1
|
Lee H, Lee H, Ma Y, Eskandarian L, Gaudet K, Tian Q, Krijnen EA, Russo AW, Salat DH, Klawiter EC, Huang SY. Age-related alterations in human cortical microstructure across the lifespan: Insights from high-gradient diffusion MRI. Aging Cell 2024; 23:e14267. [PMID: 39118344 PMCID: PMC11561659 DOI: 10.1111/acel.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The human brain undergoes age-related microstructural alterations across the lifespan. Soma and Neurite Density Imaging (SANDI), a novel biophysical model of diffusion MRI, provides estimates of cell body (soma) radius and density, and neurite density in gray matter. The goal of this cross-sectional study was to assess the sensitivity of high-gradient diffusion MRI toward age-related alterations in cortical microstructure across the adult lifespan using SANDI. Seventy-two cognitively unimpaired healthy subjects (ages 19-85 years; 40 females) were scanned on the 3T Connectome MRI scanner with a maximum gradient strength of 300mT/m using a multi-shell diffusion MRI protocol incorporating 8 b-values and diffusion time of 19 ms. Intra-soma signal fraction obtained from SANDI model-fitting to the data was strongly correlated with age in all major cortical lobes (r = -0.69 to -0.60, FDR-p < 0.001). Intra-soma signal fraction (r = 0.48-0.63, FDR-p < 0.001) and soma radius (r = 0.28-0.40, FDR-p < 0.04) were significantly correlated with cortical volume in the prefrontal cortex, frontal, parietal, and temporal lobes. The strength of the relationship between SANDI metrics and age was greater than or comparable to the relationship between cortical volume and age across the cortical regions, particularly in the occipital lobe and anterior cingulate gyrus. In contrast to the SANDI metrics, all associations between diffusion tensor imaging (DTI) and diffusion kurtosis imaging metrics and age were low to moderate. These results suggest that high-gradient diffusion MRI may be more sensitive to underlying substrates of neurodegeneration in the aging brain than DTI and traditional macroscopic measures of neurodegeneration such as cortical volume and thickness.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Hong‐Hsi Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yixin Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Laleh Eskandarian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kyla Gaudet
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Qiyuan Tian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eva A. Krijnen
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC Location VUmcAmsterdamThe Netherlands
| | - Andrew W. Russo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David H. Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eric C. Klawiter
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Susie Y. Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Subclinical brain manifestations of repeated mild traumatic brain injury are changed by chronic exposure to sleep loss, caffeine, and sleep aids. Exp Neurol 2024; 381:114928. [PMID: 39168169 DOI: 10.1016/j.expneurol.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION After mild traumatic brain injury (mTBI), the brain is labile for weeks and months and vulnerable to repeated concussions. During this time, patients are exposed to everyday circumstances that, in themselves, affect brain metabolism and blood flow and neural processing. How commonplace activities interact with the injured brain is unknown. The present study in an animal model investigated the extent to which three commonly experienced exposures-daily caffeine usage, chronic sleep loss, and chronic sleep aid medication-affect the injured brain in the chronic phase. METHODS Subclinical trauma by repeated mTBIs was produced by our head rotational acceleration injury model, which causes brain injury consistent with the mechanism of concussion in humans. Forty-eight hours after a third mTBI, chronic administrations of caffeine, sleep restriction, or zolpidem (sedative hypnotic) began and were continued for 70 days. On Days 30 and 60 post injury, resting state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were performed. RESULTS Chronic caffeine, sleep restriction, and zolpidem each changed the subclinical brain characteristics of mTBI at both 30 and 60 days post injury, detected by different MRI modalities. Each treatment caused microstructural alterations in DTI metrics in the insular cortex and retrosplenial cortex compared with mTBI, but also uniquely affected other gray and white matter regions. Zolpidem administration affected the largest number of individual structures in mTBI at both 30 and 60 days, and not necessarily toward normalization (sham treatment). Chronic sleep restriction changed local functional connectivity at 30 days in diametrical opposition to chronic caffeine ingestion, and both treatment outcomes were different from sham, mTBI-only and zolpidem comparisons. The results indicate that commonly encountered exposures modify subclinical brain activity and structure long after healing is expected to be complete. CONCLUSIONS Changes in activity and structure detected by fMRI are widely understood to reflect changes in the functions of the affected region which conceivably underlie mTBI neuropathology and symptomatology in the chronic phase after injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA,.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Matthew D Budde
- Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Wróbel PP, Braaß H, Frey BM, Bönstrup M, Guder S, Frontzkowski LK, Feldheim JF, Cheng B, Rathi Y, Pasternak O, Thomalla G, Koerte IK, Shenton ME, Gerloff C, Quandt F, Higgen FL, Schulz R. Cortical microstructure and hemispheric specialization-A diffusion-imaging analysis in younger and older adults. Eur J Neurosci 2024; 60:5718-5730. [PMID: 39205547 DOI: 10.1111/ejn.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Characterizing cortical plasticity becomes increasingly important for identifying compensatory mechanisms and structural reserve in the ageing population. While cortical thickness (CT) largely contributed to systems neuroscience, it incompletely informs about the underlying neuroplastic pathophysiology. In turn, microstructural characteristics may correspond to atrophy mechanisms in a more sensitive way. Fractional anisotropy, a diffusion tensor imaging (DTI) measure, is inversely related to cortical histologic complexity. Axial diffusivity and radial diffusivity are assumed to be linked to the density of structures oriented perpendicular and parallel to the cortical surface, respectively. We hypothesized (1) that cortical DTI will reveal microstructural correlates for hemispheric specialization, particularly in the language and motor systems, and (2) that lateralization of cortical DTI parameters will show an age effect, paralleling age-related changes in activation, especially in the prefrontal cortex. We analysed data from healthy younger and older adult participants (N = 91). DTI and CT data were extracted from regions of the Destrieux atlas. Diffusion measures showed lateralization in specialized motor, language, visual, auditory and inferior parietal cortices. Age-dependent increased lateralization for DTI measures was observed in the prefrontal, angular, superior temporal and lateral occipital cortex. CT did not show any age-dependent alterations in lateralization. Our observations argue that cortical DTI can capture microstructural properties associated with functional specialization, resembling findings from histology. Age effects on diffusion measures in the integrative prefrontal and parietal areas may shed novel light on the atrophy-related plasticity in healthy ageing.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center, Leipzig, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas K Frontzkowski
