S, Mezer AA, Feldman HM, Travis KE. White matter properties underlying reading abilities differ in 8-year-old children born full term and preterm: A multi-modal approach. Neuroimage 2022; 256:119240. [PMID: 35490913 PMCID: PMC9213558 DOI: 10.1016/j.neuroimage.2022.119240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Many diffusion magnetic resonance imaging (dMRI) studies document associations between reading skills and fractional anisotropy (FA) within brain white matter, suggesting that efficient transfer of information across the brain contributes to individual differences in reading. Use of complementary imaging methods can determine if these associations relate to myelin content of white matter tracts. Compared to children born at term (FT), children born preterm (PT) are at risk for reading deficits. We used two MRI methods to calculate associations of reading and white matter properties in FT and PT children. Participants (N=79: 36 FT and 43 PT) were administered the Gray's Oral Reading Test at age 8. We segmented three dorsal (left arcuate and bilateral superior longitudinal fasciculus) and four ventral (bilateral inferior longitudinal fasciculus and bilateral uncinate) tracts and quantified (1) FA from dMRI and (2) R1 from quantitative T1 relaxometry. We examined correlations between reading scores and these metrics along the trajectories of the tracts. Reading positively correlated with FA in segments of left arcuate and bilateral superior longitudinal fasciculi in FT children; no FA associations were found in PT children. Reading positively correlated with R1 in segments of the left superior longitudinal, right uncinate, and left inferior longitudinal fasciculi in PT children; no R1 associations were found in FT children. Birth group significantly moderated the associations of reading and white matter metrics. Myelin content of white matter may contribute to individual differences in PT but not FT children.
Collapse
Affiliation(s)
- Edith Brignoni-Pérez
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States
| | - Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States.
| |
Collapse
|
27
|
Structural Brain Asymmetries for Language: A Comparative Approach across Primates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor.
Collapse
|
28
|
Economou M, Billiet T, Wouters J, Ghesquière P, Vanderauwera J, Vandermosten M. Myelin water fraction in relation to fractional anisotropy and reading in 10-year-old children. Brain Struct Funct 2022; 227:2209-2217. [PMID: 35403895 DOI: 10.1007/s00429-022-02486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
Diffusion-weighted imaging studies have repeatedly shown that white matter correlates with reading throughout development. However, the neurobiological interpretation of this relationship is constrained by the limited microstructural specificity of diffusion imaging. A critical component of white matter microstructure is myelin, which can be investigated noninvasively using MRI. Here, we examined the link between myelin water fraction (MWF) and reading ability in 10-year-old children (n = 69). To better understand this relationship, we additionally investigated how these two variables relate to fractional anisotropy (FA; a common index of diffusion-weighted imaging). Our analysis revealed that lower MWF coheres with better reading scores in left-hemispheric tracts relevant for reading. While we replicated previous reports on a positive relationship between FA and MWF, we did not find any evidence for an association between reading and FA. Together, these findings contrast previous research suggesting that poor reading abilities might be rooted in lower myelination and emphasize the need for further longitudinal research to understand how this relationship evolves throughout reading development. Altogether, this study contributes important insights into the role of myelin-related processes in the relationship between reading and white matter structure.
Collapse
Affiliation(s)
- Maria Economou
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium.
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Thibo Billiet
- Icometrix, Research and Development, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Jolijn Vanderauwera
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Cheema K, Sweneya S, Craig J, Huynh T, Ostevik AV, Reed A, Cummine J. An investigation of white matter properties as they relate to spelling behaviour in skilled and impaired readers. Neuropsychol Rehabil 2022:1-29. [PMID: 35323090 DOI: 10.1080/09602011.2022.2053168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RESULTS While the inferior longitudinal fasciculus was more strongly related to spelling behaviour in skilled adults, the uncinate fasciculus was more strongly related to spelling behaviour in impaired adults. We found strong left lateralization of the arcuate fasciculus and inferior longitudinal fasciculus in both groups. However, lateralization of the inferior frontal occipital fasciculus was more strongly related to spelling response time behaviour in skilled adults, whereas lateralization of the uncinate fasciculus was more strongly related to spelling accuracy behaviour in the impaired adults. CONCLUSION This study provides some useful information for understanding the underlying white matter pathways that support spelling in skilled and impaired adults and underscore the advantage of adopting multiple spelling tasks and outcomes (i.e., response time and accuracy) to better characterize brain-behaviour relationships in skilled and impaired adults.
