1
|
Radanovic A, Jamison KW, Kang Y, Shah SA, Kuceyeski A. Longitudinal multimodal neuroimaging after traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647315. [PMID: 40235998 PMCID: PMC11996476 DOI: 10.1101/2025.04.04.647315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Traumatic brain injury is a major cause of long-term cognitive impairment, yet the mechanisms underlying recovery remain poorly understood. Neuroimaging methods such as diffusion MRI, functional MRI, and positron emission tomography (PET) provide insight into micro- and macro-scale changes post-TBI, but the relationships between regional cellular and functional alterations remain unclear. In this study, we conducted a longitudinal, multimodal neuroimaging analysis quantifying TBI-related pathologies in four biomarkers, namely flumazenil PET derived binding potential, dMRI-derived structural connectivity, and resting-state fMRI-derived functional connectivity and fractional amplitude of low-frequency fluctuations in individuals with mild-to-severe brain injury at the subacute (4-6 months post-injury) and chronic (1-year postinjury) stages. Brain injury related regional pathologies, and their changes over time, were correlated across the four biomarkers. Our results reveal complex, dynamic changes over time. We found that flumazenil-PET binding potential was significantly reduced in frontal and thalamic regions in brain injured subjects, consistent with neuronal loss, with partial recovery over time. Functional hyperconnectivity was observed in brain injured subjects initially but declined while remaining elevated compared to non-injured controls, whereas cortical structural hypoconnectivity persisted. Importantly, we observed that brain injury related alterations across MRI modalities became more strongly correlated with flumazenil-PET at the chronic stage. Regions with chronic reductions in flumazenil-PET binding also showed weaker structural node strength and lower amplitude of low frequency fluctuations, a relationship that was not found at the subacute stage. This observation could suggest a progressive convergence of structural and functional disruptions with neuronal loss over time. Additionally, regions with declining structural node strength also exhibited decreases in functional node strength, while these same regions showed increased amplitude of low frequency fluctuations over time. This pattern suggests that heightened intrinsic regional activity may serve as a compensatory mechanism in regions increasingly disconnected due to progressive axonal degradation. Altogether, these findings advance our understanding of how multimodal neuroimaging captures the evolving interplay between neuronal integrity, structural connectivity, and functional dynamics after brain injury. Clarifying these interrelationships could inform prognostic models and enhance knowledge of degenerative, compensatory, and recovery mechanisms in traumatic brain injury.
Collapse
|
2
|
Diociasi A, Iaccarino MA, Sorg S, Lubin EJ, Wisialowski C, Dua A, Tan CO, Gupta R. Distinct Functional MRI Connectivity Patterns and Cortical Volume Variations Associated with Repetitive Blast Exposure in Special Operations Forces Members. Radiology 2025; 315:e233264. [PMID: 40167438 DOI: 10.1148/radiol.233264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Special operations forces members often face multiple blast injuries and have a higher risk of traumatic brain injury. However, the relationship between neuroimaging markers, the cumulative severity of injury, and long-term symptoms has not previously been well-established in the literature. Purpose To determine the relationship between the frequency of blast injuries, persistent clinical symptoms, and related cortical volumetric and functional connectivity (FC) changes observed at brain MRI in special operations forces members. Materials and Methods A cohort of 220 service members from a prospective study between January 2021 and May 2023 with a history of repetitive blast exposure underwent psychodiagnostics and a comprehensive neuroimaging evaluation, including structural and resting-state functional MRI (fMRI). Of these, 212 met the inclusion criteria. Participants were split into two datasets for model development and validation, and each dataset was divided into high- and low-exposure groups based on participants' exposure to various explosives. Differences in FC were analyzed using a general linear model, and cortical gray matter volumes were compared using the Mann-Whitney U test. An external age- and sex-matched healthy control group of 212 participants was extracted from the SRPBS Multidisorder MRI Dataset for volumetric analyses. A multiple linear regression model was used to assess correlations between clinical scores and FC, while a logistic regression model was used to predict exposure group from fMRI scans. Results In the 212 participants (mean age, 43.0 years ± 8.6 [SD]; 160 male [99.5%]) divided into groups with low or high blast exposure, the high-exposure group had higher scores for the Neurobehavioral Symptom Inventory (NSI) (t = 3.16, P < .001) and Posttraumatic Stress Disorder Checklist for Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (PCL-5) (t = 2.72, P = .01). FC differences were identified in the bilateral superior and inferior lateral occipital cortex (LOC) (P value range, .001-.04), frontal medial cortex (P < .001), left superior frontal gyrus (P < .001), and precuneus (P value range, .02-.03). Clinical scores from NSI and PCL-5 were inversely correlated with FC in the LOC, superior parietal lobule, precuneus, and default mode networks (r = -0.163 to -0.384; P value range, <.001 to .04). The high-exposure group showed increased cortical volume in regions of the LOC compared with healthy controls and the low-exposure group (P value range, .01-.04). The predictive model helped accurately classify participants into high- and low-exposure groups based on fMRI data with 88.00 sensitivity (95% CI: 78.00, 98.00), 67% specificity (95% CI: 53.00, 81.00), and 73% accuracy (95% CI: 60.00, 86.00). Conclusion Repetitive blast exposure leads to distinct alterations in FC and cortical volume, which correlate with neurobehavioral symptoms. The predictive model suggests that even in the absence of observable anatomic changes, FC may indicate blast-related trauma. © RSNA, 2025 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Andrea Diociasi
- Department of Radiology, Mass General Brigham, Massachusetts General Hospital, Boston, Mass
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2605
| | - Mary A Iaccarino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, Mass
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Mass
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Boston, Charlestown, Mass
- Home Base Program, a Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Mass
| | - Scott Sorg
- Home Base Program, a Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Mass
| | - Emily J Lubin
- Home Base Program, a Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Mass
| | - Caroline Wisialowski
- Crown Family School of Social Work, Policy, and Practice, University of Chicago, Chicago, Ill
| | - Amol Dua
- Department of Radiology, Mass General Brigham, Massachusetts General Hospital, Boston, Mass
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2605
| | - Can Ozan Tan
- University of Twente, RAM Group, EEMCS, Enschede, the Netherlands
| | - Rajiv Gupta
- Department of Radiology, Mass General Brigham, Massachusetts General Hospital, Boston, Mass
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2605
| |
Collapse
|
3
|
Chauhan P, Yadav N, Wadhwa K, Ganesan S, Walia C, Rathore G, Singh G, Abomughaid MM, Ahlawat A, Alexiou A, Papadakis M, Jha NK. Animal Models of Traumatic Brain Injury and Their Relevance in Clinical Settings. CNS Neurosci Ther 2025; 31:e70362. [PMID: 40241393 PMCID: PMC12003924 DOI: 10.1111/cns.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant concern that often goes overlooked, resulting from various factors such as traffic accidents, violence, military services, and medical conditions. It is a major health issue affecting people of all age groups across the world, causing significant morbidity and mortality. TBI is a highly intricate disease process that causes both structural damage and functional deficits. These effects result from a combination of primary and secondary injury mechanisms. It is responsible for causing a range of negative effects, such as impairments in cognitive function, changes in social and behavioural patterns, difficulties with motor skills, feelings of anxiety, and symptoms of depression. METHODS TBI associated various animal models were reviewed in databases including PubMed, Web of Science, and Google scholar etc. The current study provides a comprehensive overview of commonly utilized animal models for TBI and examines their potential usefulness in a clinical context. RESULTS Despite the notable advancements in TBI outcomes over the past two decades, there remain challenges in evaluating, treating, and addressing the long-term effects and prevention of this condition. Utilizing experimental animal models is crucial for gaining insight into the development and progression of TBI, as it allows us to examine the biochemical impacts of TBI on brain mechanisms. CONCLUSION This exploration can assist scientists in unraveling the intricate mechanisms involved in TBI and ultimately contribute to the advancement of successful treatments and interventions aimed at enhancing outcomes for TBI patients.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Nikita Yadav
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Karan Wadhwa
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Subbulakshmi Ganesan
- Department of Chemistry and BiochemistrySchool of Sciences, JAIN (Deemed to be University)BangaloreIndia
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges JhanjheriMohaliIndia
| | - Gulshan Rathore
- Department of PharmaceuticsNIMS Institute of Pharmacy, NIMS University RajasthanJaipurIndia
| | - Govind Singh
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, University of BishaBishaSaudi Arabia
| | - Abhilasha Ahlawat
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | | | - Niraj Kumar Jha
- Department of Biotechnology & BioengineeringSchool of Biosciences & Technology, Galgotias UniversityGreater NoidaIndia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia
- School of Bioengineering & Biosciences, Lovely Professional UniversityPhagwaraIndia
| |
Collapse
|
4
|
Yang L, Wang Z. Applications and advances of combined fMRI-fNIRs techniques in brain functional research. Front Neurol 2025; 16:1542075. [PMID: 40170894 PMCID: PMC11958174 DOI: 10.3389/fneur.2025.1542075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the intricate functions of the human brain requires multimodal approaches that integrate complementary neuroimaging techniques. This review systematically examines the integration of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRs) in brain functional research, addressing their synergistic potential, methodological advancements, clinical and neuroscientific applications, and persistent challenges. We conducted a comprehensive literature review of 63 studies (from PubMed and Web of Science up to September 2024) using keyword combinations such as fMRI, fNIRs, and multimodal imaging. Our analysis reveals three key findings: (1) Methodological Synergy: Combining fMRI's high spatial resolution with fNIRs's superior temporal resolution and portability enables robust spatiotemporal mapping of neural activity, validated across motor, cognitive, and clinical tasks. Additionally, this study examines experimental paradigms and data processing techniques essential for effective multimodal neuroimaging. (2) Applications: The review categorizes integration methodologies into synchronous and asynchronous detection modes, highlighting their respective applications in spatial localization, validation of efficacy, and mechanism discovery. Synchronous and asynchronous integration modes have advanced research in neurological disorders (e.g., stroke, Alzheimer's), social cognition, and neuroplasticity, while novel hyperscanning paradigms extend applications to naturalistic, interactive settings. (3) Challenges: Hardware incompatibilities (e.g., electromagnetic interference in MRI environments), experimental limitations (e.g., restricted motion paradigms), and data fusion complexities hinder widespread adoption. The future direction emphasizes hardware innovation (such as fNIR probe compatible with MRI), standardized protocol and data integration driven by machine learning, etc. to solve the depth limitation of fNIR and infer subcortical activities. This synthesis underscores the transformative potential of fMRI-fNIRs integration in bridging spatial and temporal gaps in neuroimaging, while enhancing diagnostic and therapeutic strategies and paving the way for future innovations in brain research.
Collapse
Affiliation(s)
- Lirui Yang
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, Interdiscipline of Medicine and Engineering, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zehua Wang
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, Interdiscipline of Medicine and Engineering, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Center for Medical Device Evaluation, NMPA, Beijing, China
| |
Collapse
|
5
|
Faulkner JW, Snell DL, Siegert RJ. Rasch analysis of the depression anxiety stress scales-21 (DASS-21) in a mild traumatic brain injury sample. Brain Inj 2025; 39:136-144. [PMID: 39374032 DOI: 10.1080/02699052.2024.2411297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE In this study, we evaluated the psychometric properties of the Depression Anxiety Stress Scales 21 items (DASS-21) in a mild traumatic brain injury (mTBI) sample. METHOD Treatment-seeking adults (n = 347) were recruited from outpatient rehabilitation services in New Zealand. Dimensionality, reliability, person separation index, and differential item functioning (DIF) of the DASS-21 were examined using Rasch analysis. RESULTS Initial analysis of the complete 21-item DASS showed poor overall fit due to problems with individual items. Fit to the Rasch model was excellent when treated as three composite scores. The stress subscale demonstrated adequate model fit, dimensionality and good reliability. For anxiety, fit was not good, reliability was unsatisfactory and DIF was evident on one item. When this item was removed, fit to the model was still inadequate as was reliability. DIF was also evident for depression, but when this item was removed, fit to the model was adequate. CONCLUSION The DASS-21 is a psychometrically sound measure of distress and stress for adults seeking treatment following mTBI. Ordinal to interval score conversion tables are provided to increase the precision of measurement. When assessing depression in a mTBI population, a 6-item depression subscale is recommended. Caution is advised in using the DASS-21 anxiety subscale alone.