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Focko L Higgen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Wróbel PP, Guder S, Feldheim JF, Graterol Pérez JA, Frey BM, Choe CU, Bönstrup M, Cheng B, Rathi Y, Pasternak O, Thomalla G, Gerloff C, Shenton ME, Schulz R. Assessing the cortical microstructure in contralesional sensorimotor areas after stroke. Brain Commun 2024; 6:fcae115. [PMID: 39872912 PMCID: PMC11771308 DOI: 10.1093/braincomms/fcae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 01/30/2025] Open
Abstract
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. Animal data obtained in rats and monkeys have evidenced that contralesional motor areas undergo degenerative alterations in their microstructure which are accompanied by compensatory changes as well. We hypothesized that cortical diffusion imaging can detect similar changes in human stroke survivors. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from two independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy, axial diffusivity, radial diffusivity and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy, axial diffusivity, radial diffusivity and cortical thickness and clinical scores. Against our hypothesis, we did not find any significant alterations in contralesional cortical microstructure after stroke. Likewise, we did not detect any correlations between cortical microstructure and behavioural scores. Future analyses are warranted to investigate whether such alterations might occur in different populations, e.g. in later stages of recovery, in more severely impaired patients, or only in the ipsilesional hemisphere in patients with specific lesion patterns.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jose A Graterol Pérez
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, University Medical Center,
04103 Leipzig, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Sommerville, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Sommerville, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Sommerville, MA 02145, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115, USA
| | - Robert Schulz
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Dobos D, Kökönyei G, Gyebnár G, Szabó E, Kocsel N, Galambos A, Gecse K, Baksa D, Kozák LR, Juhász G. Microstructural differences in migraine: A diffusion-tensor imaging study. Cephalalgia 2023; 43:3331024231216456. [PMID: 38111172 DOI: 10.1177/03331024231216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
BACKGROUND Diffusion-tensor imaging can be applied to describe the microstructural integrity of the whole brain. As findings about microstructural alterations in migraine are inconsistent, we aimed to replicate the most frequent results and assess a relationship between migraine parameters and changes in microstructure. METHODS Diffusion-weighted MRI data of 37 migraine patients and 40 controls were collected. Two indices of diffusion of water molecules, fractional anisotropy and mean diffusivity were used in a voxel-wise analysis. Group comparisons were carried out in SPM12 using age and sex as covariates. Statistically significant results survived family-wise error correction (pFWE < 0.05). Migraine intensity, frequency, and duration were self-reported and correlated with mean fractional anisotropy and mean diffusivity values across clusters. RESULTS Migraine patients showed significantly lower fractional anisotropy in occipital regions, and significantly higher fractional anisotropy in thirteen clusters across the brain. Mean diffusivity of migraine patients was significantly decreased in the cerebellum and pons, but it was not increased in any area. Correlation between migraine duration and fractional anisotropy was significantly positive in the frontal cortex and significantly negative in the superior parietal lobule. CONCLUSION We suggest that microstructural integrity of the migraine brain is impaired in visual areas and shows duration-related alterations in regions of the default mode network.
Collapse
Affiliation(s)
- Dóra Dobos
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Gyöngyi Kökönyei
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gyula Gyebnár
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Edina Szabó
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Natália Kocsel
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Galambos
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kinga Gecse
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Dániel Baksa
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pazmany Peter Catholic University, Budapest, Hungary
| | - Lajos R Kozák
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhász
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Wróbel PP, Guder S, Feldheim JF, Graterol Pérez JA, Frey BM, Choe CU, Bönstrup M, Cheng B, Rathi Y, Pasternak O, Thomalla G, Gerloff C, Shenton ME, Schulz R. Altered microstructure of the contralesional ventral premotor cortex and motor output after stroke. Brain Commun 2023; 5:fcad160. [PMID: 37265601 PMCID: PMC10231803 DOI: 10.1093/braincomms/fcad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from 2 independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas, and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy and cortical thickness and clinical scores. Compared with controls, stroke patients exhibited a reduction in fractional anisotropy in the contralesional ventral premotor cortex (P = 0.005). Fractional anisotropy of the other regions and cortical thickness did not show a comparable group difference. Higher fractional anisotropy of the ventral premotor cortex, but not cortical thickness, was positively associated with residual grip force in the stroke patients. These data provide novel evidence that the contralesional ventral premotor cortex might constitute a key sensorimotor area particularly susceptible to stroke-related alterations in cortical microstructure as measured by diffusion MRI and they suggest a link between these changes and residual motor output after stroke.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - José A Graterol Pérez
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
- Department of Neurology, University Medical Center,
Leipzig 04103, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical
School, Boston 02115, MA, USA
| | - Robert Schulz
- Department of Neurology, University Medical Center
Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
7
|
Heller C, Kimmig ACS, Kubicki MR, Derntl B, Kikinis Z. Imaging the human brain on oral contraceptives: A review of structural imaging methods and implications for future research goals. Front Neuroendocrinol 2022; 67:101031. [PMID: 35998859 DOI: 10.1016/j.yfrne.2022.101031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022]
Abstract
Worldwide over 150 million women use oral contraceptives (OCs), which are the most prescribed form of contraception in both the United States and in European countries. Sex hormones, such as estradiol and progesterone, are important endogenous hormones known for shaping the brain across the life span. Synthetic hormones, which are present in OCs, interfere with the natural hormonal balance by reducing the endogenous hormone levels. Little is known how this affects the brain, especially during the most vulnerable times of brain maturation. Here, we review studies that investigate differences in brain gray and white matter in women using OCs in comparison to naturally cycling women. We focus on two neuroimaging methods used to quantify structural gray and white matter changes, namely structural MRI and diffusion MRI. Finally, we discuss the potential of these imaging techniques to advance knowledge about the effects of OCs on the brain and wellbeing in women.