Collapse
Affiliation(s)
- Kulpreet Cheema
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sarah Sweneya
- Faculty of Education, University of Alberta, Edmonton, AB, Canada
| | - Julia Craig
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Truc Huynh
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Amberley V Ostevik
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alesha Reed
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
The forgotten tract of vision in multiple sclerosis: vertical occipital fasciculus, its fiber properties, and visuospatial memory. Brain Struct Funct 2022; 227:1479-1490. [PMID: 35174417 DOI: 10.1007/s00429-022-02464-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Visual disturbances are a common disease manifestation in multiple sclerosis (MS) due to lesions damaging white matter tracts involved in vision. Vertical occipital fasciculus (VOF), a tract located vertically in the occipital lobe, was neglected for more than a century. We hypothesize that VOF is involved in integrating information between dorsal and ventral visual streams. Thus, its damage in MS, as well as its probable role in visual processing (by using MS as a VOF damage model) needs to be clarified. To study fiber characteristics of VOF in MS, and their clinical and visual learning associations, 57 relapsing-remitting MS (RRMS) and 25 healthy controls (HC) were recruited. We acquired MS Functional Composite, Expanded Disability Status Scale (EDSS), and Brief Visuospatial Memory Test-Revised (BVMT-R), and diffusion MRI scans. Tractography of VOF and optic radiation (OR) was done. VOF's metrics were statistically tested for between-group differences and clinical and visual tests associations. Along-tract analysis and laterality were also tested. RRMS patients had higher mean, axial, and radial diffusivity (nearly in all fiber points), and lower fractional anisotropy in bilateral VOFs compared to HC. No laterality was noted. These were associated with poor clinical outcomes, poor visual scores in EDSS, and lower total immediate and delayed recall in BVMT-R in RRMS, after adjusting for age, gender, and fiber metrics of OR. VOF damage is present in RRMS and is associated with visual symptoms and visuospatial learning impairments. It seems VOF is involved in integrating information between visual streams.
Collapse
|
31
|
The time-locked neurodynamics of semantic processing in autism spectrum disorder: an EEG study. Cogn Neurodyn 2022; 16:43-72. [PMID: 35126770 PMCID: PMC8807749 DOI: 10.1007/s11571-021-09697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
Language processing is often an area of difficulty in Autism Spectrum Disorder (ASD). Semantic processing-the ability to add meaning to a stimulus-is thought to be especially affected in ASD. However, the neurological origin of these deficits, both structurally and temporally, have yet to be discovered. To further previous behavioral findings on language differences in ASD, the present study used an implicit semantic priming paradigm and electroencephalography (EEG) to compare the level of theta coherence throughout semantic processing, between typically developing (TD) and ASD participants. Theta coherence is an indication of synchronous EEG oscillations and was of particular interest due to its previous links with semantic processing. Theta coherence was analyzed in response to semantically related or unrelated pairs of words and pictures across bilateral short, medium, and long electrode connections. We found significant results across a variety of conditions, but most notably, we observed reduced coherence for language stimuli in the ASD group at a left fronto-parietal connection from 100 to 300 ms. This replicates previous findings of underconnectivity in left fronto-parietal language networks in ASD. Critically, the early time window of this underconnectivity, from 100 to 300 ms, suggests that impaired semantic processing of language in ASD may arise during pre-semantic processing, during the initial communication between lower-level linguistic processing and higher-level semantic processing. Our results suggest that language processing functions are unique in ASD compared to TD, and that subjects with ASD might rely on a temporally different language processing loop altogether.
Collapse
|
32
|
Zekelman LR, Zhang F, Makris N, He J, Chen Y, Xue T, Liera D, Drane DL, Rathi Y, Golby AJ, O'Donnell LJ. White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. Neuroimage 2022; 246:118739. [PMID: 34856375 PMCID: PMC8862285 DOI: 10.1016/j.neuroimage.2021.118739] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.
Collapse
Affiliation(s)
- Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, USA.