Collapse
Affiliation(s)
- Josh W Faulkner
- School of Psychology, Te Herenga Waka - Victoria University of Wellington, Wellington, New Zealand
| | - Deborah L Snell
- Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - R J Siegert
- School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
6
|
Kang X, Grossner E, Yoon BC, Adamson MM. Relationship Between Structural and Functional Network Connectivity Changes for Patients With Traumatic Brain Injury and Chronic Health Symptoms. Eur J Neurosci 2025; 61:e16678. [PMID: 39831462 DOI: 10.1111/ejn.16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Combination of structural and functional brain connectivity methods provides a more complete and effective avenue into the investigation of cortical network responses to traumatic brain injury (TBI) and subtle alterations in brain connectivity associated with TBI. Structural connectivity (SC) can be measured using diffusion tensor imaging to evaluate white matter integrity, whereas functional connectivity (FC) can be studied by examining functional correlations within or between functional networks. In this study, the alterations of SC and FC were assessed for TBI patients, with and without chronic symptoms (TBIcs/TBIncs), compared with a healthy control group (CG). The correlation between global SC and FC was significantly increased for both TBI groups compared with CG. SC was significantly lower in the TBIcs group compared with CG, and FC changes were seen in the TBIncs group compared with CG. When comparing TBI groups, FC differences were observed in the TBIcs group compared with the TBIncs group. These observations show that the presence of chronic symptoms is associated with a distinct pattern of SC and FC changes including the atrophy of the SC and a mixture of functional hypoconnectivity and hyperconnectivity, as well as loss of segregation of functional networks.
Collapse
Affiliation(s)
- Xiaojian Kang
- WRIISC-Women, VA Palo Alto Health Care System, Palo Alto, California, USA
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Emily Grossner
- Department of Psychology, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Byung C Yoon
- Department of Radiology, Stanford University School of Medicine, VA Palo Alto Heath Care System, Palo Alto, California, USA
| | - Maheen M Adamson
- WRIISC-Women, VA Palo Alto Health Care System, Palo Alto, California, USA
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Kashou AW, Frees DM, Kang K, Parks CO, Harralson H, Fischer JT, Rosenbaum PE, Baham M, Sheridan C, Bickart KC. Drivers of resting-state fMRI heterogeneity in traumatic brain injury across injury characteristics and imaging methods: a systematic review and semiquantitative analysis. Front Neurol 2024; 15:1487796. [PMID: 39664747 PMCID: PMC11631856 DOI: 10.3389/fneur.2024.1487796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic brain injury (TBI) is common and costly. Although neuroimaging modalities such as resting-state functional MRI (rsfMRI) promise to differentiate injured from healthy brains and prognosticate long-term outcomes, the field suffers from heterogeneous findings. To assess whether this heterogeneity stems from variability in the TBI populations studied or the imaging methods used, and to determine whether a consensus exists in this literature, we performed the first systematic review of studies comparing rsfMRI functional connectivity (FC) in patients with TBI to matched controls for seven canonical brain networks across injury severity, age, chronicity, population type, and various imaging methods. Searching PubMed, Web of Science, Google Scholar, and ScienceDirect, 1,105 manuscripts were identified, 50 fulfilling our criteria. Across these manuscripts, 179 comparisons were reported between a total of 1,397 patients with TBI and 1,179 matched controls. Collapsing across injury characteristics, imaging methods, and networks, there were roughly equal significant to null findings and increased to decreased connectivity differences reported. Whereas most factors did not explain these mixed findings, stratifying across severity and chronicity, separately, showed a trend of increased connectivity at higher severities and greater chronicities of TBI. Among methodological factors, studies were more likely to find connectivity differences when scans were longer than 360 s, custom image processing pipelines were used, and when patients kept their eyes open versus closed during scans. We offer guidelines to address this variability, focusing on aspects of study design and rsfMRI acquisition to move the field toward reproducible results with greater potential for clinical translation.
Collapse
Affiliation(s)
- Alexander W. Kashou
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel M. Frees
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Kaylee Kang
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Christian O. Parks
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hunter Harralson
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse T. Fischer
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Kinesiology, Occidental College, Los Angeles, CA, United States
| | - Philip E. Rosenbaum
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael Baham
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher Sheridan
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kevin C. Bickart
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
8
|
Li J, Wang Y, Wang Y, Zhan J, Sun W, Ouyang F, Zheng X, Lv L, Xu Z, Liu J, Zhou F, Zeng X. Aberrant dynamic functional network connectivity in patients with diffuse axonal injury. Sci Rep 2024; 14:27386. [PMID: 39521859 PMCID: PMC11550476 DOI: 10.1038/s41598-024-79052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse axonal injury (DAI) results in aberrant functional connectivity and is significantly linked to cognitive impairment. Nevertheless, the network mechanisms influencing neurocognitive function following DAI remain unclear. This study aimed to examine the characteristics of static and dynamic functional network connectivity (FNC) in patients with DAI. Resting-state functional magnetic resonance imaging data were collected from 26 patients with DAI and 27 healthy controls. Resting-state networks were extracted using independent component analysis. We evaluated the connectivity strength through spatial maps and static FNC, and then further dynamic properties were identified using a sliding time-window approach and k-means clustering, and investigated their associations with clinical variables. Patients with DAI showed stronger intra-network spatial maps in the default mode network and subcortical network than healthy controls, but static inter-network functional connectivity remained stable. Furthermore, three recurring states for dynamic connectivity were identified in all participants, and state 1 occurred most frequently in patients with DAI and exhibited higher fractional time, and as well as longer mean dwell time, which was positively associated with MMSE scores. Meanwhile, patients with DAI exhibited mostly increased functional connectivity strength of dynamic FNC in all states, particularly within the default mode network and visual network. These findings suggest that patients with DAI are characterized by altered dynamic FNC and temporal properties, which provide distinct complementary information different from static functional connectivity, and new insights into the neural pathophysiology of DAI associated with cognitive impairment.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Yuanyuan Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Weiming Sun
- Rehabilitation Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Feng Ouyang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Lianjiang Lv
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Zihe Xu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, People's Republic of China.
| |
Collapse
|
9
|
Brown O, Fang Z, Smith A, Healey K, Zemek R, Ledoux AA. Associations Between Changes in Psychological Resilience and Resting-State Functional Connectivity Throughout Pediatric Concussion Recovery. Brain Connect 2024; 14:357-368. [PMID: 38874977 DOI: 10.1089/brain.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Purpose: This study investigated the association between psychological resilience and resting-state network functional connectivity of three major brain networks in pediatric concussion. Methods: This was a substudy of a randomized controlled trial, recruiting children with concussion and orthopedic injury. Participants completed the Connor-Davidson Resilience 10 Scale and underwent magnetic resonance imaging at 72 h and 4-weeks postinjury. We explored associations between resilience and connectivity with the default mode network (DMN), central executive network (CEN), and salience network (SN) at both timepoints and also any change that occurred over time. We also explored associations between resilience and connectivity within each network. Results: A total of 67 children with a concussion (median age = 12.87 [IQR: 11.79-14.36]; 46% female) and 30 with orthopedic injury (median age = 12.27 [IQR: 11.19-13.94]; 40% female) were included. Seed-to-voxel analyses detected a positive correlation between 72-h resilience and CEN connectivity in the concussion group. Group moderated associations between resilience and SN connectivity at 72 h, as well as resilience and DMN connectivity over time. Regions-of-interest analyses identified group as a moderator of longitudinal resilience and within-DMN connectivity. Conclusions: These results suggest that neural recovery from concussion could be reliant on resilience. Resilience was related to functional connectivity with three of the main networks in the brain that are often impacted by concussion. Improving resilience might be investigated as a modifiable variable in children as both a protective and restorative in the context of concussion. Clinical Trial Registration Identifier: NCT05105802. PedCARE+MRI team (see Supplementary Appendix S1).
Collapse
Affiliation(s)
- Olivier Brown
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Psychology, University of Ottawa, Ottawa, Canada
| | - Zhuo Fang
- Department of Psychology, University of Ottawa, Ottawa, Canada
| | - Andra Smith
- Department of Psychology, University of Ottawa, Ottawa, Canada
| | - Katherine Healey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Psychology, University of Ottawa, Ottawa, Canada
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
10
|
Tinney EM, Ai M, España‐Irla G, Hillman CH, Morris TP. Physical activity and frontoparietal network connectivity in traumatic brain injury. Brain Behav 2024; 14:e70022. [PMID: 39295099 PMCID: PMC11410878 DOI: 10.1002/brb3.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Prolonged changes to functional network connectivity as a result of a traumatic brain injury (TBI) may relate to long-term cognitive complaints reported by TBI survivors. No interventions have proven to be effective at treating long-term cognitive complaints after TBI but physical activity has been shown to promote cognitive function and modulate functional network connectivity in non-injured adults. Therefore, the objective of this study was to test if physical activity engagement was associated with functional connectivity of the cognitively relevant frontoparietal control network (FPCN) in adults with a TBI history. METHODS In a case-control study design, resting state function magnetic resonance imaging and physical activity data from a subset of participants (18-81 years old) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study was analyzed. Fifty-seven participants reported a prior head injury with loss of consciousness and 57 age and sex matched controls were selected. Seed-based functional connectivity analyses were performed using seeds in the dorsolateral prefrontal cortex and the inferior parietal lobule, to test for differences in functional connectivity between groups, associations between physical activity and functional connectivity within TBI as well as differential associations between physical activity and functional connectivity between TBI and controls. RESULTS Seed-based connectivity analyses from the dorsolateral prefrontal cortex showed that those with a history of TBI had decreased positive connectivity between dorsolateral prefrontal cortex and intracalcarine cortex, lingual gyrus, and cerebellum, and increased positive connectivity between dorsolateral prefrontal cortex and cingulate gyrus and frontal pole in the TBI group. Results showed that higher physical activity was positively associated with increased connectivity between the dorsolateral prefrontal cortex and inferior temporal gyrus. Differential associations were observed between groups whereby the strength of the physical activity-functional connectivity association was different between the inferior parietal lobule and inferior temporal gyrus in TBI compared to controls. DISCUSSION Individuals with a history of TBI show functional connectivity alterations of the FPCN. Moreover, engagement in physical activity is associated with functional network connectivity of the FPCN in those with a TBI. These findings are consistent with the evidence that physical activity affects FPCN connectivity in non-injured adults; however, this effect presents differently in those with a history of TBI.
Collapse
Affiliation(s)
- Emma M. Tinney
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Meishan Ai
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Goretti España‐Irla
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Charles H. Hillman
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Timothy P. Morris
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
- Department of Applied PsychologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
11
|
Garcia-Cordero I, Vasilevskaya A, Taghdiri F, Khodadadi M, Mikulis D, Tarazi A, Mushtaque A, Anssari N, Colella B, Green R, Rogaeva E, Sato C, Grinberg M, Moreno D, Hussain MW, Blennow K, Zetterberg H, Davis KD, Wennberg R, Tator C, Tartaglia MC. Functional connectivity changes in neurodegenerative biomarker-positive athletes with repeated concussions. J Neurol 2024; 271:4180-4190. [PMID: 38589629 DOI: 10.1007/s00415-024-12340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - David Mikulis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Apameh Tarazi
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Asma Mushtaque
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Neda Anssari
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Brain Vision and Concussion Clinic, Winnipeg, Canada
| | - Brenda Colella
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Robin Green
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Mohammed W Hussain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Karen D Davis
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
- Krembil Brain Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Richard Wennberg
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles Tator
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.