Collapse
Affiliation(s)
- Carina Heller
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; Department of Clinical Psychology, Friedrich Schiller University Jena, Germany.
| | - Ann-Christin S Kimmig
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Marek R Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; Lead Graduate School, University of Tübingen, Tübingen, Germany
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Baxi M, Cetin-Karayumak S, Papadimitriou G, Makris N, van der Kouwe A, Jenkins B, Moore TL, Rosene DL, Kubicki M, Rathi Y. Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology. FRONTIERS IN NEUROIMAGING 2022; 1:947526. [PMID: 37555179 PMCID: PMC10406256 DOI: 10.3389/fnimg.2022.947526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 08/10/2023]
Abstract
Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive in-vivo imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between in-vivo dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.
Collapse
Affiliation(s)
- Madhura Baxi
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Center for Morphometric Analysis, Massachusetts General Hospital, Charlestown, MA, United States
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andre van der Kouwe
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bruce Jenkins
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Tara L. Moore
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Douglas L. Rosene
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
9
|
Shahid SS, Wen Q, Risacher SL, Farlow MR, Unverzagt FW, Apostolova LG, Foroud TM, Zetterberg H, Blennow K, Saykin AJ, Wu YC. Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease. Brain 2022; 145:2149-2160. [PMID: 35411392 PMCID: PMC9630875 DOI: 10.1093/brain/awac138] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
Hippocampal subfields exhibit differential vulnerabilities to Alzheimer's disease-associated pathology including abnormal accumulation of amyloid-β deposition and neurofibrillary tangles. These pathological processes extensively impact on the structural and functional interconnectivities of the subfields and may explain the association between hippocampal dysfunction and cognitive deficits. In this study, we investigated the degree of alterations in the microstructure of hippocampal subfields across the clinical continuum of Alzheimer's disease. We applied a grey matter-specific multi-compartment diffusion model (Cortical-Neurite orientation dispersion and density imaging) to understand the differential effects of Alzheimer's disease pathology on the hippocampal subfield microstructure. A total of 119 participants were included in this cross-sectional study. Participants were stratified into three categories, cognitively normal (n = 47), mild cognitive impairment (n = 52), and Alzheimer's disease (n = 19). Diffusion MRI, plasma biomarkers and neuropsychological test scores were used to determine the association between the microstructural integrity and Alzheimer's disease-associated molecular indicators and cognition. For Alzheimer's disease-related plasma biomarkers, we studied amyloid-β, total tau and neurofilament light; for Alzheimer's disease-related neuropsychological tests, we included the Trail Making Test, Rey Auditory Verbal Learning Test, Digit Span and Montreal Cognitive Assessment. Comparisons between cognitively normal subjects and those with mild cognitive impairment showed significant microstructural alterations in the hippocampal cornu ammonis (CA) 4 and dentate gyrus region, whereas CA 1-3 was the most sensitive region for the later stages in the Alzheimer's disease clinical continuum. Among imaging metrics for microstructures, the volume fraction of isotropic diffusion for interstitial free water demonstrated the largest effect size in between-group comparisons. Regarding the plasma biomarkers, neurofilament light appeared to be the most sensitive biomarker for associations with microstructural imaging findings in CA4-dentate gyrus. CA 1-3 was the subfield which had stronger correlations between cognitive performance and microstructural metrics. Particularly, poor performance on the Rey Auditory Verbal Learning Test and Montreal Cognitive Assessment was associated with decreased intracellular volume fraction. Overall, our findings support the value of tissue-specific microstructural imaging for providing pathologically relevant information manifesting in the plasma biomarkers and neuropsychological outcomes across various stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qiuting Wen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu Chien Wu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Gozdas E, Fingerhut H, Dacorro L, Bruno JL, Hosseini SMH. Neurite Imaging Reveals Widespread Alterations in Gray and White Matter Neurite Morphology in Healthy Aging and Amnestic Mild Cognitive Impairment. Cereb Cortex 2021; 31:5570-5578. [PMID: 34313731 DOI: 10.1093/cercor/bhab180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/09/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Aging is the major risk factor for neurodegenerative diseases and affects neurite distributions throughout the brain, yet underlying neurobiological mechanisms remain unclear. Multi-shell diffusion-weighted imaging and neurite orientation dispersion and density imaging (NODDI) now provide in vivo biophysical measurements that explain these biological processes in the cortex and white matter. In this study, neurite distributions were evaluated in the cortex and white matter in healthy older adults and patients with amnestic mild cognitive impairment (aMCI) that provides fundamental contributions regarding healthy aging and neurodegeneration. Older age was associated with reduced neurite density and neurite orientation dispersion (ODI) in widespread cortical regions. In contrast, increased ODI was only observed in the right thalamus and hippocampus with age. For the first time, we also reported a widespread age-associated decrease in neurite density along major white matter tracts correlated with decreased cortical neurite density in the tract endpoints in healthy older adults. We further examined alterations in cortical and white matter neurite microstructures in aMCI patients and found significant neurite morphology deficits in memory networks correlated with memory performance. Our findings indicate that neurite parameters provide valuable information regarding cortical and white matter microstructure and complement myeloarchitectural information in healthy aging and aMCI.
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jennifer L Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
11
|
Venkatesh A, Stark SM, Stark CEL, Bennett IJ. Age- and memory- related differences in hippocampal gray matter integrity are better captured by NODDI compared to single-tensor diffusion imaging. Neurobiol Aging 2020; 96:12-21. [PMID: 32905951 PMCID: PMC7722017 DOI: 10.1016/j.neurobiolaging.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Single-tensor diffusion imaging (DTI) has traditionally been used to assess integrity of white matter. For example, we previously showed that integrity of limbic white matter tracts declines in healthy aging and relates to episodic memory performance. However, multi-compartment diffusion models may be more informative about microstructural properties of gray matter. The current study examined hippocampal gray matter integrity using both single-tensor and multi-compartment (neurite orientation dispersion and density imaging, NODDI) diffusion imaging. Younger (20-38 years) and older (59-84 years) adults also completed the Mnemonic Similarity Task to measure mnemonic discrimination performance. Results revealed age-related declines in both single-tensor (lower fractional anisotropy, higher mean diffusivity) and multi-compartment (higher restricted, hindered and free diffusion) measures of hippocampal gray matter integrity. As expected, NODDI measures (hindered and free diffusion) captured more age-related variance than DTI measures. Moreover, mnemonic discrimination of highly similar lure items in memory was related to hippocampal gray matter integrity in younger but not older adults. These findings support the notion that age-related differences in gray matter integrity are better captured by multi-compartment versus single-tensor diffusion models and show that the relationship between mnemonic discrimination and hippocampal gray matter integrity is moderated by age.