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA; Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jianzhong He
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Institution of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, China
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | - Tengfei Xue
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; School of Computer Science, University of Sydney, NSW, Australia
| | | | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA, US
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
33
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4684-4697. [DOI: 10.1093/cercor/bhab510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
|
34
|
Martin KC, Ketchabaw WT, Turkeltaub PE. Plasticity of the language system in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:397-414. [PMID: 35034751 PMCID: PMC10149040 DOI: 10.1016/b978-0-12-819410-2.00021-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The language system is perhaps the most unique feature of the human brain's cognitive architecture. It has long been a quest of cognitive neuroscience to understand the neural components that contribute to the hierarchical pattern processing and advanced rule learning required for language. The most important goal of this research is to understand how language becomes impaired when these neural components malfunction or are lost to stroke, and ultimately how we might recover language abilities under these circumstances. Additionally, understanding how the language system develops and how it can reorganize in the face of brain injury or dysfunction could help us to understand brain plasticity in cognitive networks more broadly. In this chapter we will discuss the earliest features of language organization in infants, and how deviations in typical development can-but in some cases, do not-lead to disordered language. We will then survey findings from adult stroke and aphasia research on the potential for recovering language processing in both the remaining left hemisphere tissue and in the non-dominant right hemisphere. Altogether, we hope to present a clear picture of what is known about the capacity for plastic change in the neurobiology of the human language system.
Collapse
Affiliation(s)
- Kelly C Martin
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - W Tyler Ketchabaw
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States
| | - Peter E Turkeltaub
- Department of Neurology, Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States; Research Division, MedStar National Rehabilitation Hospital, Washington, DC, United States.
| |
Collapse
|
35
|
Becker Y, Loh KK, Coulon O, Meguerditchian A. The Arcuate Fasciculus and language origins: Disentangling existing conceptions that influence evolutionary accounts. Neurosci Biobehav Rev 2021; 134:104490. [PMID: 34914937 DOI: 10.1016/j.neubiorev.2021.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
The Arcuate Fasciculus (AF) is of considerable interdisciplinary interest, because of its major implication in language processing. Theories about language brain evolution are based on anatomical differences in the AF across primates. However, changing methodologies and nomenclatures have resulted in conflicting findings regarding interspecies AF differences: Historical knowledge about the AF originated from human blunt dissections and later from monkey tract-tracing studies. Contemporary tractography studies reinvestigate the fasciculus' morphology, but remain heavily bound to unclear anatomical priors and methodological limitations. First, we aim to disentangle the influences of these three epistemological steps on existing AF conceptions, and to propose a contemporary model to guide future work. Second, considering the influence of various AF conceptions, we discuss four key evolutionary changes that propagated current views about language evolution: 1) frontal terminations, 2) temporal terminations, 3) greater Dorsal- versus Ventral Pathway expansion, 4) lateralisation. We conclude that new data point towards a more shared AF anatomy across primates than previously described. Language evolution theories should incorporate this continuous AF evolution across primates.
Collapse
Affiliation(s)
- Yannick Becker
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France.
| | - Kep Kee Loh
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France; Station de Primatologie CNRS, Rousset, France
| |
Collapse
|
36
|
Raja R, Na X, Glasier CM, Badger TM, Bellando J, Ou X. Associations between Cortical Asymmetry and Domain Specific Cognitive Functions in Healthy Children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3127-3132. [PMID: 34891904 PMCID: PMC9179091 DOI: 10.1109/embc46164.2021.9630831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cortical asymmetry and functional lateralization form intriguing and fundamental features of human brain organization, and is complicated by individual differences and evolvement with age. While many studies have investigated neuroanatomical differences between hemispheres as well as functional lateralization of the brain for different age groups, few have looked into the associations between cortical asymmetry and development of cognitive functions in children. In this study, we aimed to identify relationships between hemispheric asymmetry in brain cortex measured by MRI and cognitive development in healthy young children evaluated by a comprehensive battery of neuropsychological tests. Structural MRI data were obtained from 71 children in the age range of 7.5 to 8.5 years. Structural lateralization index (SLI), a reflection of the brain asymmetry, was computed for each of the 3 cortical morphometry measurements: cortical thickness, surface area and gray matter volume. A total of 34 bilateral regions were studied for the whole brain cortex as defined by the Desikan atlas. Region-wise SLI was correlated with domain specific cognitive scores using partial correlation analysis controlled for the potential confounding effects of age and sex. Significant correlations were identified between test scores of multiple cognitive domains and SLI of several cortical regions. Specifically, SLI of total surface area of precuneus and insula significantly correlated with measures of executive function behavior; significant relationships were also found between SLI of mean cortical thickness of superior parietal cortex and memory and language tests scores; in addition, SLI of parahippocampal gyrus also showed significant correlations with language test scores for all 3 morphometry features. These findings revealed regional hemispheric asymmetries that may be linked to specific cognitive abilities in children.Clinical relevance- This study shows associations between structural lateralization in different brain cortical regions and variations in specific cognitive functions in healthy children.