- Canadian Concussion Centre, Toronto Western Hospital, University Health Network, Toronto, Canada.
| |
Collapse
|
12
|
Huang S, Han J, Zheng H, Li M, Huang C, Kui X, Liu J. Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury: predictors of patient prognosis. Neural Regen Res 2024; 19:1553-1558. [PMID: 38051899 PMCID: PMC10883483 DOI: 10.4103/1673-5374.387971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00035/figure1/v/2023-11-20T171125Z/r/image-tiff
Patients with mild traumatic brain injury have a diverse clinical presentation, and the underlying pathophysiology remains poorly understood. Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neurobiological markers after mild traumatic brain injury. This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury. Graph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function. However, most previous mild traumatic brain injury studies using graph theory have focused on specific populations, with limited exploration of simultaneous abnormalities in structural and functional connectivity. Given that mild traumatic brain injury is the most common type of traumatic brain injury encountered in clinical practice, further investigation of the patient characteristics and evolution of structural and functional connectivity is critical. In the present study, we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury. In this longitudinal study, we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 weeks of injury, as well as 36 healthy controls. Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis. In the acute phase, patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network. More than 3 months of follow-up data revealed signs of recovery in structural and functional connectivity, as well as cognitive function, in 22 out of the 46 patients. Furthermore, better cognitive function was associated with more efficient networks. Finally, our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury. These findings highlight the importance of integrating structural and functional connectivity in understanding the occurrence and evolution of mild traumatic brain injury. Additionally, exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jungong Han
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Mengjun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Radiology, Quality Control Center of Hunan Province, Changsha, Hunan Province, China
- Clinical Research Center for Medical Imaging of Hunan Province, Changsha, Hunan Province, China
| |
Collapse
|
13
|
Pini L, Lombardi G, Sansone G, Gaiola M, Padovan M, Volpin F, Denaro L, Corbetta M, Salvalaggio A. Indirect functional connectivity does not predict overall survival in glioblastoma. Neurobiol Dis 2024; 196:106521. [PMID: 38697575 DOI: 10.1016/j.nbd.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Lesion network mapping (LNM) is a popular framework to assess clinical syndromes following brain injury. The classical approach involves embedding lesions from patients into a normative functional connectome and using the corresponding functional maps as proxies for disconnections. However, previous studies indicated limited predictive power of this approach in behavioral deficits. We hypothesized similarly low predictiveness for overall survival (OS) in glioblastoma (GBM). METHODS A retrospective dataset of patients with GBM was included (n = 99). Lesion masks were registered in the normative space to compute disconnectivity maps. The brain functional normative connectome consisted in data from 173 healthy subjects obtained from the Human Connectome Project. A modified version of the LNM was then applied to core regions of GBM masks. Linear regression, classification, and principal component (PCA) analyses were conducted to explore the relationship between disconnectivity and OS. OS was considered both as continuous and categorical (low, intermediate, and high survival) variable. RESULTS The results revealed no significant associations between OS and network disconnection strength when analyzed at both voxel-wise and classification levels. Moreover, patients stratified into different OS groups did not exhibit significant differences in network connectivity patterns. The spatial similarity among the first PCA of network maps for each OS group suggested a lack of distinctive network patterns associated with survival duration. CONCLUSIONS Compared with indirect structural measures, functional indirect mapping does not provide significant predictive power for OS in patients with GBM. These findings are consistent with previous research that demonstrated the limitations of indirect functional measures in predicting clinical outcomes, underscoring the need for more comprehensive methodologies and a deeper understanding of the factors influencing clinical outcomes in this challenging disease.
Collapse
Affiliation(s)
- Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Giulio Sansone
- Departments of Neuroscience, University of Padova, Italy
| | - Matteo Gaiola
- Departments of Neuroscience, University of Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesco Volpin
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, Padova, Italy
| | - Luca Denaro
- Departments of Neuroscience, University of Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Italy; Departments of Neuroscience, University of Padova, Italy; Veneto institute of Molecular Medicine (VIMM), Padova, Italy
| | | |
Collapse
|
14
|
Dogra S, Arabshahi S, Wei J, Saidenberg L, Kang SK, Chung S, Laine A, Lui YW. Functional Connectivity Changes on Resting-State fMRI after Mild Traumatic Brain Injury: A Systematic Review. AJNR Am J Neuroradiol 2024; 45:795-801. [PMID: 38637022 PMCID: PMC11288594 DOI: 10.3174/ajnr.a8204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Mild traumatic brain injury is theorized to cause widespread functional changes to the brain. Resting-state fMRI may be able to measure functional connectivity changes after traumatic brain injury, but resting-state fMRI studies are heterogeneous, using numerous techniques to study ROIs across various resting-state networks. PURPOSE We systematically reviewed the literature to ascertain whether adult patients who have experienced mild traumatic brain injury show consistent functional connectivity changes on resting-state -fMRI, compared with healthy patients. DATA SOURCES We used 5 databases (PubMed, EMBASE, Cochrane Central, Scopus, Web of Science). STUDY SELECTION Five databases (PubMed, EMBASE, Cochrane Central, Scopus, and Web of Science) were searched for research published since 2010. Search strategies used keywords of "functional MR imaging" and "mild traumatic brain injury" as well as related terms. All results were screened at the abstract and title levels by 4 reviewers according to predefined inclusion and exclusion criteria. For full-text inclusion, each study was evaluated independently by 2 reviewers, with discordant screening settled by consensus. DATA ANALYSIS Data regarding article characteristics, cohort demographics, fMRI scan parameters, data analysis processing software, atlas used, data characteristics, and statistical analysis information were extracted. DATA SYNTHESIS Across 66 studies, 80 areas were analyzed 239 times for at least 1 time point, most commonly using independent component analysis. The most analyzed areas and networks were the whole brain, the default mode network, and the salience network. Reported functional connectivity changes varied, though there may be a slight trend toward decreased whole-brain functional connectivity within 1 month of traumatic brain injury and there may be differences based on the time since injury. LIMITATIONS Studies of military, sports-related traumatic brain injury, and pediatric patients were excluded. Due to the high number of relevant studies and data heterogeneity, we could not be as granular in the analysis as we would have liked. CONCLUSIONS Reported functional connectivity changes varied, even within the same region and network, at least partially reflecting differences in technical parameters, preprocessing software, and analysis methods as well as probable differences in individual injury. There is a need for novel rs-fMRI techniques that better capture subject-specific functional connectivity changes.
Collapse
Affiliation(s)
- Siddhant Dogra
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Soroush Arabshahi
- Department of Biomedical Engineering (S.A., A.L.), Department of Radiology, Columbia University, New York, New York
| | - Jason Wei
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Lucia Saidenberg
- Department of Neurology (L.S.), Department of Radiology. New York University Grossman School of Medicine, New York, New York
| | - Stella K Kang
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Sohae Chung
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| | - Andrew Laine
- Department of Biomedical Engineering (S.A., A.L.), Department of Radiology, Columbia University, New York, New York
| | - Yvonne W Lui
- From the Department of Radiology (S.D., J.W., S.K.K., S.C., Y.L.), New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
15
|
Kagialis A, Simos N, Manolitsi K, Vakis A, Simos P, Papadaki E. Functional connectivity-hemodynamic (un)coupling changes in chronic mild brain injury are associated with mental health and neurocognitive indices: a resting state fMRI study. Neuroradiology 2024; 66:985-998. [PMID: 38605104 PMCID: PMC11133187 DOI: 10.1007/s00234-024-03352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE To examine hemodynamic and functional connectivity alterations and their association with neurocognitive and mental health indices in patients with chronic mild traumatic brain injury (mTBI). METHODS Resting-state functional MRI (rs-fMRI) and neuropsychological assessment of 37 patients with chronic mTBI were performed. Intrinsic connectivity contrast (ICC) and time-shift analysis (TSA) of the rs-fMRI data allowed the assessment of regional hemodynamic and functional connectivity disturbances and their coupling (or uncoupling). Thirty-nine healthy age- and gender-matched participants were also examined. RESULTS Patients with chronic mTBI displayed hypoconnectivity in bilateral hippocampi and parahippocampal gyri and increased connectivity in parietal areas (right angular gyrus and left superior parietal lobule (SPL)). Slower perfusion (hemodynamic lag) in the left anterior hippocampus was associated with higher self-reported symptoms of depression (r = - 0.53, p = .0006) and anxiety (r = - 0.484, p = .002), while faster perfusion (hemodynamic lead) in the left SPL was associated with lower semantic fluency (r = - 0.474, p = .002). Finally, functional coupling (high connectivity and hemodynamic lead) in the right anterior cingulate cortex (ACC)) was associated with lower performance on attention and visuomotor coordination (r = - 0.50, p = .001), while dysfunctional coupling (low connectivity and hemodynamic lag) in the left ventral posterior cingulate cortex (PCC) and right SPL was associated with lower scores on immediate passage memory (r = - 0.52, p = .001; r = - 0.53, p = .0006, respectively). Uncoupling in the right extrastriate visual cortex and posterior middle temporal gyrus was negatively associated with cognitive flexibility (r = - 0.50, p = .001). CONCLUSION Hemodynamic and functional connectivity differences, indicating neurovascular (un)coupling, may be linked to mental health and neurocognitive indices in patients with chronic mTBI.
Collapse
Affiliation(s)
- Antonios Kagialis
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, 71003, Crete, Greece
| | - Nicholas Simos
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Katina Manolitsi
- Department of Neurosurgery, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Antonios Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, 71003, Crete, Greece.
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
16
|
Ruiz T, Brown S, Farivar R. Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI. Vision (Basel) 2024; 8:33. [PMID: 38804354 PMCID: PMC11130927 DOI: 10.3390/vision8020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Traditional neuroimaging methods have identified alterations in brain activity patterns following mild traumatic brain injury (mTBI), particularly during rest, complex tasks, and normal vision. However, studies using graph theory to examine brain network changes in mTBI have produced varied results, influenced by the specific networks and task demands analyzed. In our study, we employed functional MRI to observe 17 mTBI patients and 54 healthy individuals as they viewed a simple, non-narrative underwater film, simulating everyday visual tasks. This approach revealed significant mTBI-related changes in network connectivity, efficiency, and organization. Specifically, the mTBI group exhibited higher overall connectivity and local network specialization, suggesting enhanced information integration without overwhelming the brain's processing capabilities. Conversely, these patients showed reduced network segregation, indicating a less compartmentalized brain function compared to healthy controls. These patterns were consistent across various visual cortex subnetworks, except in primary visual areas. Our findings highlight the potential of using naturalistic stimuli in graph-based neuroimaging to understand brain network alterations in mTBI and possibly other conditions affecting brain integration.
Collapse
Affiliation(s)
- Tatiana Ruiz
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 0A4, Canada (S.B.)
- Research Institute of the McGill University Health Center, Montreal, QC H3G 1A4, Canada
| | - Shael Brown
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 0A4, Canada (S.B.)
- Research Institute of the McGill University Health Center, Montreal, QC H3G 1A4, Canada
| | - Reza Farivar
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 0A4, Canada (S.B.)
- Research Institute of the McGill University Health Center, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
17
|
Arabshahi S, Chung S, Alivar A, Amorapanth PX, Flanagan SR, Foo FYA, Laine AF, Lui YW. A Comprehensive and Broad Approach to Resting-State Functional Connectivity in Adult Patients with Mild Traumatic Brain Injury. AJNR Am J Neuroradiol 2024; 45:637-646. [PMID: 38604737 PMCID: PMC11288538 DOI: 10.3174/ajnr.a8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.
Collapse
Affiliation(s)
- Soroush Arabshahi
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Sohae Chung
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Alaleh Alivar
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Prin X Amorapanth
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Steven R Flanagan
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Farng-Yang A Foo
- Department of Neurology (F.-Y.A.F.), NYU Grossman School of Medicine, New York, New York
| | - Andrew F Laine
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Yvonne W Lui
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
18
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
19
|
Delfel EL, Aguinaldo L, Correa K, Courtney KE, Max JE, Tapert SF, Jacobus J. Traumatic brain injury, working memory-related neural processing, and alcohol experimentation behaviors in youth from the ABCD cohort. Dev Cogn Neurosci 2024; 66:101344. [PMID: 38277713 PMCID: PMC10832371 DOI: 10.1016/j.dcn.2024.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Adolescent traumatic brain injury (TBI) has long-term effects on brain functioning and behavior, impacting neural activity under cognitive load, especially in the reward network. Adolescent TBI is also linked to risk-taking behaviors including alcohol misuse. It remains unclear how TBI and neural functioning interact to predict alcohol experimentation during adolescence. Using Adolescent Brain Cognitive Development (ABCD) study data, this project examined if TBI at ages 9-10 predicts increased odds of alcohol sipping at ages 11-13 and if this association is moderated by neural activity during the Emotional EN-Back working memory task at ages 11-13. Logistic regression analyses showed that neural activity in regions of the fronto-basal ganglia network predicted increased odds of sipping alcohol by ages 11-13 (p < .05). TBI and left frontal pole activity interacted to predict alcohol sipping (OR = 0.507, 95% CI [0.303 - 0.846], p = .009) - increased activity predicted decreased odds of alcohol sipping for those with a TBI (OR = 0.516, 95% CI [0.314 - 0.850], p = .009), but not for those without (OR = 0.971, 95% CI [0.931 -1.012], p = .159). These findings suggest that for youth with a TBI, increased BOLD activity in the frontal pole, underlying working memory, may be uniquely protective against the early initiation of alcohol experimentation. Future work will examine TBI and alcohol misuse in the ABCD cohort across more time points and the impact of personality traits such as impulsivity on these associations.