Collapse
Affiliation(s)
- Anu Venkatesh
- Department of Neuroscience, University of California Riverside, Riverside, CA, USA.
| | - Shauna M Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ilana J Bennett
- Department of Neuroscience, University of California Riverside, Riverside, CA, USA; Department of Psychology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
12
|
Baxi M, Di Biase MA, Lyall AE, Cetin-Karayumak S, Seitz J, Ning L, Makris N, Rosene D, Kubicki M, Rathi Y. Quantifying Genetic and Environmental Influence on Gray Matter Microstructure Using Diffusion MRI. Cereb Cortex 2020; 30:6191-6205. [PMID: 32676671 DOI: 10.1093/cercor/bhaa174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Early neuroimaging work in twin studies focused on studying genetic and environmental influence on gray matter macrostructure. However, it is also important to understand how gray matter microstructure is influenced by genes and environment to facilitate future investigations of their influence in mental disorders. Advanced diffusion MRI (dMRI) measures allow more accurate assessment of gray matter microstructure compared with conventional diffusion tensor measures. To understand genetic and environmental influence on gray matter, we used diffusion and structural MRI data from a large twin and sibling study (N = 840) and computed advanced dMRI measures including return to origin probability (RTOP), which is heavily weighted toward intracellular and intra-axonal restricted spaces, and mean squared displacement (MSD), more heavily weighted to diffusion in extracellular space and large cell bodies in gray matter. We show that while macrostructural features like brain volume are mainly genetically influenced, RTOP and MSD can together tap into both genetic and environmental influence on microstructure.
Collapse
Affiliation(s)
- Madhura Baxi
- Graduate Program of Neuroscience, Boston University, Boston, MA 02118, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Maria A Di Biase
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Lipeng Ning
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Douglas Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA.,Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
13
|
Franco CY, Petok JR, Langley J, Hu X, Bennett IJ. Implicit associative learning relates to basal ganglia gray matter microstructure in young and older adults. Behav Brain Res 2020; 397:112950. [PMID: 33017642 DOI: 10.1016/j.bbr.2020.112950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 01/01/2023]
Abstract
Older adults are impaired at implicit associative learning (IAL), or the learning of relationships between stimuli in the environment without conscious awareness. These age effects have been attributed to differential engagement of the basal ganglia (e.g. caudate, globus pallidus) and hippocampus throughout learning. However, no studies have examined gray matter diffusion relations with IAL, which can reveal microstructural properties that vary with age and contribute to learning. In this study, young (18-29 years) and older (65-87 years) adults completed the Triplet Learning Task, in which participants implicitly learn that the location of cues predict the target location on some trials (high frequency triplets). Diffusion imaging was also acquired and multicompartment diffusion metrics were calculated using neurite orientation dispersion and density imaging (NODDI). As expected, results revealed age deficits in IAL (smaller differences in performance to high versus low frequency triplets in the late learning stage) and age-related differences in basal ganglia and hippocampus free, hindered, and restricted diffusion. Significant correlations were seen between restricted caudate diffusion and early IAL and between hindered globus pallidus diffusion and late IAL, which were not moderated by age group. These findings indicate that individual differences in basal ganglia, but not hippocampal, gray matter microstructure contribute to learning, independent of age, further supporting basal ganglia involvement in IAL.
Collapse
Affiliation(s)
- Corinna Y Franco
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | - Jessica R Petok
- Department of Psychology, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Xiaoping Hu
- Center for Advanced Neuroimaging, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Sydnor VJ, Bouix S, Pasternak O, Hartl E, Levin-Gleba L, Reid B, Tripodis Y, Guenette JP, Kaufmann D, Makris N, Fortier C, Salat DH, Rathi Y, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology. Neuroimage Clin 2020; 26:102190. [PMID: 32070813 PMCID: PMC7026283 DOI: 10.1016/j.nicl.2020.102190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals, yet the neuropathological mechanisms that contribute to this disorder remain to be fully determined. Moreover, it is unclear how exposure to mild traumatic brain injury (mTBI), a condition that is often comorbid with PTSD, particularly among military personnel, affects the clinical and neurological presentation of PTSD. To address these issues, the present study explores relationships between PTSD symptom severity and the microstructure of limbic and paralimbic gray matter brain regions, as well as the impact of mTBI comorbidity on these relationships. METHODS Structural and diffusion MRI data were acquired from 102 male veterans who were diagnosed with current PTSD. Diffusion data were analyzed with free-water imaging to quantify average CSF-corrected fractional anisotropy (FA) and mean diffusivity (MD) in 18 limbic and paralimbic gray matter regions. Associations between PTSD symptom severity and regional average dMRI measures were examined with repeated measures linear mixed models. Associations were studied separately in veterans with PTSD only, and in veterans with PTSD and a history of military mTBI. RESULTS Analyses revealed that in the PTSD only cohort, more severe symptoms were associated with higher FA in the right amygdala-hippocampus complex, lower FA in the right cingulate cortex, and lower MD in the left medial orbitofrontal cortex. In the PTSD and mTBI cohort, more severe PTSD symptoms were associated with higher FA bilaterally in the amygdala-hippocampus complex, with higher FA bilaterally in the nucleus accumbens, with lower FA bilaterally in the cingulate cortex, and with higher MD in the right amygdala-hippocampus complex. CONCLUSIONS These findings suggest that the microstructure of limbic and paralimbic brain regions may influence PTSD symptomatology. Further, given the additional associations observed between microstructure and symptom severity in veterans with head trauma, we speculate that mTBI may exacerbate the impact of brain microstructure on PTSD symptoms, especially within regions of the brain known to be vulnerable to chronic stress. A heightened sensitivity to the microstructural environment of the brain could partially explain why individuals with PTSD and mTBI comorbidity experience more severe symptoms and poorer illness prognoses than those without a history of brain injury. The relevance of these microstructural findings to the conceptualization of PTSD as being a disorder of stress-induced neuronal connectivity loss is discussed.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth Hartl