Collapse
Affiliation(s)
- Rajikha Raja
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charles M. Glasier
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Thomas M. Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| | - Jayne Bellando
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| |
Collapse
|
37
|
Yazbek S, Hage S, Mallak I, Smayra T. Tractography of the arcuate fasciculus in healthy right-handed and left-handed multilingual subjects and its relation to language lateralization on functional MRI. Sci Rep 2021; 11:20936. [PMID: 34686728 PMCID: PMC8536719 DOI: 10.1038/s41598-021-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
Functional MRI (fMRI) enables evaluation of language cortical organization and plays a central role in surgical planning. Diffusion Tensor Imaging (DTI) or Tractography, allows evaluation of the white matter fibers involved in language. Unlike fMRI, DTI does not rely on the patient’s cooperation. In monolinguals, there is a significant correlation between the lateralization of language on fMRI and on DTI. Our objective is to delineate the arcuate fasciculus (AF) in right- and left-handed trilinguals and determine if the AF laterality on DTI is correlated to language lateralization on fMRI. 15 right and 15 left-handed trilingual volunteers underwent fMRI and DTI. Laterality Index was determined on fMRI (fMRI-LI). Mean Diffusivity, Fractional Anisotropy (FA), Number of Fibers, Fiber Length, Fiber Volume and Laterality Index (DTI-LI) of the AF were calculated on DTI. 28 of the 30 subjects presented a bilateral AF. Most subjects (52%) were found to have a bilateral language lateralization of the AF on DTI. Only 4 subjects had bilateral lateralization of language on fMRI. The right AF demonstrated lower diffusivity than the left AF in the total participants, the right-handed, and the left-handed subjects. FA, Volume and Length of the AF were not significantly different between the two hemispheres. No correlation was found between the DTI-LI of the AF and the fMRI-LI. A prominent role of the right AF and a bilateral structural organization of the AF was present in our multilingual population regardless of their handedness. While in prior studies DTI was able to determine language lateralization in monolingual subjects, this was not possible in trilingual highly educated subjects.
Collapse
Affiliation(s)
- Sandrine Yazbek
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Stephanie Hage
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Iyad Mallak
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Tarek Smayra
- Medical School, Hotel-Dieu de France Hospital, Saint Joseph University, Boulevard Alfred Naccache, Achrafieh, PO Box 166830, Beirut, Lebanon.
| |
Collapse
|
38
|
Garic D, Yeh FC, Graziano P, Dick AS. In vivo restricted diffusion imaging (RDI) is sensitive to differences in axonal density in typical children and adults. Brain Struct Funct 2021; 226:2689-2705. [PMID: 34432153 DOI: 10.1007/s00429-021-02364-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
The ability to dissociate axonal density in vivo from other microstructural properties is important for the diagnosis and treatment of neurologic disease, and new methods to do so are being developed. We investigated one such method-restricted diffusion imaging (RDI)-to see whether it can more accurately replicate histological axonal density patterns in the corpus callosum (CC) of adults and children compared to diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and generalized q-sampling imaging (GQI) methods. To do so, we compared known axonal density patterns defined by histology to diffusion-weighted imaging (DWI) scans of 840 healthy 20- to 40-year-old adults, and to DWI scans of 129 typically developing 7-month-old to 18-year-old children and adolescents. Contrast analyses were used to compare pattern similarities between the in vivo metric and previously published histological density models. We found that RDI was effective at mapping axonal density of small (Cohen's d = 2.60) and large fiber sizes (Cohen's d = 2.84) in adults. The same pattern was observed in the developing sample (Cohen's d = 3.09 and 3.78, respectively). Other metrics, notably NODDI's intracellular volume fraction in adults and GQI generalized fractional anisotropy in children, were also sensitive metrics. In conclusion, the study showed that the novel RDI metric is sensitive to density of small and large axons in adults and children, with both single- and multi-shell acquisition DWI data. Its effectiveness and availability to be used on standard as well as advanced DWI acquisitions makes it a promising method in clinical settings.