Collapse
Affiliation(s)
- Everett L Delfel
- SDSU / UC San Diego Joint Doctoral Program in Clinical Psychology, USA; University of California, San Diego, Department of Psychiatry, USA
| | - Laika Aguinaldo
- University of California, San Diego, Department of Psychiatry, USA
| | - Kelly Correa
- University of California, San Diego, Department of Psychiatry, USA
| | - Kelly E Courtney
- University of California, San Diego, Department of Psychiatry, USA
| | - Jeffrey E Max
- University of California, San Diego, Department of Psychiatry, USA
| | - Susan F Tapert
- University of California, San Diego, Department of Psychiatry, USA
| | - Joanna Jacobus
- University of California, San Diego, Department of Psychiatry, USA.
| |
Collapse
|
20
|
Caeyenberghs K, Imms P, Irimia A, Monti MM, Esopenko C, de Souza NL, Dominguez D JF, Newsome MR, Dobryakova E, Cwiek A, Mullin HAC, Kim NJ, Mayer AR, Adamson MM, Bickart K, Breedlove KM, Dennis EL, Disner SG, Haswell C, Hodges CB, Hoskinson KR, Johnson PK, Königs M, Li LM, Liebel SW, Livny A, Morey RA, Muir AM, Olsen A, Razi A, Su M, Tate DF, Velez C, Wilde EA, Zielinski BA, Thompson PM, Hillary FG. ENIGMA's simple seven: Recommendations to enhance the reproducibility of resting-state fMRI in traumatic brain injury. Neuroimage Clin 2024; 42:103585. [PMID: 38531165 PMCID: PMC10982609 DOI: 10.1016/j.nicl.2024.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024]
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Martin M Monti
- Department of Psychology, UCLA, USA; Brain Injury Research Center (BIRC), Department of Neurosurgery, UCLA, USA.
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Nicola L de Souza
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Juan F Dominguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Mary R Newsome
- Michael E. DeBakey VA Medical Center, Houston, TX, USA; H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA; Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Andrew Cwiek
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Hollie A C Mullin
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Nicholas J Kim
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM, USA; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Maheen M Adamson
- Women's Operational Military Exposure Network (WOMEN) & Rehabilitation Department, VA Palo Alto, Palo Alto, CA, USA; Rehabilitation Service, VA Palo Alto, Palo Alto, CA, USA; Neurosurgery, Stanford School of Medicine, Stanford, CA, USA.
| | - Kevin Bickart
- UCLA Steve Tisch BrainSPORT Program, USA; Department of Neurology, David Geffen School of Medicine at UCLA, USA.
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Courtney Haswell
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, OH, USA.
| | - Paula K Johnson
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; Neuroscience Center, Brigham Young University, Provo, UT, USA.
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, The Netherlands; Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| | - Lucia M Li
- C3NL, Imperial College London, United Kingdom; UK DRI Centre for Health Care and Technology, Imperial College London, United Kingdom.
| | - Spencer W Liebel
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA.
| | - Alexandra M Muir
- Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; NorHEAD - Norwegian Centre for Headache Research, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| | - Matthew Su
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Carmen Velez
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Elisabeth A Wilde
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Brandon A Zielinski
- Departments of Pediatrics, Neurology, and Neuroscience, University of Florida, Gainesville, FL, USA; Departments of Pediatrics, Neurology, and Radiology, University of Utah, Salt Lake City, UT, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA.
| | - Frank G Hillary
- Department of Psychology, Penn State University, State College, PA, USA; Department of Neurology, Hershey Medical Center, PA, USA.
| |
Collapse
|
21
|
Bouchard HC, Higgins KL, Amadon GK, Laing-Young JM, Maerlender A, Al-Momani S, Neta M, Savage CR, Schultz DH. Concussion-Related Disruptions to Hub Connectivity in the Default Mode Network Are Related to Symptoms and Cognition. J Neurotrauma 2024; 41:571-586. [PMID: 37974423 DOI: 10.1089/neu.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Concussions present with a myriad of symptomatic and cognitive concerns; however, the relationship between these functional disruptions and the underlying changes in the brain are not yet well understood. Hubs, or brain regions that are connected to many different functional networks, may be specifically disrupted after concussion. Given the implications in concussion research, we quantified hub disruption within the default mode network (DMN) and between the DMN and other brain networks. We collected resting-state functional magnetic resonance imaging data from collegiate student-athletes (n = 44) at three time points: baseline (before beginning their athletic season), acute post-injury (approximately 48h after a diagnosed concussion), and recovery (after starting return-to-play progression, but before returning to contact). We used self-reported symptoms and computerized cognitive assessments collected across similar time points to link these functional connectivity changes to clinical outcomes. Concussion resulted in increased connectivity between regions within the DMN compared with baseline and recovery, and this post-injury connectivity was more positively related to symptoms and more negatively related to visual memory performance compared with baseline and recovery. Further, concussion led to decreased connectivity between DMN hubs and visual network non-hubs relative to baseline and recovery, and this post-injury connectivity was more negatively related to somatic symptoms and more positively related to visual memory performance compared with baseline and recovery. Relationships between functional connectivity, symptoms, and cognition were not significantly different at baseline versus recovery. These results highlight a unique relationship between self-reported symptoms, visual memory performance, and acute functional connectivity changes involving DMN hubs after concussion in athletes. This may provide evidence for a disrupted balance of within- and between-network communication highlighting possible network inefficiencies after concussion. These results aid in our understanding of the pathophysiological disruptions after concussion and inform our understanding of the associations between disruptions in brain connectivity and specific clinical presentations acutely post-injury.
Collapse
Affiliation(s)
- Heather C Bouchard
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kate L Higgins
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Athletics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Grace K Amadon
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Julia M Laing-Young
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arthur Maerlender
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Seima Al-Momani
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Maital Neta
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cary R Savage
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Douglas H Schultz
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
22
|
Wei YC, Chen CK, Lin C, Shyu YC, Chen PY. Life After Traumatic Brain Injury: Effects on the Lifestyle and Quality of Life of Community-Dwelling Patients. Neurotrauma Rep 2024; 5:159-171. [PMID: 38463415 PMCID: PMC10924056 DOI: 10.1089/neur.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Persons who have experienced traumatic brain injury (TBI) may encounter a range of changes in their physical, mental, and cognitive functions as well as high fatigue levels. To gain a comprehensive understanding of the challenges faced by persons after TBI, we conducted multi-domain assessments among community-dwelling persons with a history of TBI and compared them with age- and sex-matched controls from the Northeastern Taiwan Community Medicine Research Cohort between 2019 and 2021. A total of 168 persons with TBI and 672 non-TBI controls were not different in terms of demographics, comorbidities, and physiological features. However, compared with the non-TBI group, the TBI group had a distinct lifestyle that involved increased reliance on analgesics (6.9% vs. 15.0%, respectively; p = 0.001) and sleep aids (p = 0.008), which negatively affected their quality of life. Moreover, they consumed more coffee (p < 0.001), tea (p < 0.001), cigarettes (p = 0.002), and betel nuts (p = 0.032) than did the non-TBI group. Notably, the use of coffee had a positive effect on the quality of life of the TBI group (F = 4.034; p = 0.045). Further, compared with the non-TBI group, the TBI group had increased risks of sarcopenia (p = 0.003), malnutrition (p = 0.003), and anxiety (p = 0.029) and reduced blood levels of vitamin D (29.83 ± 10.39 vs. 24.20 ± 6.59 ng/mL, respectively; p < 0.001). Overall, the TBI group had a reduced health-related quality of life, with significant challenges related to physical health, mental well-being, social interactions, pain management, and fatigue levels. Moreover, the TBI group experienced poorer sleep quality and efficiency than did the non-TBI group. In conclusion, persons who have sustained brain injuries that require comprehensive and holistic care that includes lifestyle modification, mental and physical healthcare plans, and increased long-term support from their communities. ClinicalTrials.gov (identifier: NCT04839796).
Collapse
Affiliation(s)
- Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chih-Ken Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chemin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| |
Collapse
|
23
|
van der Horn HJ, Ling JM, Wick TV, Dodd AB, Robertson-Benta CR, McQuaid JR, Zotev V, Vakhtin AA, Ryman SG, Cabral J, Phillips JP, Campbell RA, Sapien RE, Mayer AR. Dynamic Functional Connectivity in Pediatric Mild Traumatic Brain Injury. Neuroimage 2024; 285:120470. [PMID: 38016527 PMCID: PMC10815936 DOI: 10.1016/j.neuroimage.2023.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.
Collapse
Affiliation(s)
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Tracey V Wick
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Vadim Zotev
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | | | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131
| | - Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131; Department of Psychology, University of New Mexico, Albuquerque, NM 87131; Department of Neurology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
24
|
Wang Y, Chen Q, Zhang X, Wang K, Cheng H, Chen X. Changes in decision-making function in patients with subacute mild traumatic brain injury. Eur J Neurosci 2024; 59:69-81. [PMID: 38044718 DOI: 10.1111/ejn.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
Although awareness regarding patients with mild traumatic brain injury has increased, they have not received sufficient attention in clinics; hence, many patients still experience only partial recovery. Deficits in decision-making function are frequently experienced by these patients. Accurate identification of impairment in the early stages after brain injury is particularly crucial for timely intervention and the prevention of long-term cognitive consequences. Therefore, we investigated the changes in decision-making ability under tasks of ambiguity and risk in patients with mild traumatic brain injury with a rule-based neuropsychological paradigm. In this study, patients (n = 39) and matched healthy controls (n = 38) completed general neuropsychological background tests and decision-making tasks (Iowa Gambling Task and Game of Dice Task). We found that patients had extensive cognitive impairment in general attention, memory and information processing speed in the subacute phase, and confirmed that patients had different degrees of impairment in decision-making abilities under ambiguity and risk. Furthermore, the decline of memory and executive function may be related to decision-making dysfunction.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qing Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyu Zhang
- Department of Neurosurgery, Funan County People's Hospital, Fuyang, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingui Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| |
Collapse
|
25
|
van der Horn HJ, de Koning ME, Visser K, Kok MGJ, Spikman JM, Scheenen ME, Renken RJ, Calhoun VD, Vergara VM, Cabral J, Mayer AR, van der Naalt J. Dynamic phase-locking states and personality in sub-acute mild traumatic brain injury: An exploratory study. PLoS One 2023; 18:e0295984. [PMID: 38100479 PMCID: PMC10723684 DOI: 10.1371/journal.pone.0295984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Research has shown that maladaptive personality characteristics, such as Neuroticism, are associated with poor outcome after mild traumatic brain injury (mTBI). The current exploratory study investigated the neural underpinnings of this process using dynamic functional network connectivity (dFNC) analyses of resting-state (rs) fMRI, and diffusion MRI (dMRI). Twenty-seven mTBI patients and 21 healthy controls (HC) were included. After measuring the Big Five personality dimensions, principal component analysis (PCA) was used to obtain a superordinate factor representing emotional instability, consisting of high Neuroticism, moderate Openness, and low Extraversion, Agreeableness, and Conscientiousness. Persistent symptoms were measured using the head injury symptom checklist at six months post-injury; symptom severity (i.e., sum of all items) was used for further analyses. For patients, brain MRI was performed in the sub-acute phase (~1 month) post-injury. Following parcellation of rs-fMRI using independent component analysis, leading eigenvector dynamic analysis (LEiDA) was performed to compute dynamic phase-locking brain states. Main patterns of brain diffusion were computed using tract-based spatial statistics followed by PCA. No differences in phase-locking state measures were found between patients and HC. Regarding dMRI, a trend significant decrease in fractional anisotropy was found in patients relative to HC, particularly in the fornix, genu of the corpus callosum, anterior and posterior corona radiata. Visiting one specific phase-locking state was associated with lower symptom severity after mTBI. This state was characterized by two clearly delineated communities (each community consisting of areas with synchronized phases): one representing an executive/saliency system, with a strong contribution of the insulae and basal ganglia; the other representing the canonical default mode network. In patients who scored high on emotional instability, this relationship was even more pronounced. Dynamic phase-locking states were not related to findings on dMRI. Altogether, our results provide preliminary evidence for the coupling between personality and dFNC in the development of long-term symptoms after mTBI.