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Laura Levin-Gleba
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States
| | - Benjamin Reid
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yorghos Tripodis
- Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Jeffrey P Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Catherine Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
15
|
Gordon EM, May GJ, Nelson SM. MRI-based measures of intracortical myelin are sensitive to a history of TBI and are associated with functional connectivity. Neuroimage 2019; 200:199-209. [PMID: 31203023 PMCID: PMC6703948 DOI: 10.1016/j.neuroimage.2019.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injuries (TBIs) induce persistent behavioral and cognitive deficits via diffuse axonal injury. Axonal injuries are often examined in vivo using diffusion MRI, which identifies damaged and demyelinated regions in deep white matter. However, TBI patients can exhibit impairment in the absence of diffusion-measured abnormalities, suggesting that axonal injury and demyelination may occur outside the deep white matter. Importantly, myelinated axons are also present within the cortex. Cortical myelination cannot be measured using diffusion imaging, but can be mapped in-vivo using the T1-w/T2-w ratio method. Here, we conducted the first work examining effects of TBI on intracortical myelin in living humans by applying myelin mapping to 46 US Military Veterans with a history of TBI. We observed that myelin maps could be created in TBI patients that matched known distributions of cortical myelin. After controlling for age and presence of blast injury, the number of lifetime TBIs was associated with reductions in the T1-w/T2-w ratio across the cortex, most significantly in a highly-myelinated lateral occipital region corresponding with the human MT+ complex. Further, the T1-w/T2-w ratio in this MT+ region predicted resting-state functional connectivity of that region. By contrast, a history of blast TBI did not affect the T1-w/T2-w ratio in either a diffuse or focal pattern. These findings suggest that intracortical myelin, as measured using the T1-w/T2-w ratio, may be a TBI biomarker that is anatomically complementary to diffusion MRI. Thus, myelin mapping could potentially be combined with diffusion imaging to improve MRI-based diagnostic tools for TBI.
Collapse
Affiliation(s)
- Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Dr, 151-C, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr #800, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Baylor Sciences Building Suite B.309, Waco, TX, 76706, USA.
| | - Geoffrey J May
- VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Dr, 151-C, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr #800, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Baylor Sciences Building Suite B.309, Waco, TX, 76706, USA; Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, 8441 Riverside Parkway, Bryan, TX, 77807, USA
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Dr, 151-C, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr #800, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Baylor Sciences Building Suite B.309, Waco, TX, 76706, USA; Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, 8441 Riverside Parkway, Bryan, TX, 77807, USA
| |
Collapse
|
16
|
Andica C, Kamagata K, Hatano T, Saito A, Uchida W, Ogawa T, Takeshige-Amano H, Zalesky A, Wada A, Suzuki M, Hagiwara A, Irie R, Hori M, Kumamaru KK, Oyama G, Shimo Y, Umemura A, Pantelis C, Hattori N, Aoki S. Free-Water Imaging in White and Gray Matter in Parkinson's Disease. Cells 2019; 8:cells8080839. [PMID: 31387313 PMCID: PMC6721691 DOI: 10.3390/cells8080839] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to discriminate between neuroinflammation and neuronal degeneration in the white matter (WM) and gray matter (GM) of patients with Parkinson’s disease (PD) using free-water (FW) imaging. Analysis using tract-based spatial statistics (TBSS) of 20 patients with PD and 20 healthy individuals revealed changes in FW imaging indices (i.e., reduced FW-corrected fractional anisotropy (FAT), increased FW-corrected mean, axial, and radial diffusivities (MDT, ADT, and RDT, respectively) and fractional volume of FW (FW) in somewhat more specific WM areas compared with the changes of DTI indices. The region-of-interest (ROI) analysis further supported these findings, whereby those with PD showed significantly lower FAT and higher MDT, ADT, and RDT (indices of neuronal degeneration) in anterior WM areas as well as higher FW (index of neuroinflammation) in posterior WM areas compared with the controls. Results of GM-based spatial statistics (GBSS) analysis revealed that patients with PD had significantly higher MDT, ADT, and FW than the controls, whereas ROI analysis showed significantly increased MDT and FW and a trend toward increased ADT in GM areas, corresponding to Braak stage IV. These findings support the hypothesis that neuroinflammation precedes neuronal degeneration in PD, whereas WM microstructural alterations precede changes in GM.
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Asami Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Graduate School of Human Health Sciences, Tokyo 116-8551, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC 3053, Australia
- Melbourne School of Engineering, The University of Melbourne, VIC 3010, Australia
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Radiology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo 143-8541, Japan
| | - Kanako K Kumamaru
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yashushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Atsushi Umemura
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC 3053, Australia
- Melbourne School of Engineering, The University of Melbourne, VIC 3010, Australia
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
17
|
Lyall AE, Rathi Y, Kubicki M, Shenton ME. Diffusion Magnetic Resonance Imaging Advances the Study of Nuclei-Specific Thalamocortical Connectivity in Early Stage Psychosis. Biol Psychiatry 2019; 85:10-12. [PMID: 30527208 DOI: 10.1016/j.biopsych.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Havard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachussetts General Hospital, Harvard Medical School, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts.