Collapse
Affiliation(s)
- Dea Garic
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Paulo Graziano
- Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
39
|
Zuk J, Yu X, Sanfilippo J, Figuccio MJ, Dunstan J, Carruthers C, Sideridis G, Turesky TK, Gagoski B, Grant PE, Gaab N. White matter in infancy is prospectively associated with language outcomes in kindergarten. Dev Cogn Neurosci 2021; 50:100973. [PMID: 34119849 PMCID: PMC8209179 DOI: 10.1016/j.dcn.2021.100973] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Language acquisition is of central importance to child development. Although this developmental trajectory is shaped by experience postnatally, the neural basis for language emerges prenatally. Thus, a fundamental question remains: do structural foundations for language in infancy predict long-term language abilities? Longitudinal investigation of 40 children from infancy to kindergarten reveals that white matter in infancy is prospectively associated with subsequent language abilities, specifically between: (i) left arcuate fasciculus and phonological awareness and vocabulary knowledge, (ii) left corticospinal tract and phonological awareness, and bilateral corticospinal tract with phonological memory; controlling for age, cognitive, and environmental factors. Findings link white matter in infancy with school-age language abilities, suggesting that white matter organization in infancy sets a foundation for long-term language development.
Collapse
Affiliation(s)
- Jennifer Zuk
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Joseph Sanfilippo
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | | | - Jade Dunstan
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Clarisa Carruthers
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Georgios Sideridis
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Ted K Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Borjan Gagoski
- Harvard Medical School, Boston, MA, 02115, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Patricia Ellen Grant
- Harvard Medical School, Boston, MA, 02115, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA; Harvard Graduate School of Education, Cambridge, MA, 02138, USA
| |
Collapse
|
40
|
Cui M, Zhou T, Feng S, Liu X, Wang F, Zhang Y, Yu X. Altered microstructural pattern of white matter in Cushing's disease identified by automated fiber quantification. Neuroimage Clin 2021; 31:102770. [PMID: 34332193 PMCID: PMC8339293 DOI: 10.1016/j.nicl.2021.102770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022]
Abstract
A growing body of evidence suggests that altered brain structure plays a crucial role in the pathogenesis of neuropsychological abnormalities induced by hypercortisolism in patients with Cushing's disease. While most studies mainly focus on gray matter, white matter structure has been largely overlooked. In the current study, we conducted a cross-sectional diffusion tensor imaging study on 58 patients with Cushing's disease and 54 matched healthy individuals to profile the microstructural pattern using automated fiber quantification and investigate its association with neuroendocrine and neuropsychological deficits. The study revealed that microstructural pattern showed a widespread mean diffusivity, radial diffusivity increase, fractional anisotropy decrease and partial axial diffusivity increase among tracts notably in corpus callosum forceps, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, uncinate fasciculus and arcuate fasciculus, while within the same tract abnormalities localized to specific positions. Moreover, compromised microstructural pattern of white matter in specific tracts and locations along the trajectory were associated with ACTH and cortisol concentration and cognitive decline in patients with Cushing's disease. Collectively, our study elucidates the form of white matter pathology induced by hypercortisolism and its association with cognitive decline which may provide further targets for early identification and intervention of Cushing's disease.
Collapse
Affiliation(s)
- Mengchu Cui
- Medical School of Chinese PLA, Beijing, PR China; Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China
| | - Shiyu Feng
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China
| | - Xinyun Liu
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China
| | - Fuyu Wang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
41
|
Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defining cognition? Neuron 2021; 109:2075-2090. [PMID: 34004139 PMCID: PMC8273110 DOI: 10.1016/j.neuron.2021.04.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Uniquely human cognitive faculties arise from flexible interplay between specific local neural modules, with hemispheric asymmetries in functional specialization. Here, we discuss how these computational design principles provide a scaffold that enables some of the most advanced cognitive operations, such as semantic understanding of world structure, logical reasoning, and communication via language. We draw parallels to dual-processing theories of cognition by placing a focus on Kahneman's System 1 and System 2. We propose integration of these ideas with the global workspace theory to explain dynamic relay of information products between both systems. Deepening the current understanding of how neurocognitive asymmetry makes humans special can ignite the next wave of neuroscience-inspired artificial intelligence.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany.