Collapse
Affiliation(s)
- Harm J. van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, NM, United States of America
| | | | - Koen Visser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius G. J. Kok
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacoba M. Spikman
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Myrthe E. Scheenen
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States of America
| | - Victor M. Vergara
- Tri-institutional Center for Translational Research (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States of America
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, NM, United States of America
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
- Department of Psychology, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Duquette-Laplante F, Macaskill M, Jutras B, Jemel B, Koravand A. Brain functional connectivity in children with a mild traumatic brain injury: A scoping review. APPLIED NEUROPSYCHOLOGY. CHILD 2023:1-12. [PMID: 38100747 DOI: 10.1080/21622965.2023.2293248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The occurrence of mild traumatic brain injury(mTBI) is estimated at 0,2-0,3% cases annually. Following a mTBI, some children experience persistent symptoms, and functional connectivity(FC) changes may be implicated. However, characteristics of FC have not been widely described in this population. This scoping review aimed to identify and understand the impacts of mTBI on EEG-measured FC in children, provide an overview of the available literature, detail analysis techniques, and describe gaps in the research. METHODS PubMed, Web of Science, Medline, Embase, ProQuest and CINAHL were searched up to June 25, 2023, with the terms child, mTBI, EEG, FC, and their synonyms. Ten studies were identified. RESULTS Five studies reported significant differences between the mTBI group and controls. In addition to group differences, six studies reported significant variation over time. Brain Network Analysis(BNA), utilized in seven studies, was the primary FC analysis recorded. Two of the five studies that reported significant differences following mTBI utilized the BNA. The other three applied alternative analysis methods. DISCUSSION FC assessment based on EEG can identify some differences in children with mTBI. BNA was more useful in following changes over time. Further research is suggested, considering the limited age range and number of retrieved studies.
Collapse
Affiliation(s)
- F Duquette-Laplante
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
- School of Speech-Language Pathology and Audiology, Université de Montréal, Montreal, Canada
- Research Center, CHU Sainte-Justine, Montreal, Canada
| | - M Macaskill
- Centre de Recherche en Audiologie pédiatrique, Hôpital Necker, Paris, France
| | - B Jutras
- School of Speech-Language Pathology and Audiology, Université de Montréal, Montreal, Canada
- Research Center, CHU Sainte-Justine, Montreal, Canada
| | - B Jemel
- School of Speech-Language Pathology and Audiology, Université de Montréal, Montreal, Canada
- Research Laboratory in Neurosciences and Cognitive Electrophysiology, Research Center CIUSS-NIM, Hôpital Rivière des Prairies, Montréal, Canada
| | - A Koravand
- Audiology and Speech Pathology Program, School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
27
|
Rakers SE, Liemburg EJ, van der Horn HJ, de Groot JC, Spikman JM, van der Naalt J. The impact of frontal lesions after mild to moderate traumatic brain injury on frontal network measures. PLoS One 2023; 18:e0287832. [PMID: 38033099 PMCID: PMC10688722 DOI: 10.1371/journal.pone.0287832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/14/2023] [Indexed: 12/02/2023] Open
Abstract
To investigate the impact of frontal macro-structural lesions on intrinsic network measures, we examined brain network function during resting-state fMRI in patients with frontal lesions in the subacute phase after mild to moderate traumatic brain injury. Additionally, network function was related to neuropsychological performances. 17 patients with frontal lesions, identified on admission CT after mild to moderate trauma, were compared to 30 traumatic brain injury patients without frontal lesions and 20 healthy controls. Three months post-injury, we acquired fMRI scans and neuropsychological assessments (measuring frontal executive functions and information processing speed). Using independent component analysis, the activity of and connectivity between network components (largely located in the prefrontal cortex) and relations with neuropsychological measures were examined and compared across groups. The analysis yielded five predominantly frontal components: anterior and posterior part of the default mode network, left and right frontoparietal network and salience network. No significant differences concerning fMRI measures were found across groups. However, the frontal lesions group performed significantly worse on neuropsychological tests than the other two groups. Additionally, the frontal lesions group showed a significant positive association of stronger default mode network-salience network connectivity with better executive performances. Our findings suggest that, on fMRI level, frontal network measures are not largely affected by frontal lesions following a mild to moderate traumatic brain injury. Yet, patients with damage to the frontal structures did show poorer executive abilities which might to some degree be related to altered frontal network connectivity between the default mode network and salience network.
Collapse
Affiliation(s)
- Sandra E. Rakers
- Department of Clinical Neuropsychology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edith J. Liemburg
- BCN Neuroimaging Center of the Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm J. van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Cees de Groot
- Department of Radiology, Medical Imaging Centre, Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jacoba M. Spikman
- Department of Clinical Neuropsychology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
28
|
Coyle HL, Bailey NW, Ponsford J, Hoy KE. A comprehensive characterization of cognitive performance, clinical symptoms, and cortical activity following mild traumatic brain injury (mTBI). APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-17. [PMID: 38015637 DOI: 10.1080/23279095.2023.2286493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The objective of this study was to investigate clinical symptoms, cognitive performance and cortical activity following mild traumatic brain injury (mTBI). METHODS We recruited 30 individuals in the sub-acute phase post mTBI and 28 healthy controls with no history of head injury and compared these groups on clinical, cognitive and cortical activity measures. Measures of cortical activity included; resting state electroencephalography (EEG), task related EEG and combined transcranial magnetic stimulation with electroencephalography (TMS-EEG). Primary analyses investigated clinical, cognitive and cortical activity differences between groups. Exploratory analyses investigated the relationships between these measures. RESULTS At 4 weeks' post injury, mTBI participants exhibited significantly greater post concussive and clinical symptoms compared to controls; as well as reduced cognitive performance on verbal learning and working memory measures. mTBI participants demonstrated alterations in cortical activity while at rest and in response to stimulation with TMS. CONCLUSIONS The present study comprehensively characterized the multidimensional effect of mTBI in the sub-acute phase post injury, showing a broad range of differences compared to non-mTBI participants. Further research is needed to explore the relationship between these pathophysiologies and clinical/cognitive symptoms in mTBI.
Collapse
Affiliation(s)
- Hannah L Coyle
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Australia
| | - Neil W Bailey
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Australia
- Monarch Research Institute Monarch Mental Health Group, Sydney, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - Kate E Hoy
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Australia
- Bionics Institute of Australia, East Melbourne, Australia
| |
Collapse
|
29
|
Abdul Baki S, Zakeri Z, Chari G, Fenton A, Omurtag A. Relaxed Alert Electroencephalography Screening for Mild Traumatic Brain Injury in Athletes. Int J Sports Med 2023; 44:896-905. [PMID: 37164326 DOI: 10.1055/a-2091-4860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Due to the mildness of initial injury, many athletes with recurrent mild traumatic brain injury (mTBI) are misdiagnosed with other neuropsychiatric illnesses. This study was designed as a proof-of-principle feasibility trial for athletic trainers at a sports facility to generate electroencephalograms (EEGs) from student athletes for discriminating (mTBI) associated EEGs from uninjured ones. A total of 47 EEGs were generated, with 30 athletes recruited at baseline (BL) pre-season, after a concussive injury (IN), and post-season (PS). Outcomes included: 1) visual analyses of EEGs by a neurologist; 2) support vector machine (SVM) classification for inferences about whether particular groups belonged to the three subgroups of BL, IN, or PS; and 3) analyses of EEG synchronies including phase locking value (PLV) computed between pairs of distinct electrodes. All EEGs were visually interpreted as normal. SVM classification showed that BL and IN could be discriminated with 81% accuracy using features of EEG synchronies combined. Frontal inter-hemispheric phase synchronization measured by PLV was significantly lower in the IN group. It is feasible for athletic trainers to record high quality EEGs from student athletes. Also, spatially localized metrics of EEG synchrony can discriminate mTBI associated EEGs from control EEGs.
Collapse
Affiliation(s)
- Samah Abdul Baki
- Clinical BioSignal Group Corp., Acton, Massachusetts, United States
| | - Zohreh Zakeri
- Department of Engineering, Nottingham Trent University School of Science and Technology, Nottingham, United Kingdom of Great Britain and Northern Ireland
| | - Geetha Chari
- Pediatric Neurology, SUNY Downstate Medical Center, New York City, United States
| | - André Fenton
- Center for Neural Science, NYU, New York, United States
| | - Ahmet Omurtag
- Department of Engineering, Nottingham Trent University School of Science and Technology, Nottingham, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
30
|
Anderson ED, Talukdar T, Goodwin G, Di Pietro V, Yakoub KM, Zwilling CE, Davies D, Belli A, Barbey AK. Assessing blood oxygen level-dependent signal variability as a biomarker of brain injury in sport-related concussion. Brain Commun 2023; 5:fcad215. [PMID: 37649639 PMCID: PMC10465085 DOI: 10.1093/braincomms/fcad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/02/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Mild traumatic brain injury is a complex neurological disorder of significant concern among athletes who play contact sports. Athletes who sustain sport-related concussion typically undergo physical examination and neurocognitive evaluation to determine injury severity and return-to-play status. However, traumatic disruption to neurometabolic processes can occur with minimal detectable anatomic pathology or neurocognitive alteration, increasing the risk that athletes may be cleared for return-to-play during a vulnerable period and receive a repetitive injury. This underscores the need for sensitive functional neuroimaging methods to detect altered cerebral physiology in concussed athletes. The present study compared the efficacy of Immediate Post-concussion Assessment and Cognitive Testing composite scores and whole-brain measures of blood oxygen level-dependent signal variability for classifying concussion status and predicting concussion symptomatology in healthy, concussed and repetitively concussed athletes, assessing blood oxygen level-dependent signal variability as a potential diagnostic tool for characterizing functional alterations to cerebral physiology and assisting in the detection of sport-related concussion. We observed significant differences in regional blood oxygen level-dependent signal variability measures for concussed athletes but did not observe significant differences in Immediate Post-concussion Assessment and Cognitive Testing scores of concussed athletes. We further demonstrate that incorporating measures of functional brain alteration alongside Immediate Post-concussion Assessment and Cognitive Testing scores enhances the sensitivity and specificity of supervised random forest machine learning methods when classifying and predicting concussion status and post-concussion symptoms, suggesting that alterations to cerebrovascular status characterize unique variance that may aid in the detection of sport-related concussion and repetitive mild traumatic brain injury. These results indicate that altered blood oxygen level-dependent variability holds promise as a novel neurobiological marker for detecting alterations in cerebral perfusion and neuronal functioning in sport-related concussion, motivating future research to establish and validate clinical assessment protocols that can incorporate advanced neuroimaging methods to characterize altered cerebral physiology following mild traumatic brain injury.
Collapse
Affiliation(s)
- Evan D Anderson
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
| | - Tanveer Talukdar
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Grace Goodwin
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Psychology, University of Nevada, Las Vegas, NV 89557, USA
| | - Valentina Di Pietro
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Kamal M Yakoub
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Christopher E Zwilling
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David Davies
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Aron K Barbey
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Psychology, University of Illinois, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
31
|
Faulkner JW, Theadom A, Snell DL, Williams MN. Network analysis applied to post-concussion symptoms in two mild traumatic brain injury samples. Front Neurol 2023; 14:1226367. [PMID: 37545717 PMCID: PMC10398392 DOI: 10.3389/fneur.2023.1226367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Objective A latent disease explanation cannot exclusively explain post-concussion symptoms after mild traumatic brain injury (mTBI). Network analysis offers an alternative form of explanation for relationships between symptoms. The study aimed to apply network analysis to post-concussion symptoms in two different mTBI cohorts; an acute treatment-seeking sample and a sample 10 years post-mTBI. Method The treatment-seeking sample (n = 258) were on average 6 weeks post-injury; the 10 year post mTBI sample (n = 193) was derived from a population-based incidence and outcomes study (BIONIC). Network analysis was completed on post-concussion symptoms measured using the Rivermead Post-Concussion Questionnaire. Results In the treatment-seeking sample, frustration, blurred vision, and concentration difficulties were central to the network. These symptoms remained central in the 10 year post mTBI sample. A Network Comparison Test revealed evidence of a difference in network structure across the two samples (p = 0.045). However, the only symptoms that showed significant differences in strength centrality across samples were irritability and restlessness. Conclusion The current findings suggest that frustration, blurred vision and concentration difficulties may have an influential role in the experience and maintenance of post-concussion symptoms. The impact of these symptoms may remain stable over time. Targeting and prioritising the management of these symptoms may be beneficial for mTBI rehabilitation.