| |
Collapse
|
18
|
Guerreri M, Palombo M, Caporale A, Fasano F, Macaluso E, Bozzali M, Capuani S. Age-related microstructural and physiological changes in normal brain measured by MRI γ-metrics derived from anomalous diffusion signal representation. Neuroimage 2018; 188:654-667. [PMID: 30583064 DOI: 10.1016/j.neuroimage.2018.12.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022] Open
Abstract
Nowadays, increasing longevity associated with declining cerebral nervous system functions, suggests the need for continued development of new imaging contrast mechanisms to support the differential diagnosis of age-related decline. In our previous papers, we developed a new imaging contrast metrics derived from anomalous diffusion signal representation and obtained from diffusion-weighted (DW) data collected by varying diffusion gradient strengths. Recently, we highlighted that the new metrics, named γ-metrics, depended on the local inhomogeneity due to differences in magnetic susceptibility between tissues and diffusion compartments in young healthy subjects, thus providing information about myelin orientation and iron content within cerebral regions. The major structural modifications occurring in brain aging are myelinated fibers damage in nerve fibers and iron accumulation in gray matter nuclei. Therefore, we investigated the potential of γ-metrics in relation to other conventional diffusion metrics such as DTI, DKI and NODDI in detecting age-related structural changes in white matter (WM) and subcortical gray matter (scGM). DW-images were acquired in 32 healthy subjects, adults and elderly (age range 20-77 years) using 3.0T and 12 b-values up to 5000 s/mm2. Association between diffusion metrics and subjects' age was assessed using linear regression. A decline in mean γ (Mγ) in the scGM and a complementary increase in radial γ (γ⊥) in frontal WM, genu of corpus callosum and anterior corona radiata with advancing age were found. We suggested that the increase in γ⊥ might reflect declined myelin density, and Mγ decrease might mirror iron accumulation. An increase in D// and a decrease in the orientation dispersion index (ODI) were associated with axonal loss in the pyramidal tracts, while their inverted trends within the thalamus were thought to be linked to reduced architectural complexity of nerve fibers. γ-metrics together with conventional diffusion-metrics can more comprehensively characterize the complex mechanisms underlining age-related changes than conventional diffusion techniques alone.
Collapse
Affiliation(s)
- Michele Guerreri
- SAIMLAL Department, Sapienza, Piazzale Aldo Moro, 5, 00185, Roma, RM, Italy; Institute for Complex Systems, CNR, Rome, Italy.
| | - Marco Palombo
- Institute for Complex Systems, CNR, Rome, Italy; Department of Computer Science & Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Alessandra Caporale
- Institute for Complex Systems, CNR, Rome, Italy; Laboratory for Structural, Physiologic and Functional Imaging, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Marco Bozzali
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Silvia Capuani
- Institute for Complex Systems, CNR, Rome, Italy; Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
19
|
Kikinis Z, Makris N, Sydnor VJ, Bouix S, Pasternak O, Coman IL, Antshel KM, Fremont W, Kubicki MR, Shenton ME, Kates WR, Rathi Y. Abnormalities in gray matter microstructure in young adults with 22q11.2 deletion syndrome. NEUROIMAGE-CLINICAL 2018; 21:101611. [PMID: 30522971 PMCID: PMC6411601 DOI: 10.1016/j.nicl.2018.101611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND 22q11.2 Deletion Syndrome (22q11DS) is a genetic, neurodevelopmental disorder characterized by a chromosomal deletion and a distinct cognitive profile. Although abnormalities in the macrostructure of the cortex have been identified in individuals with 22q11DS, it is not known if there are additional microstructural changes in gray matter regions in this syndrome, and/or if such microstructural changes are associated with cognitive functioning. METHODS This study employed a novel diffusion MRI measure, the Heterogeneity of Fractional Anisotropy (HFA), to examine variability in the microstructural organization of the cortex in healthy young adults (N = 30) and those with 22q11DS (N = 56). Diffusion MRI, structural MRI, clinical and cognitive data were acquired. RESULTS Compared to controls, individuals with 22q11DS evinced increased HFA in cortical association (p = .003, d = 0.86) and paralimbic (p < .0001, d = 1.2) brain areas, whereas no significant differences were found between the two groups in primary cortical brain areas. Additionally, increased HFA of the right paralimbic area was associated with poorer performance on tests of response inhibition, i.e., the Stroop Test (rho = -0.37 p = .005) and the Gordon Diagnostic System Vigilance Commission (rho = -0.41 p = .002) in the 22q11DS group. No significant correlations were found between HFA and cognitive abilities in the healthy control group. CONCLUSIONS These findings suggest that cortical microstructural disorganization may be a neural correlate of response inhibition in individuals with 22q11DS. Given that the migration pattern of neural crest cells is disrupted at the time of early brain development in 22q11DS, we hypothesize that these neural alterations may be neurodevelopmental in origin, and reflect cortical dysfunction associated with cognitive deficits.
Collapse
Affiliation(s)
- Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA.
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ioana L Coman
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Computer Science, SUNY Oswego, Oswego, NY, USA
| | - Kevin M Antshel
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Wanda Fremont
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marek R Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton, MA, USA
| | - Wendy R Kates
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Zora Kikinis, 1249 Boylston Street, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Microstructural imaging of human neocortex in vivo. Neuroimage 2018; 182:184-206. [DOI: 10.1016/j.neuroimage.2018.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
|
21
|
Kang K, Yoon U, Hong J, Jeong S, Ko PW, Lee SW, Lee HW. Amyloid Deposits and Idiopathic Normal-Pressure Hydrocephalus: An 18F-Florbetaben Study. Eur Neurol 2018; 79:192-199. [DOI: 10.1159/000487133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/23/2018] [Indexed: 01/21/2023]
Abstract
Background: The first aim of our study was to determine whether cortical 18F-florbetaben retention was different between healthy controls and idiopathic normal-pressure hydrocephalus (INPH) patients. Our second aim was to investigate whether there were any relationships between 18F-florbetaben retention and either hippocampal volume or clinical symptoms in INPH patients. Methods: Seventeen patients diagnosed with INPH and 8 healthy controls underwent studies with magnetic resonance imaging and 18F-florbetaben positron emission tomography imaging. Results: Automated region-of-interest analysis showed significant increases in 18F-florbetaben uptake in several brain regions in INPH patients compared to control subjects, with especially remarkable increases in the frontal (bilateral), parietal (bilateral), and occipital (bilateral) cortices. In the INPH group, right hippocampal volume was found to be negatively correlated with right frontal 18F-florbetaben retention. Korean-Mini Mental State Examination scores negatively correlated with right occipital 18F-florbetaben retention. Higher 18F-florbetaben retention correlated significantly with a higher Clinical Dementia Rating Scale score in the right occipital cortex. Conclusions: Our results indicate that INPH might be a disease exhibiting a characteristic pattern of cortical 18F-florbetaben retention. 18F-florbetaben retention in the frontal cortex may be related to hippocampal neuronal degeneration. Our findings may also help us understand the potential pathophysiology of cognitive impairments associated with INPH.