| | - Yoshua Bengio
- Mila, Montreal, QC, Canada; University of Montreal, Montreal, QC, Canada
| | - Danilo Bzdok
- Mila, Montreal, QC, Canada; Montreal Neurological Institute, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, and School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
42
|
Buyanova IS, Arsalidou M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front Hum Neurosci 2021; 15:662031. [PMID: 34295229 PMCID: PMC8290169 DOI: 10.3389/fnhum.2021.662031] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
White matter makes up about fifty percent of the human brain. Maturation of white matter accompanies biological development and undergoes the most dramatic changes during childhood and adolescence. Despite the advances in neuroimaging techniques, controversy concerning spatial, and temporal patterns of myelination, as well as the degree to which the microstructural characteristics of white matter can vary in a healthy brain as a function of age, gender and cognitive abilities still exists. In a selective review we describe methods of assessing myelination and evaluate effects of age and gender in nine major fiber tracts, highlighting their role in higher-order cognitive functions. Our findings suggests that myelination indices vary by age, fiber tract, and hemisphere. Effects of gender were also identified, although some attribute differences to methodological factors or social and learning opportunities. Findings point to further directions of research that will improve our understanding of the complex myelination-behavior relation across development that may have implications for educational and clinical practice.
Collapse
Affiliation(s)
- Irina S. Buyanova
- Neuropsy Lab, HSE University, Moscow, Russia
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Marie Arsalidou
- Neuropsy Lab, HSE University, Moscow, Russia
- Cognitive Centre, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
43
|
Perron M, Theaud G, Descoteaux M, Tremblay P. The frontotemporal organization of the arcuate fasciculus and its relationship with speech perception in young and older amateur singers and non-singers. Hum Brain Mapp 2021; 42:3058-3076. [PMID: 33835629 PMCID: PMC8193549 DOI: 10.1002/hbm.25416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to perceive speech in noise (SPiN) declines with age. Although the etiology of SPiN decline is not well understood, accumulating evidence suggests a role for the dorsal speech stream. While age-related decline within the dorsal speech stream would negatively affect SPiN performance, experience-induced neuroplastic changes within the dorsal speech stream could positively affect SPiN performance. Here, we investigated the relationship between SPiN performance and the structure of the arcuate fasciculus (AF), which forms the white matter scaffolding of the dorsal speech stream, in aging singers and non-singers. Forty-three non-singers and 41 singers aged 20 to 87 years old completed a hearing evaluation and a magnetic resonance imaging session that included High Angular Resolution Diffusion Imaging. The groups were matched for sex, age, education, handedness, cognitive level, and musical instrument experience. A subgroup of participants completed syllable discrimination in the noise task. The AF was divided into 10 segments to explore potential local specializations for SPiN. The results show that, in carefully matched groups of singers and non-singers (a) myelin and/or axonal membrane deterioration within the bilateral frontotemporal AF segments are associated with SPiN difficulties in aging singers and non-singers; (b) the structure of the AF is different in singers and non-singers; (c) these differences are not associated with a benefit on SPiN performance for singers. This study clarifies the etiology of SPiN difficulties by supporting the hypothesis for the role of aging of the dorsal speech stream.
Collapse
Affiliation(s)
- Maxime Perron
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Pascale Tremblay
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| |
Collapse
|
44
|
Li X, Zatorre RJ, Du Y. The Microstructural Plasticity of the Arcuate Fasciculus Undergirds Improved Speech in Noise Perception in Musicians. Cereb Cortex 2021; 31:3975-3985. [PMID: 34037726 PMCID: PMC8328222 DOI: 10.1093/cercor/bhab063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Musical training is thought to be related to improved language skills, for example, understanding speech in background noise. Although studies have found that musicians and nonmusicians differed in morphology of bilateral arcuate fasciculus (AF), none has associated such white matter features with speech-in-noise (SIN) perception. Here, we tested both SIN and the diffusivity of bilateral AF segments in musicians and nonmusicians using diffusion tensor imaging. Compared with nonmusicians, musicians had higher fractional anisotropy (FA) in the right direct AF and lower radial diffusivity in the left anterior AF, which correlated with SIN performance. The FA-based laterality index showed stronger right lateralization of the direct AF and stronger left lateralization of the posterior AF in musicians than nonmusicians, with the posterior AF laterality predicting SIN accuracy. Furthermore, hemodynamic activity in right superior temporal gyrus obtained during a SIN task played a full mediation role in explaining the contribution of the right direct AF diffusivity on SIN performance, which therefore links training-related white matter plasticity, brain hemodynamics, and speech perception ability. Our findings provide direct evidence that differential microstructural plasticity of bilateral AF segments may serve as a neural foundation of the cross-domain transfer effect of musical experience to speech perception amid competing noise.