Collapse
Affiliation(s)
- Josh W. Faulkner
- Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| | - Alice Theadom
- TBI Network, Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
32
|
Waid-Ebbs JK, Wen PS, Grimes T, Datta S, Perlstein WM, Hammond CS, Daly JJ. Executive function improvement in response to meta-cognitive training in chronic mTBI / PTSD. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1189292. [PMID: 37484602 PMCID: PMC10360208 DOI: 10.3389/fresc.2023.1189292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/24/2023] [Indexed: 07/25/2023]
Abstract
Objective We tested Goal Management Training (GMT), which has been recommended as an executive training protocol that may improve the deficits in the complex tasks inherent in life role participation experienced by those with chronic mild traumatic brain injury and post-traumatic stress disease (mTBI/PTSD). We assessed, not only cognitive function, but also life role participation (quality of life). Methods We enrolled and treated 14 individuals and administered 10 GMT sessions in-person and provided the use of the Veterans Task Manager (VTM), a Smartphone App, which was designed to serve as a "practice-buddy" device to ensure translation of in-person learning to independent home and community practice of complex tasks. Pre-/post-treatment primary measure was the NIH Examiner, Unstructured Task. Secondary measures were as follows: Tower of London time to complete (cTOL), Community Reintegration of Service Members (CRIS) three subdomains [Extent of Participation; Limitations; Satisfaction of Life Role Participation (Satisfaction)]. We analyzed pre-post-treatment, t-test models to explore change, and generated descriptive statistics to inspect given individual patterns of change across measures. Results There was statistically significant improvement for the NIH EXAMINER Unstructured Task (p < .02; effect size = .67) and cTOL (p < .01; effect size = .52. There was a statistically significant improvement for two CRIS subdomains: Extent of Participation (p < .01; effect size = .75; Limitations (p < .05; effect size = .59). Individuals varied in their treatment response, across measures. Conclusions and Clinical Significance In Veterans with mTBI/PTSD in response to GMT and the VTM learning support buddy, there was significant improvement in executive cognition processes, sufficiently robust to produce significant improvement in community life role participation. The individual variations support need for precision neurorehabilitation. The positive results occurred in response to treatment advantages afforded by the content of the combined GMT and the employment of the VTM learning support buddy, with advantages including the following: manualized content of the GMT; incremental complex task difficulty; GMT structure and flexibility to incorporate individualized functional goals; and the VTM capability of ensuring translation of in-person instruction to home and community practice, solidifying newly learned executive cognitive processes. Study results support future study, including a potential randomized controlled trial, the manualized GMT and availability of the VTM to ensure future clinical deployment of treatment, as warranted.
Collapse
Affiliation(s)
- J. Kay Waid-Ebbs
- Department of Veterans Affairs (VA), Rehabilitation Research and Development, Brain Rehabilitation Research Center, Gainesville, FL, United States
| | - Pey-Shan Wen
- Department of Occupational Therapy, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Tyler Grimes
- Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL, United States
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - William M. Perlstein
- Department of Clinical & Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Carol Smith Hammond
- Audiology and Speech Pathology Service, Durham VAMC, Durham, NC, United States
- General Internal Medicine, Duke University, Durham, NC, United States
| | - Janis J. Daly
- Department of Veterans Affairs (VA), Rehabilitation Research and Development, Brain Rehabilitation Research Center, Gainesville, FL, United States
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
33
|
Kryza-Lacombe M, Santiago R, Hwang A, Raptentsetsang S, Maruyama BA, Chen J, Cassar M, Abrams G, Novakovic-Agopian T, Mukherjee P. Resting-State Connectivity Changes After Goal-Oriented Attentional Self-Regulation Training in Veterans With Mild Traumatic Brain Injury: Preliminary Findings from a Randomized Controlled Trial. Neurotrauma Rep 2023; 4:420-432. [PMID: 37405257 PMCID: PMC10316036 DOI: 10.1089/neur.2022.0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
Mild traumatic brain injury (mTBI) can have lasting consequences on cognitive functioning and well-being. Goal-Oriented Attentional Self-Regulation (GOALS) training has been shown to improve attention and executive functioning, as well as emotional functioning, in veterans with chronic TBI. An ongoing clinical trial (NCT02920788) is further evaluating GOALS training, including underlying neural mechanisms of change. The present study aimed to examine training-induced neuroplasticity by resting-state functional connectivity (rsFC) changes in GOALS versus active control. Veterans with a history of mTBI ≥6 months post-injury (N = 33) were randomly assigned to GOALS (n = 19) or an intensity-matched active control group (Brain Health Education [BHE] training; n = 14). GOALS consists of attention regulation and problem solving applied to individually defined, relevant goals through a combination of group, individual, and home practice sessions. Participants underwent multi-band resting-state functional magnetic resonance imaging at baseline and post-intervention. Exploratory 2 × 2 mixed analyses of variance identified pre-to-post changes in seed-based connectivity for GOALS versus BHE in five significant clusters. GOALS versus BHE demonstrated a significant increase in right lateral pre-frontal cortex connectivity with the right frontal pole and right middle temporal gyrus, as well as increased posterior cingulate connectivity with the pre-central gyrus. Rostral pre-frontal cortex connectivity with the right precuneus and the right frontal pole decreased in GOALS versus BHE. These GOALS-related changes in rsFC point to potential neural mechanisms underlying the intervention. This training-induced neuroplasticity may play a role in improved cognitive and emotional functioning post-GOALS.
Collapse
Affiliation(s)
- Maria Kryza-Lacombe
- Mental Illness Research Education and Clinical Centers, Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Rachel Santiago
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
| | - Anna Hwang
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Sky Raptentsetsang
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Brian A. Maruyama
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
| | - Jerry Chen
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
| | | | - Gary Abrams
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Tatjana Novakovic-Agopian
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| | - Pratik Mukherjee
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, California, USA
- University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Crasta JE, Nebel MB, Svingos A, Tucker RN, Chen HW, Busch T, Caffo BS, Stephens J, Suskauer SJ. Rethinking recovery in adolescent concussions: Network-level functional connectivity alterations associated with motor deficits. Hum Brain Mapp 2023; 44:3271-3282. [PMID: 36999674 PMCID: PMC10171516 DOI: 10.1002/hbm.26280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Adolescents who are clinically recovered from concussion continue to show subtle motor impairment on neurophysiological and behavioral measures. However, there is limited information on brain-behavior relationships of persistent motor impairment following clinical recovery from concussion. We examined the relationship between subtle motor performance and functional connectivity of the brain in adolescents with a history of concussion, status post-symptom resolution, and subjective return to baseline. Participants included 27 adolescents who were clinically recovered from concussion and 29 never-concussed, typically developing controls (10-17 years); all participants were examined using the Physical and Neurologic Examination of Subtle Signs (PANESS). Functional connectivity between the default mode network (DMN) or dorsal attention network (DAN) and regions of interest within the motor network was assessed using resting-state functional magnetic resonance imaging (rsfMRI). Compared to controls, adolescents clinically recovered from concussion showed greater subtle motor deficits as evaluated by the PANESS and increased connectivity between the DMN and left lateral premotor cortex. DMN to left lateral premotor cortex connectivity was significantly correlated with the total PANESS score, with more atypical connectivity associated with more motor abnormalities. This suggests that altered functional connectivity of the brain may underlie subtle motor deficits in adolescents who have clinically recovered from concussion. More investigation is required to understand the persistence and longer-term clinical relevance of altered functional connectivity and associated subtle motor deficits to inform whether functional connectivity may serve as an important biomarker related to longer-term outcomes after clinical recovery from concussion.
Collapse
Affiliation(s)
- Jewel E. Crasta
- Occupational Therapy DivisionThe Ohio State UniversityColumbusOhioUSA
| | - Mary Beth Nebel
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Adrian Svingos
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Robert N. Tucker
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Hsuan Wei Chen
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Tyler Busch
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Brian S. Caffo
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Jaclyn Stephens
- Department of Occupational TherapyColorado State UniversityFort CollinsColoradoUSA
| | - Stacy J. Suskauer
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
35
|
Brown O, Healey K, Fang Z, Zemek R, Smith A, Ledoux AA. Associations between psychological resilience and metrics of white matter microstructure in pediatric concussion. Hum Brain Mapp 2023. [PMID: 37126608 DOI: 10.1002/hbm.26321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
This study investigated associations between psychological resilience and characteristics of white matter microstructure in pediatric concussion. This is a case control study and a planned substudy of a larger randomized controlled trial. Children with an acute concussion or orthopedic injury were recruited from the emergency department. Participants completed both the Connor-Davidson Resilience Scale 10 and an MRI at 72 h and 4-weeks post-injury. The association between resiliency and fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) at both timepoints were examined. We examined whether these associations were moderated by group. The association between resiliency captured at 72 h and diffusion tensor imaging metrics at 4 weeks was also investigated. Clusters were extracted using a significance threshold of threshold-free cluster enhancement corrected p < .05. A total of 66 children with concussion (median (IQR) age = 12.88 (IQR: 11.80-14.36); 47% female) and 29 children with orthopedic-injury (median (IQR) age = 12.49 (IQR: 11.18-14.01); 41% female) were included. A negative correlation was identified in the concussion group between 72 h resilience and 72 h FA. Meanwhile, positive correlations were identified in the concussion group with concussion between 72 h resilience and both 72 h MD and 72 h RD. These findings suggest that 72 h resilience is associated with white matter microstructure of the forceps minor, superior longitudinal fasciculus, and anterior thalamic radiation at 72 h post-concussion. Resilience seems to be associated with neural integrity only in the acute phase of concussion and thus may be considered when researching concussion recovery.
Collapse
Affiliation(s)
- Olivier Brown
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine Healey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics and Emergency Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andra Smith
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Churchill NW, Roudaia E, Chen JJ, Gilboa A, Sekuler A, Ji X, Gao F, Lin Z, Jegatheesan A, Masellis M, Goubran M, Rabin JS, Lam B, Cheng I, Fowler R, Heyn C, Black SE, MacIntosh BJ, Graham SJ, Schweizer TA. Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals. Front Neurol 2023; 14:1136408. [PMID: 37051059 PMCID: PMC10083436 DOI: 10.3389/fneur.2023.1136408] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionThe long-term impact of COVID-19 on brain function remains poorly understood, despite growing concern surrounding post-acute COVID-19 syndrome (PACS). The goal of this cross-sectional, observational study was to determine whether there are significant alterations in resting brain function among non-hospitalized individuals with PACS, compared to symptomatic individuals with non-COVID infection.MethodsData were collected for 51 individuals who tested positive for COVID-19 (mean age 41±12 yrs., 34 female) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19 (mean age 41±14 yrs., 9 female), with both groups assessed an average of 4-5 months after COVID testing. None of the participants had prior neurologic, psychiatric, or cardiovascular illness. Resting brain function was assessed via functional magnetic resonance imaging (fMRI), and self-reported symptoms were recorded.ResultsIndividuals with COVID-19 had lower temporal and subcortical functional connectivity relative to controls. A greater number of ongoing post-COVID symptoms was also associated with altered functional connectivity between temporal, parietal, occipital and subcortical regions.DiscussionThese results provide preliminary evidence that patterns of functional connectivity distinguish PACS from non-COVID infection and correlate with the severity of clinical outcome, providing novel insights into this highly prevalent disorder.