Collapse
|
22
|
Seitz J, Rathi Y, Lyall A, Pasternak O, Del Re EC, Niznikiewicz M, Nestor P, Seidman LJ, Petryshen TL, Mesholam-Gately RI, Wojcik J, McCarley RW, Shenton ME, Koerte IK, Kubicki M. Alteration of gray matter microstructure in schizophrenia. Brain Imaging Behav 2018; 12:54-63. [PMID: 28102528 PMCID: PMC5517358 DOI: 10.1007/s11682-016-9666-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroimaging studies demonstrate gray matter (GM) macrostructural abnormalities in patients with schizophrenia (SCZ). While ex-vivo and genetic studies suggest cellular pathology associated with abnormal neurodevelopmental processes in SCZ, few in-vivo measures have been proposed to target microstructural GM organization. Here, we use diffusion heterogeneity- to study GM microstructure in SCZ. Structural and diffusion magnetic resonance imaging (MRI) were acquired on a 3 Tesla scanner in 46 patients with SCZ and 37 matched healthy controls (HC). After correction for free water, diffusion heterogeneity as well as commonly used diffusion measures FA and MD and volume were calculated for the four cortical lobes on each hemisphere, and compared between groups. Patients with early course SCZ exhibited higher diffusion heterogeneity in the GM of the frontal lobes compared to controls. Diffusion heterogeneity of the frontal lobe showed excellent discrimination between patients and HC, while none of the commonly used diffusion measures such as FA or MD did. Higher diffusion heterogeneity in the frontal lobes in early SCZ may be due to abnormal brain maturation (migration, pruning) before and during adolescence and early adulthood. Further studies are needed to investigate the role of heterogeneity as potential biomarker for SCZ risk.
Collapse
Affiliation(s)
- Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig- Maximilians- Universität, Munich, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Elisabetta C Del Re
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
| | - Paul Nestor
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
- Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Beth Israel Deaconess Medical Center Public Psychiatry Division at the Massachusetts Mental Health Center Harvard Medical School, Boston, MA, USA
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetic Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raquelle I Mesholam-Gately
- Beth Israel Deaconess Medical Center Public Psychiatry Division at the Massachusetts Mental Health Center Harvard Medical School, Boston, MA, USA
| | - Joanne Wojcik
- Beth Israel Deaconess Medical Center Public Psychiatry Division at the Massachusetts Mental Health Center Harvard Medical School, Boston, MA, USA
| | - Robert W McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig- Maximilians- Universität, Munich, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA.
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
23
|
Salminen LE, Conturo TE, Laidlaw DH, Cabeen RP, Akbudak E, Lane EM, Heaps JM, Bolzenius JD, Baker LM, Cooley S, Scott S, Cagle LM, Phillips S, Paul RH. Regional age differences in gray matter diffusivity among healthy older adults. Brain Imaging Behav 2016; 10:203-11. [PMID: 25864197 DOI: 10.1007/s11682-015-9383-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aging is associated with microstructural changes in brain tissue that can be visualized using diffusion tensor imaging (DTI). While previous studies have established age-related changes in white matter (WM) diffusion using DTI, the impact of age on gray matter (GM) diffusion remains unclear. The present study utilized DTI metrics of mean diffusivity (MD) to identify age differences in GM/WM microstructure in a sample of healthy older adults (N = 60). A secondary aim was to determine the functional significance of whole-brain GM/WM MD on global cognitive function using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Participants were divided into three age brackets (ages 50-59, 60-69, and 70+) to examine differences in MD and cognition by decade. MD was examined bilaterally in the frontal, temporal, parietal, and occipital lobes for the primary analyses and an aggregate measure of whole-brain MD was used to test relationships with cognition. Significantly higher MD was observed in bilateral GM of the temporal and parietal lobes, and in right hemisphere WM of the frontal and temporal lobes of older individuals. The most robust differences in MD were between the 50-59 and 70+ age groups. Higher whole-brain GM MD was associated with poorer RBANS performance in the 60-69 age group. Results suggest that aging has a significant and differential impact on GM/WM diffusion in healthy older adults, which may explain a modest degree of cognitive variability at specific time points during older adulthood.
Collapse
Affiliation(s)
- Lauren E Salminen
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA.
| | - Thomas E Conturo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - David H Laidlaw
- Computer Science Department, Brown University, Providence, RI, 02912, USA
| | - Ryan P Cabeen
- Computer Science Department, Brown University, Providence, RI, 02912, USA
| | - Erbil Akbudak
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - Elizabeth M Lane
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - Jodi M Heaps
- Missouri Institute of Mental Health, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| | - Jacob D Bolzenius
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Laurie M Baker
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Sarah Cooley
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Staci Scott
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Lee M Cagle
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Sarah Phillips
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
| | - Robert H Paul
- Department of Psychology, University of Missouri- Saint Louis, 1 University Boulevard, Stadler Hall 442 A, Saint Louis, MO, 63121, USA
- Missouri Institute of Mental Health, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| |
Collapse
|
24
|
Lyall AE, Savadjiev P, Shenton ME, Kubicki M. Insights into the Brain: Neuroimaging of Brain Development and Maturation. JOURNAL OF NEUROIMAGING IN PSYCHIATRY & NEUROLOGY 2016; 1:10-19. [PMID: 28620654 PMCID: PMC5469407 DOI: 10.17756/jnpn.2016-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of how the human brain develops has always been a challenge and an interest to the scientific community. In recent years, new evidence has suggested that many neuropsychiatric disorders may originate from aberrations early in development. This discovery necessitates the application of methodologies that make possible the investigation of human brain development in vivo and across the lifespan. In this commentary, we present evidence that the advent of structural neuroimaging has specifically and significantly contributed critical information about the developmental trajectories of postnatal human brain development that would otherwise not have been possible. We believe that this is particularly relevant to present day research as it has become increasingly clear that growth trajectories within the brain might serve as an endophenotype for a number of factors, ranging from IQ to psychiatric illness. We highlight seminal early works that helped to jumpstart the field of developmental neuroimaging and which inspired incredible new advances in neuroimaging methodologies that are being developed and applied in the field today.