Collapse
Affiliation(s)
- Xiaonan Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert J Zatorre
- Montréal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada.,International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC H3A 2B4, Canada.,Centre for Research on Brain, Language and Music (CRBLM), Montreal, QC H3A 2B4, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.,Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
45
|
Nakajima R, Kinoshita M, Shinohara H, Nakada M. The superior longitudinal fascicle: reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav 2021; 14:2817-2830. [PMID: 31468374 DOI: 10.1007/s11682-019-00187-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Due primarily to the extensive disposition of fibers and secondarily to the methodological preferences of researchers, the superior longitudinal fasciculus (SLF) subdivisions have multiple names, complicating SLF research. Here, we collected and reassessed existing knowledge regarding the SLF, which we used to propose a four-term classification of the SLF based mainly on function: dorsal SLF, ventral SLF, posterior SLF, and arcuate fasciculus (AF); these correspond to the traditional SLF II, SLF III or anterior AF, temporoparietal segment of the SLF or posterior AF, and AF or AF long segment, respectively. Each segment has a distinct functional role. The dorsal SLF is involved in visuospatial attention and motor control, while the ventral SLF is associated with language-related networks, auditory comprehension, and articulatory processing in the left hemisphere. The posterior SLF is involved in language-related processing, including auditory comprehension, reading, and lexical access, while the AF is associated with language-related activities, such as phonological processing; the right AF plays a role in social cognition and visuospatial attention. This simple proposed classification permits a better understanding of the SLF and may comprise a convenient classification for use in research and clinical practice relating to brain function.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational therapy, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
46
|
Vaquero L, Ramos-Escobar N, Cucurell D, François C, Putkinen V, Segura E, Huotilainen M, Penhune V, Rodríguez-Fornells A. Arcuate fasciculus architecture is associated with individual differences in pre-attentive detection of unpredicted music changes. Neuroimage 2021; 229:117759. [PMID: 33454403 DOI: 10.1016/j.neuroimage.2021.117759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The mismatch negativity (MMN) is an event related brain potential (ERP) elicited by unpredicted sounds presented in a sequence of repeated auditory stimuli. The neural sources of the MMN have been previously attributed to a fronto-temporo-parietal network which crucially overlaps with the so-called auditory dorsal stream, involving inferior and middle frontal, inferior parietal, and superior and middle temporal regions. These cortical areas are structurally connected by the arcuate fasciculus (AF), a three-branch pathway supporting the feedback-feedforward loop involved in auditory-motor integration, auditory working memory, storage of acoustic templates, as well as comparison and update of those templates. Here, we characterized the individual differences in the white-matter macrostructural properties of the AF and explored their link to the electrophysiological marker of passive change detection gathered in a melodic multifeature MMN-EEG paradigm in 26 healthy young adults without musical training. Our results show that left fronto-temporal white-matter connectivity plays an important role in the pre-attentive detection of rhythm modulations within a melody. Previous studies have shown that this AF segment is also critical for language processing and learning. This strong coupling between structure and function in auditory change detection might be related to life-time linguistic (and possibly musical) exposure and experiences, as well as to timing processing specialization of the left auditory cortex. To the best of our knowledge, this is the first time in which the relationship between neurophysiological (EEG) and brain white-matter connectivity indexes using DTI-tractography are studied together. Thus, the present results, although still exploratory, add to the existing evidence on the importance of studying the constraints imposed on cognitive functions by the underlying structural connectivity.