Collapse
Affiliation(s)
- Nathan W. Churchill
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, ON, Canada
- *Correspondence: Nathan W. Churchill,
| | - Eugenie Roudaia
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - J. Jean Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Asaf Gilboa
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Allison Sekuler
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Xiang Ji
- LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Zhongmin Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Aravinthan Jegatheesan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Mario Masellis
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Maged Goubran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jennifer S. Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Benjamin Lam
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Ivy Cheng
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Integrated Community Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert Fowler
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Emergency and Critical Care Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chris Heyn
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Black
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Computational Radiology and Artificial Intelligence Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon J. Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tom A. Schweizer
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Chuang KC, Ramakrishnapillai S, Madden K, St Amant J, McKlveen K, Gwizdala K, Dhullipudi R, Bazzano L, Carmichael O. Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: The Bogalusa Heart Study. Front Aging Neurosci 2023; 15:1110434. [PMID: 36998317 PMCID: PMC10043334 DOI: 10.3389/fnagi.2023.1110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionEffective connectivity (EC), the causal influence that functional activity in a source brain location exerts over functional activity in a target brain location, has the potential to provide different information about brain network dynamics than functional connectivity (FC), which quantifies activity synchrony between locations. However, head-to-head comparisons between EC and FC from either task-based or resting-state functional MRI (fMRI) data are rare, especially in terms of how they associate with salient aspects of brain health.MethodsIn this study, 100 cognitively-healthy participants in the Bogalusa Heart Study aged 54.2 ± 4.3years completed Stroop task-based fMRI, resting-state fMRI. EC and FC among 24 regions of interest (ROIs) previously identified as involved in Stroop task execution (EC-task and FC-task) and among 33 default mode network ROIs (EC-rest and FC-rest) were calculated from task-based and resting-state fMRI using deep stacking networks and Pearson correlation. The EC and FC measures were thresholded to generate directed and undirected graphs, from which standard graph metrics were calculated. Linear regression models related graph metrics to demographic, cardiometabolic risk factors, and cognitive function measures.ResultsWomen and whites (compared to men and African Americans) had better EC-task metrics, and better EC-task metrics associated with lower blood pressure, white matter hyperintensity volume, and higher vocabulary score (maximum value of p = 0.043). Women had better FC-task metrics, and better FC-task metrics associated with APOE-ε4 3–3 genotype and better hemoglobin-A1c, white matter hyperintensity volume and digit span backwards score (maximum value of p = 0.047). Better EC rest metrics associated with lower age, non-drinker status, and better BMI, white matter hyperintensity volume, logical memory II total score, and word reading score (maximum value of p = 0.044). Women and non-drinkers had better FC-rest metrics (value of p = 0.004).DiscussionIn a diverse, cognitively healthy, middle-aged community sample, EC and FC based graph metrics from task-based fMRI data, and EC based graph metrics from resting-state fMRI data, were associated with recognized indicators of brain health in differing ways. Future studies of brain health should consider taking both task-based and resting-state fMRI scans and measuring both EC and FC analyses to get a more complete picture of functional networks relevant to brain health.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, United States
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- *Correspondence: Kai-Cheng Chuang,
| | - Sreekrishna Ramakrishnapillai
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Kaitlyn Madden
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Julia St Amant
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kevin McKlveen
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kathryn Gwizdala
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | | | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
38
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
39
|
Wang Y, Zhou Y, Zhang X, Wang K, Chen X, Cheng H. Orienting network impairment of attention in patients with mild traumatic brain injury. Behav Brain Res 2023; 437:114133. [PMID: 36179805 DOI: 10.1016/j.bbr.2022.114133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022]
Abstract
The incomplete understanding of mild traumatic brain injury (MTBI)-related cognitive impairment in the acute stage and the low cognitive needs of patients in the later stage might be the main reasons for the neglect of clinical symptoms in patients with MTBI. Patients often experience attention deficits; however, it is unclear whether these patients suffer from general deficits or selective impairment of the brain attention network. Therefore, we investigated deficits in the attention function of patients with mild brain traumatic injury. Patients (n = 50) and matched healthy controls (n = 49) completed a general neuropsychological background test and the Attention Network Test, which provided an independent assessment of the three attention networks (alerting, orienting, and executive control). We found that patients had significant deficits in the orienting network but none in the alerting and executive control networks. Furthermore, patients' cognitive task scores in attention, memory, and information processing tasks were significantly lower than the scores of the controls. Our results demonstrated that patients with MTBI had selective impairment in the orienting network and extensive cognitive impairments, including those related to general attention, memory, and information processing speed.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yuwei Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyu Zhang
- Department of Neurosurgery, Funan County People's Hospital, Fuyang, China
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingui Chen
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
40
|
Wong JKY, Churchill NW, Graham SJ, Baker AJ, Schweizer TA. Altered connectivity of default mode and executive control networks among female patients with persistent post-concussion symptoms. Brain Inj 2023; 37:147-158. [PMID: 36594665 DOI: 10.1080/02699052.2022.2163290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To examine the roles of the default mode network (DMN) and executive control network (ECN) in prolonged recovery after mild traumatic brain injury (mTBI), and relationships with indices of white matter microstructural injury. METHODS Seventeen mTBI patients with persistent symptoms were imaged an average of 21.5 months post-injury, along with 23 healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to evaluate functional connectivity (FC) of the DMN and ECN. Diffusion tensor imaging (DTI) quantified fractional anisotropy, along with mean, axial and radial diffusivity of white matter tracts. RESULTS Compared to controls, patients with mTBI had increased functional connectivity of the DMN and ECN to brain regions implicated in salience and frontoparietal networks, and increased white matter diffusivity within the cerebrum and brainstem. Among the patients, FC was correlated with better neurocognitive test scores, while diffusivity was correlated with more severe self-reported symptoms. The FC and diffusivity values within abnormal brain regions were not significantly correlated. CONCLUSION For female mTBI patients with prolonged symptoms, hyper-connectivity may represent a compensatory response that helps to mitigate the effects of mTBI on cognition. These effects are unrelated to indices of microstructural injury, which are correlated with symptom severity, suggesting that rs-fMRI and DTI may capture distinct aspects of pathophysiology.
Collapse
Affiliation(s)
- Jimmy K Y Wong
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada
| | - Nathan W Churchill
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Physics Department, Toronto Metropolitan University, Toronto, Canada
| | - Simon J Graham
- Sunnybrook Research Institute of Sunnybrook Health Sciences Centre, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Health Sciences Centre, Toronto, Canada.,Faculty of Medicine (medical Biophysics), University of Toronto Toronto, Canada
| | - Andrew J Baker
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Faculty of Medicine (Institute of Medical Science), University of Toronto, Toronto, Canada.,Department of Anesthesia, University of Toronto, Toronto, Canada.,Department of Surgery and Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Tom A Schweizer
- Brain Health and Wellness Research Program St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, Canada.,The Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Cramer SW, Haley SP, Popa LS, Carter RE, Scott E, Flaherty EB, Dominguez J, Aronson JD, Sabal L, Surinach D, Chen CC, Kodandaramaiah SB, Ebner TJ. Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiol Dis 2023; 176:105943. [PMID: 36476979 PMCID: PMC9972226 DOI: 10.1016/j.nbd.2022.105943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel P Haley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke Sabal
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Surinach
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
42
|
Simos NJ, Manolitsi K, Luppi AI, Kagialis A, Antonakakis M, Zervakis M, Antypa D, Kavroulakis E, Maris TG, Vakis A, Stamatakis EA, Papadaki E. Chronic Mild Traumatic Brain Injury: Aberrant Static and Dynamic Connectomic Features Identified Through Machine Learning Model Fusion. Neuroinformatics 2022; 21:427-442. [PMID: 36456762 PMCID: PMC10085953 DOI: 10.1007/s12021-022-09615-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 12/04/2022]
Abstract
AbstractTraumatic Brain Injury (TBI) is a frequently occurring condition and approximately 90% of TBI cases are classified as mild (mTBI). However, conventional MRI has limited diagnostic and prognostic value, thus warranting the utilization of additional imaging modalities and analysis procedures. The functional connectomic approach using resting-state functional MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, including mTBI. Additionally, there is increasing recognition of a fundamental role of brain dynamics in healthy and pathological cognition. Here, we undertake an in-depth investigation of mTBI-related connectomic disturbances and their emotional and cognitive correlates. We leveraged machine learning and graph theory to combine static and dynamic functional connectivity (FC) with regional entropy values, achieving classification accuracy up to 75% (77, 74 and 76% precision, sensitivity and specificity, respectively). As compared to healthy controls, the mTBI group displayed hypoconnectivity in the temporal poles, which correlated positively with semantic (r = 0.43, p < 0.008) and phonemic verbal fluency (r = 0.46, p < 0.004), while hypoconnectivity in the right dorsal posterior cingulate correlated positively with depression symptom severity (r = 0.54, p < 0.0006). These results highlight the importance of residual FC in these regions for preserved cognitive and emotional function in mTBI. Conversely, hyperconnectivity was observed in the right precentral and supramarginal gyri, which correlated negatively with semantic verbal fluency (r=-0.47, p < 0.003), indicating a potential ineffective compensatory mechanism. These novel results are promising toward understanding the pathophysiology of mTBI and explaining some of its most lingering emotional and cognitive symptoms.
Collapse
Affiliation(s)
- Nicholas J. Simos
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece
| | - Katina Manolitsi
- Department of Neurosurgery, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
- Department of Psychiatry, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, CB2 0SP Cambridge, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, CB2 0SP Cambridge, UK
| | - Antonios Kagialis
- Department of Psychiatry, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
| | - Marios Antonakakis
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
| | - Michalis Zervakis
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
| | - Despina Antypa
- Department of Psychiatry, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
| | - Eleftherios Kavroulakis
- Department of Radiology, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
| | - Thomas G. Maris
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece
- Department of Radiology, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
| | - Antonios Vakis
- Department of Neurosurgery, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, CB2 0SP Cambridge, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, CB2 0SP Cambridge, UK
| | - Efrosini Papadaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology–Hellas, 70013 Heraklion, Greece
- Department of Radiology, School of Medicine & University Hospital of Heraklion, University of Crete, Crete, Greece
| |
Collapse
|
43
|
Nakuci J, McGuire M, Schweser F, Poulsen D, Muldoon SF. Differential Patterns of Change in Brain Connectivity Resulting from Severe Traumatic Brain Injury. Brain Connect 2022; 12:799-811. [PMID: 35302399 PMCID: PMC9805864 DOI: 10.1089/brain.2021.0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Traumatic brain injury (TBI) damages white matter tracts, disrupting brain network structure and communication. There exists a wide heterogeneity in the pattern of structural damage associated with injury, as well as a large heterogeneity in behavioral outcomes. However, little is known about the relationship between changes in network connectivity and clinical outcomes. Materials and Methods: We utilize the rat lateral fluid-percussion injury model of severe TBI to study differences in brain connectivity in 8 animals that received the insult and 11 animals that received only a craniectomy. Diffusion tensor imaging is performed 5 weeks after the injury and network theory is used to investigate changes in white matter connectivity. Results: We find that (1) global network measures are not able to distinguish between healthy and injured animals; (2) injury induced alterations predominantly exist in a subset of connections (subnetworks) distributed throughout the brain; and (3) injured animals can be divided into subgroups based on changes in network motifs-measures of local structural connectivity. In addition, alterations in predicted functional connectivity indicate that the subgroups have different propensities to synchronize brain activity, which could relate to the heterogeneity of clinical outcomes. Discussion: These results suggest that network measures can be used to quantify progressive changes in brain connectivity due to injury and differentiate among subpopulations with similar injuries, but different pathological trajectories.
Collapse
Affiliation(s)
- Johan Nakuci
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Matthew McGuire
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, SUNY, Buffalo, New York, USA
| | - David Poulsen
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sarah F. Muldoon
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Mathematics and CDSE Program, University at Buffalo, SUNY, Buffalo, New York, USA
| |
Collapse
|
44
|
Klimova A, Breukelaar IA, Bryant RA, Korgaonkar MS. A comparison of the functional connectome in mild traumatic brain injury and post-traumatic stress disorder. Hum Brain Mapp 2022; 44:813-824. [PMID: 36206284 PMCID: PMC9842915 DOI: 10.1002/hbm.26101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) often co-occur in the context of threat to one's life. These conditions also have an overlapping symptomatology and include symptoms of anxiety, poor concentration and memory problems. A major challenge has been articulating the underlying neurobiology of these overlapping conditions. The primary aim of this study was to compare intrinsic functional connectivity between mTBI (without PTSD) and PTSD (without mTBI). The study included functional MRI data from 176 participants: 42 participants with mTBI, 67 with PTSD and a comparison group of 66 age and sex-matched healthy controls. We used network-based statistical analyses for connectome-wide comparisons of intrinsic functional connectivity between mTBI relative to PTSD and controls. Our results showed no connectivity differences between mTBI and PTSD groups. However, we did find that mTBI had significantly reduced connectivity relative to healthy controls within an extensive network of regions including default mode, executive control, visual and auditory networks. The mTBI group also displayed hyperconnectivity between dorsal and ventral attention networks and perceptual regions. The PTSD group also demonstrated abnormal connectivity within these networks relative to controls. Connectivity alterations were not associated with severity of PTSD or post-concussive symptoms in either clinical group. Taken together, the similar profiles of intrinsic connectivity alterations in these two conditions provide neural evidence that can explain, in part, the overlapping symptomatology between mTBI and PTSD.