Collapse
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Savadjiev
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Brockton, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Superficial white matter as a novel substrate of age-related cognitive decline. Neurobiol Aging 2015; 36:2094-106. [PMID: 25834938 DOI: 10.1016/j.neurobiolaging.2015.02.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/20/2015] [Accepted: 02/21/2015] [Indexed: 12/11/2022]
|
26
|
Kulkarni P, Kenkel W, Finklestein SP, Barchet TM, Ren J, Davenport M, Shenton ME, Kikinis Z, Nedelman M, Ferris CF. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex. PLoS One 2015; 10:e0125748. [PMID: 25955025 PMCID: PMC4425537 DOI: 10.1371/journal.pone.0125748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/26/2015] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA) for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1) the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2) the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3) the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion.
Collapse
Affiliation(s)
- Praveen Kulkarni
- Northeastern University, Boston, Massachusetts, United States of America
| | - William Kenkel
- Northeastern University, Boston, Massachusetts, United States of America
| | | | - Thomas M. Barchet
- Northeastern University, Boston, Massachusetts, United States of America
| | - JingMei Ren
- Biotrofix, Waltham, Massachusetts, United States of America
| | | | - Martha E. Shenton
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Zora Kikinis
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Mark Nedelman
- Ekam Imaging, Boston, Massachusetts, United States of America
| | - Craig F. Ferris
- Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Hoy AR, Kecskemeti SR, Alexander AL. Free water elimination diffusion tractography: A comparison with conventional and fluid-attenuated inversion recovery, diffusion tensor imaging acquisitions. J Magn Reson Imaging 2015; 42:1572-81. [PMID: 25894864 DOI: 10.1002/jmri.24925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/07/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE White matter tractography reconstructions using conventional diffusion tensor imaging (DTI) near cerebrospinal fluid (CSF) spaces are often adversely affected by CSF partial volume effects (PVEs). This study evaluates the ability of free water elimination (FWE) DTI methods to minimize the PVE of CSF for deterministic tractography applications. MATERIALS AND METHODS Ten healthy individuals were scanned with "traditional," FLAIR (fluid-attenuated inversion recovery), and FWE DTI scans. The fornix, corpus callosum, and cingulum bundles were reconstructed using deterministic tractography. The FWE DTI scan was performed twice to separately match total acquisition time (long FWE) and number of measurements (encoding directions, short FWE) to the FLAIR and "traditional" DTI scans. PVE resolution was determined based on reconstructed tract volume. All reconstructions underwent blinded review for anatomical correctness, symmetry, and completeness. RESULTS Reconstructions of the fornix demonstrated that the FWE and FLAIR scans produce more complete, anatomically plausible reconstructions than "traditional" DTI. Additionally, the tract reconstructions using FWE-DTI were significantly larger than when FLAIR was used with DTI (P < 0.0005). FLAIR and the FWE methods led to signal-to-noise ratio (SNR) reductions of 33% and 11%, respectively, compared with conventional DTI. The long and short FWE acquisitions did not significantly (P ≥ 0.31) differ from one another for any of the reconstructed tracts. CONCLUSION The FWE diffusion model overcomes CSF PVE without the time, SNR, and volumetric coverage penalties inherent to FLAIR DTI.
Collapse
Affiliation(s)
- Andrew R Hoy
- Lieutenant, Medical Service Corps, United States Navy, Falls Church, Virginia, USA.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven R Kecskemeti
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Functional consequences of neurite orientation dispersion and density in humans across the adult lifespan. J Neurosci 2015; 35:1753-62. [PMID: 25632148 DOI: 10.1523/jneurosci.3979-14.2015] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As humans age, a characteristic pattern of widespread neocortical dendritic disruption coupled with compensatory effects in hippocampus and other subcortical structures is shown in postmortem investigations. It is now possible to address age-related effects on gray matter (GM) neuritic organization and density in humans using multishell diffusion-weighted MRI and the neurite-orientation dispersion and density imaging (NODDI) model. In 45 healthy individuals across the adult lifespan (21-84 years), we used a multishell diffusion imaging and the NODDI model to assess the intraneurite volume fraction and neurite orientation-dispersion index (ODI) in GM tissues. We also determined the functional correlates of variations in GM microstructure by obtaining resting-state fMRI and behavioral data. We found a significant age-related deficit in neocortical ODI (most prominently in frontoparietal regions), whereas increased ODI was observed in hippocampus and cerebellum with advancing age. Neocortical ODI outperformed cortical thickness and white matter fractional anisotropy for the prediction of chronological age in the same individuals. Higher GM ODI sampled from resting-state networks with known age-related susceptibility (default mode and visual association networks) was associated with increased functional connectivity of these networks, whereas the task-positive networks tended to show no association or even decreased connectivity. Frontal pole ODI mediated the negative relationship of age with executive function, whereas hippocampal ODI mediated the positive relationship of age with executive function. Our in vivo findings align very closely with the postmortem data and provide evidence for vulnerability and compensatory neural mechanisms of aging in GM microstructure that have functional and cognitive impact in vivo.
Collapse
|
29
|
Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophr Res 2015; 161:133-41. [PMID: 25278106 PMCID: PMC4277728 DOI: 10.1016/j.schres.2014.09.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/20/2022]
Abstract
One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering "Does dMRI tell us anything about the white matter?" We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail.
Collapse
|