Collapse
Affiliation(s)
- Lucía Vaquero
- Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid and Polytechnic University of Madrid, Campus Científico y Tecnológico de la UPM, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Neus Ramos-Escobar
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Cucurell
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Clément François
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
| | - Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Emma Segura
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Minna Huotilainen
- Cicero Learning and Cognitive Brain Research Unit, University of Helsinki, Helsinki, Finland
| | - Virginia Penhune
- Penhune Laboratory for Motor Learning and Neural Plasticity, Concordia University, Montreal, QC, Canada; International Laboratory for Brain, Music and Sound Research (BRAMS). Montreal, QC, Canada; Center for Research on Brain, Language and Music (CRBLM), McGill University. Montreal, QC, Canada
| | - Antoni Rodríguez-Fornells
- Department of Cognition, Development and Education Psychology, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Institució Catalana de recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
47
|
Pitskhelauri DI, Ishkinin RE, Bykanov AE, Sanikidze AZ, Buklina SB, Abramyan AA, Pronin IN. [Anterior transperiinsular approach to the head of the caudate nucleus and mediobasal frontal lobe]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2021; 85:54-60. [PMID: 34951760 DOI: 10.17116/neiro20218506154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND The head of the caudate nucleus and adjacent mediobasal frontal lobe are deeply localized and have complex anatomical and topographic relationships with surrounding functionally significant cerebral structures. These aspects determine difficult surgical treatment of pathology in this zone. OBJECTIVE To propose a new anterior transperiinsular approach for optimizing surgical access to the head of the caudate nucleus and mediobasal frontal lobe. MATERIAL AND METHODS Two patients with cavernoma of the head of the caudate nucleus and oligodendroglioma of the head of the caudate nucleus and mediobasal frontal lobe underwent resection via transsylvian anterior transperiinsular approach in 2018. In both cases, tumors were localized in dominant hemisphere. Standard MRI was performed before and after surgery. Luria's neurological and neuropsychological examination was carried out before surgery, in 7 days after surgery and then every 3 months. RESULTS Surgical access was performed via stage-by-stage proximal dissection of Sylvian fissure with visualization of anterior and superior periinsular grooves. After that, periinsular groove was dissected at the base of anterior short gyrus. Then, we moved apart white matter using microinstruments and approached the area of interest. In case of this trajectory, surgical approach was performed at the level of the upper parts of inferior frontooccipital fascicle under the arcuate fascicle. Both patients underwent total resection of tumors that was confirmed by MRI. No pre- and postoperative neurological or neuropsychological abnormalities were observed. CONCLUSION Anterior transperiinsular approach provides minimally invasive access to the head of the caudate nucleus and mediobasal frontal lobe. It can be used on dominant hemisphere without significant risk of speech or other cognitive impairments. The advantages of this approach are minimal damage to associative pathways and small distance between periinsular groove and zone of interest. Dissection of commissural fibers of the corpus callosum is not required compared to conventional transcallosal approach.
Collapse
Affiliation(s)
| | | | - A E Bykanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
48
|
François C, Garcia-Alix A, Bosch L, Rodriguez-Fornells A. Signatures of brain plasticity supporting language recovery after perinatal arterial ischemic stroke. BRAIN AND LANGUAGE 2021; 212:104880. [PMID: 33220646 DOI: 10.1016/j.bandl.2020.104880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Brain imaging methods such as functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) have already been used to decipher the functional and structural brain changes occurring during normal language development. However, little is known about the differentiation of the language network after an early lesion. While in adults, stroke over the left hemisphere generally induces post-stroke aphasia, it is not always the case when a stroke occurs in the perinatal period, thus revealing a remarkable plastic power of the language network during early development. In particular, the role of perilesional tissues, as opposed to undamaged brain areas in the functional recovery of language functions after an early insult, remains unclear. In this review article, we provide an overview of the extant literature using functional and structural neuroimaging data revealing the signatures of brain plasticity underlying near-normal language development.
Collapse
Affiliation(s)
| | - Alfredo Garcia-Alix
- Service of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain; NeNe Foundation, Madrid, Spain
| | - Laura Bosch
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| |
Collapse
|
49
|
Stephens RL, Langworthy BW, Short SJ, Girault JB, Styner MA, Gilmore JH. White Matter Development from Birth to 6 Years of Age: A Longitudinal Study. Cereb Cortex 2020; 30:6152-6168. [PMID: 32591808 PMCID: PMC7947172 DOI: 10.1093/cercor/bhaa170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/30/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human white matter development in the first years of life is rapid, setting the foundation for later development. Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is known about when in development individual differences in white matter microstructure are established. The aim of the current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to determine when in development individual differences are established. Two hundred and twenty-four children underwent diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white matter tracts (9 left-right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further evidence of the importance of the first year of life with regard to white matter development, with potential implications for informing early intervention efforts that target specific sensitive periods.
Collapse
Affiliation(s)
- Rebecca L Stephens
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin W Langworthy
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah J Short
- Department of Educational Psychology, Center for Healthy Minds, University of Wisconsin, Madison, Madison, WI 53703, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Dimond D, Heo S, Ip A, Rohr CS, Tansey R, Graff K, Dhollander T, Smith RE, Lebel C, Dewey D, Connelly A, Bray S. Maturation and interhemispheric asymmetry in neurite density and orientation dispersion in early childhood. Neuroimage 2020; 221:117168. [DOI: 10.1016/j.neuroimage.2020.117168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/15/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022] Open
|