Collapse
Affiliation(s)
- Aleksandra Klimova
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia
| | - Isabella A. Breukelaar
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia,School of PsychologyUniversity of New South WalesSydneyAustralia
| | - Richard A. Bryant
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia,School of PsychologyUniversity of New South WalesSydneyAustralia
| | - Mayuresh S. Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical ResearchThe University of SydneyWestmeadAustralia,Department of Psychiatry, Faculty of Medicine and HealthUniversity of SydneyWestmeadAustralia
| |
Collapse
|
45
|
Adolescents with a concussion have altered brain network functional connectivity one month following injury when compared to adolescents with orthopedic injuries. Neuroimage Clin 2022; 36:103211. [PMID: 36182818 PMCID: PMC9668608 DOI: 10.1016/j.nicl.2022.103211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
Concussion is a mild traumatic brain injury (mTBI) with increasing prevalence among children and adolescents. Functional connectivity (FC) within and between the default mode network (DMN), central executive network (CEN) and salience network (SN) has been shown to be altered post-concussion. Few studies have investigated connectivity within and between these 3 networks following a pediatric concussion. The present study explored whether within and between-network FC differs between a pediatric concussion and orthopedic injury (OI) group aged 10-18. Participants underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan at 4 weeks post-injury. One-way ANCOVA analyses were conducted between groups with the seed-based FC of the 3 networks. A total of 55 concussion and 27 OI participants were included in the analyses. Increased within-network FC of the CEN and decreased between-network FC of the DMN-CEN was found in the concussion group when compared to the OI group. Secondary analyses using spherical SN regions of interest revealed increased within-network FC of the SN and increased between-network FC of the DMN-SN and CEN-SN in the concussion group when compared to the OI group. This study identified differential connectivity patterns following a pediatric concussion as compared to an OI 4 weeks post-injury. These differences indicate potential adaptive brain mechanisms that may provide insight into recovery trajectories and appropriate timing of treatment within the first month following a concussion.
Collapse
|
46
|
Comparing resting-state connectivity of working memory networks in U.S. Service members with mild traumatic brain injury and posttraumatic stress disorder. Brain Res 2022; 1796:148099. [PMID: 36162495 DOI: 10.1016/j.brainres.2022.148099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) are prevalent among military populations, and both have been associated with working memory (WM) impairments. Previous resting-state functional connectivity (rsFC) research conducted separately in PTSD and mTBI populations suggests that there may be similar and distinct abnormalities in WM-related networks. However, no studies have compared rsFC of WM brain regions in participants with mTBI versus PTSD. We used resting-state fMRI to investigate rsFC of WM networks in U.S. Service Members (n = 127; ages 18-59) with mTBI only (n = 46), PTSD only (n = 24), and an orthopedically injured (OI) control group (n = 57). We conducted voxelwise rsFC analyses with WM brain regions to test for differences in WM network connectivity in mTBI versus PTSD. Results revealed reduced rsFC between ventrolateral prefrontal cortex (vlPFC), lateral premotor cortex, and dorsolateral prefrontal cortex (dlPFC) WM regions and brain regions in the dorsal attention and somatomotor networks in both mTBI and PTSD groups versus controls. When compared to those with mTBI, individuals with PTSD had lower rsFC between both the lateral premotor WM seed region and middle occipital gyrus as well as between the dlPFC WM seed region and paracentral lobule. Interestingly, only vlPFC connectivity was significantly associated with WM performance across the samples. In conclusion, we found primarily overlapping patterns of reduced rsFC in WM brain regions in both mTBI and PTSD groups. Our finding of decreased vlPFC connectivity associated with WM is consistent with previous clinical and neuroimaging studies. Overall, these results provide support for shared neural substrates of WM in individuals with either mTBI or PTSD.
Collapse
|
47
|
Raikes AC, Hernandez GD, Mullins VA, Wang Y, Lopez C, Killgore WDS, Chilton FH, Brinton RD. Effects of docosahexaenoic acid and eicosapentaoic acid supplementation on white matter integrity after repetitive sub-concussive head impacts during American football: Exploratory neuroimaging findings from a pilot RCT. Front Neurol 2022; 13:891531. [PMID: 36188406 PMCID: PMC9521411 DOI: 10.3389/fneur.2022.891531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Context Repetitive sub-concussive head impacts (RSHIs) are common in American football and result in changes to the microstructural integrity of white matter. Both docosahexaenoic acid (DHA) and eicosapentaoic acid (EPA) supplementation exerted neuroprotective effects against RSHIs in animal models and in a prior study in football players supplemented with DHA alone. Objective Here, we present exploratory neuroimaging outcomes from a randomized controlled trial of DHA + EPA supplementation in American football players. We hypothesized that supplementation would result in less white matter integrity loss on diffusion weighted imaging over the season. Design setting participants We conducted a double-blind placebo-controlled trial in 38 American football players between June 2019 and January 2020. Intervention Participants were randomized to the treatment (2.442 g/day DHA and 1.020 g/day EPA) or placebo group for five times-per-week supplementation for 7 months. Of these, 27 participants were included in the neuroimaging data analysis (n = 16 placebo; n = 11 DHA + EPA). Exploratory outcome measures Changes in white matter integrity were quantified using both voxelwise diffusion kurtosis scalars and deterministic tractography at baseline and end of season. Additional neuroimaging outcomes included changes in regional gray matter volume as well as intra-regional, edge-wise, and network level functional connectivity. Serum neurofilament light (NfL) provided a peripheral biomarker of axonal damage. Results No voxel-wise between-group differences were identified on diffusion tensor metrics. Deterministic tractography using quantitative anisotropy (QA) revealed increased structural connectivity in ascending corticostriatal fibers and decreased connectivity in long association and commissural fibers in the DHA+EPA group compared to the placebo group. Serum NfL increases were correlated with increased mean (ρ = 0.47), axial (ρ = 0.44), and radial (ρ = 0.51) diffusivity and decreased QA (ρ = -0.52) in the corpus callosum and bilateral corona radiata irrespective of treatment group. DHA + EPA supplementation did preserve default mode/frontoparietal control network connectivity (g = 0.96, p = 0.024). Conclusions These exploratory findings did not provide strong evidence that DHA + EPA prevented or protected against axonal damage as quantified via neuroimaging. Neuroprotective effects on functional connectivity were observed despite white matter damage. Further studies with larger samples are needed to fully establish the relationship between omega-3 supplementation, RSHIs, and neuroimaging biomarkers. Trial registration ClinicalTrials.gov-NCT04796207.
Collapse
Affiliation(s)
- Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Veronica A. Mullins
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Claudia Lopez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - William D. S. Killgore
- Social, Cognitive, and Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Floyd H. Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
48
|
Rajtmajer SM, Errington TM, Hillary FG. How failure to falsify in high-volume science contributes to the replication crisis. eLife 2022; 11:e78830. [PMID: 35939392 PMCID: PMC9398444 DOI: 10.7554/elife.78830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
The number of scientific papers published every year continues to increase, but scientific knowledge is not progressing at the same rate. Here we argue that a greater emphasis on falsification - the direct testing of strong hypotheses - would lead to faster progress by allowing well-specified hypotheses to be eliminated. We describe an example from neuroscience where there has been little work to directly test two prominent but incompatible hypotheses related to traumatic brain injury. Based on this example, we discuss how building strong hypotheses and then setting out to falsify them can bring greater precision to the clinical neurosciences, and argue that this approach could be beneficial to all areas of science.
Collapse
Affiliation(s)
- Sarah M Rajtmajer
- College of Information Sciences and Technology, The Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Frank G Hillary
- Department of Psychology and the Social Life and Engineering Sciences Imaging Center, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
49
|
McDonald MA, Tayebi M, McGeown JP, Kwon EE, Holdsworth SJ, Danesh‐Meyer HV. A window into eye movement dysfunction following mTBI: A scoping review of magnetic resonance imaging and eye tracking findings. Brain Behav 2022; 12:e2714. [PMID: 35861623 PMCID: PMC9392543 DOI: 10.1002/brb3.2714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Mild traumatic brain injury (mTBI), commonly known as concussion, is a complex neurobehavioral phenomenon affecting six in 1000 people globally each year. Symptoms last between days and years as microstructural damage to axons and neurometabolic changes result in brain network disruption. There is no clinically available objective biomarker to diagnose the severity of injury or monitor recovery. However, emerging evidence suggests eye movement dysfunction (e.g., saccades and smooth pursuits) in patients with mTBI. Patients with a higher symptom burden and prolonged recovery time following injury may show higher degrees of eye movement dysfunction. Likewise, recent advances in magnetic resonance imaging (MRI) have revealed both white matter tract damage and functional network alterations in mTBI patients, which involve areas responsible for the ocular motor control. This scoping review is presented in three sections: Section 1 explores the anatomical control of eye movements to aid the reader with interpreting the discussion in subsequent sections. Section 2 examines the relationship between abnormal MRI findings and eye tracking after mTBI based on the available evidence. Finally, Section 3 communicates gaps in our knowledge about MRI and eye tracking, which should be addressed in order to substantiate this emerging field.
Collapse
Affiliation(s)
- Matthew A. McDonald
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
| | - Maryam Tayebi
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Joshua P. McGeown
- Mātai Medical Research InstituteGisborneNew Zealand
- Auckland University of Technology Traumatic Brain Injury NetworkAucklandNew Zealand
| | - Eryn E. Kwon
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Samantha J Holdsworth
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Helen V Danesh‐Meyer
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Eye InstituteAucklandNew Zealand
| |
Collapse
|
50
|
Ly MT, Scarneo-Miller SE, Lepley AS, Coleman K, Hirschhorn R, Yeargin S, Casa DJ, Chen CM. Combining MRI and cognitive evaluation to classify concussion in university athletes. Brain Imaging Behav 2022; 16:2175-2187. [PMID: 35639240 DOI: 10.1007/s11682-022-00687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Current methods of concussion assessment lack the objectivity and reliability to detect neurological injury. This multi-site study uses combinations of neuroimaging (diffusion tensor imaging and resting state functional MRI) and cognitive measures to train algorithms to detect the presence of concussion in university athletes. Athletes (29 concussed, 48 controls) completed symptom reports, brief cognitive evaluation, and MRI within 72 h of injury. Hierarchical linear regression compared groups on cognitive and neuroimaging measures while controlling for sex and data collection site. Logistic regression and support vector machine models were trained using cognitive and neuroimaging measures and evaluated for overall accuracy, sensitivity, and specificity. Concussed athletes reported greater symptoms than controls (∆R2 = 0.32, p < .001), and performed worse on tests of concentration (∆R2 = 0.07, p < .05) and delayed memory (∆R2 = 0.17, p < .001). Concussed athletes showed lower functional connectivity within the frontoparietal and primary visual networks (p < .05), but did not differ on mean diffusivity and fractional anisotropy. Of the cognitive measures, classifiers trained using delayed memory yielded the best performance with overall accuracy of 71%, though sensitivity was poor at 46%. Of the neuroimaging measures, classifiers trained using mean diffusivity yielded similar accuracy. Combining cognitive measures with mean diffusivity increased overall accuracy to 74% and sensitivity to 64%, comparable to the sensitivity of symptom report. Trained algorithms incorporating both MRI and cognitive performance variables can reliably detect common neurobiological sequelae of acute concussion. The integration of multi-modal data can serve as an objective, reliable tool in the assessment and diagnosis of concussion.
Collapse
Affiliation(s)
- Monica T Ly
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
- Department of Psychiatry, University of California San Diego, School of Medicine, San Diego, CA, USA.
| | - Samantha E Scarneo-Miller
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
- Division of Athletic Training, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Adam S Lepley
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
- School of Kinesiology, Exercise and Sport Science Initiative, University of Michigan, Ann Arbor, MI, USA
| | - Kelly Coleman
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
- Department of Health & Movement Sciences, Southern Connecticut State University, New Haven, CT, USA
| | - Rebecca Hirschhorn
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Susan Yeargin
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Douglas J Casa
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Chi-Ming Chen
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|