1
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2025; 97:880-897. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Ottolini KM, Ngwa J, Basu SK, Kapse K, Liggett M, Murnick J, Limperopoulos C, Andescavage N. Brain development using a multicomponent intravenous lipid emulsion in preterm infants. BMC Pediatr 2024; 24:847. [PMID: 39736580 DOI: 10.1186/s12887-024-05330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Intravenous lipid emulsions are an essential component of nutritional support for very preterm infants. Many neonatal intensive care units have transitioned from traditional soybean oil-only to fish oil-containing multicomponent lipid emulsions, but the neurodevelopmental implications have not been well-explored. The primary aim of this study was to assess extrauterine third trimester brain growth in very preterm infants supported with soybean oil-only compared to fish-oil containing multicomponent lipid emulsions; white matter development and neurobehavioral regulation at term were also investigated. METHODS Human milk-fed very preterm infants (born less than or equal to 32 weeks' gestation) receiving either soybean oil-only (before 2019) or multicomponent (after 2019) lipid emulsions underwent quantitative brain MRI (volumetric growth and white matter development) and neurodevelopmental assessment (Neonatal Intensive Care Unit Network Neurobehavioral Scale) at term-equivalent age. Analyses were adjusted for age at birth and term assessments, as well as clinically significant covariates. RESULTS 92 infants (61 soybean, 31 multicomponent) were included (mean [SD] birth gestational age: 27.3 [2.3] weeks). Soybean oil-only infants demonstrated smaller brainstem volumes (β [95% CI] = -0.5 [-0.8,-0.1], p = .007); additionally less mature white matter development (mean diffusivity [MD, mm2/second x10- 3] and fractional anisotropy [FA]) in the corpus callosum (MD genu: β = 0.10 [0.01, 0.20], p = .04; splenium: β = 0.14 [0.04, 0.24], p = .006), posterior limbs of internal capsule (MD right (R): β = 0.05 [0.02, 0.08], p = .004, left (L): β = 0.04 [0.01, 0.08], p = .01; FA R: β = -0.03 [-0.06, -0.00], p = .03), and brainstem (FA R: β = 0.07 [0.04, 0.10], p < .001, L: β = 0.05 [0.02, 0.09], p = .002); and lower quality of movement (β = -0.54 [-0.97, -0.11], p = .02) and higher state-related stress (β = 1.41 [0.14, 2.83], p = .04). CONCLUSIONS Very preterm infants supported with a fish-oil containing multicomponent compared to soybean oil-only lipid emulsion demonstrated improved regional brain growth, as well as evidence of enhanced white matter microstructural organization and neurobehavioral regulation, at term corrected age. TRIAL REGISTRATION Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Katherine M Ottolini
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Division of Neonatology, Children's National Hospital, Washington, DC, 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Julius Ngwa
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sudeepta K Basu
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Division of Neonatology, Children's National Hospital, Washington, DC, 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
| | - Melissa Liggett
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
| | - Jonathan Murnick
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA.
- Division of Neonatology, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
3
|
Lubián-Gutiérrez M, Benavente-Fernández I, Marín-Almagro Y, Jiménez-Luque N, Zuazo-Ojeda A, Sánchez-Sandoval Y, Lubián-López SP. Corpus callosum long-term biometry in very preterm children related to cognitive and motor outcomes. Pediatr Res 2024; 96:409-417. [PMID: 38225451 PMCID: PMC11343715 DOI: 10.1038/s41390-023-02994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The corpus callosum (CC) is suggested as an indirect biomarker of white matter volume, which is often affected in preterm birth. However, diagnosing mild white matter injury is challenging. METHODS We studied 124 children born preterm (mean age: 8.4 ± 1.1 years), using MRI to assess CC measurements and cognitive/motor outcomes based on the Wechsler Intelligence Scale for Children-V (WPPSI-V) and Movement Assessment Battery for Children-2 (MABC-2). RESULTS Children with normal outcomes exhibited greater height (10.2 ± 2.1 mm vs. 9.4 ± 2.3 mm; p = 0.01) and fractional anisotropy at splenium (895[680-1000] vs 860.5[342-1000]) and total CC length (69.1 ± 4.8 mm vs. 67.3 ± 5.1 mm; p = 0.02) compared to those with adverse outcomes. All measured CC areas were smaller in the adverse outcome group. Models incorporating posterior CC measurements demonstrated the highest specificity (83.3% Sp, AUC: 0.65) for predicting neurological outcomes. CC length and splenium height were the only linear measurements associated with manual dexterity and total MABC-2 score while both the latter and genu were related with Full-Scale Intelligence Quotient. CONCLUSIONS CC biometry in children born very preterm at school-age is associated with outcomes and exhibits a specific subregion alteration pattern. The posterior CC may serve as an important neurodevelopmental biomarker in very preterm infants. IMPACT The corpus callosum has the potential to serve as a reliable and easily measurable biomarker of white matter integrity in very preterm children. Estimating diffuse white matter injury in preterm infants using conventional MRI sequences is not always conclusive. The biometry of the posterior part of the corpus callosum is associated with cognitive and certain motor outcomes at school age in children born very preterm. Length and splenium measurements seem to serve as reliable biomarkers for assessing neurological outcomes in this population.
Collapse
Affiliation(s)
- Manuel Lubián-Gutiérrez
- Division of Neurology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, C/Doctor Marañón, 3, Cádiz, Spain
| | - Isabel Benavente-Fernández
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, C/Doctor Marañón, 3, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain.
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain.
| | - Yolanda Marín-Almagro
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Natalia Jiménez-Luque
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Amaya Zuazo-Ojeda
- Radiology Department, Puerta del Mar University Hospital, Cádiz, Spain
| | - Yolanda Sánchez-Sandoval
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Developmental and Educational Psychology, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Simón P Lubián-López
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
| |
Collapse
|
4
|
Schneider D, Bouhali F, Richter CG, Costache R, Costache C, Kirchhoffer K, Sheth V, MacDonald I, Hoeft F. Perinatal influences on academic achievement and the developing brain: a scoping systematic review. Front Psychol 2024; 15:1352241. [PMID: 38962224 PMCID: PMC11221367 DOI: 10.3389/fpsyg.2024.1352241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction and methods In this PRISMA-compliant systematic review, we identify and synthesize the findings of research in which neuroimaging and assessments of achievement have been used to examine the relationships among aspects of developmental programming, neurodevelopment, and achievement in reading and mathematics. Results Forty-seven studies met inclusion criteria. The majority examined the impact of prematurity (n = 32) and prenatal alcohol exposure (n = 13). Several prematurity studies reported a positive correlation between white-matter integrity of callosal fibers and executive functioning and/or achievement, and white matter properties were consistently associated with cognitive and academic performance in preterm and full-term children. Volumetric studies reported positive associations between academic and cognitive abilities and white and gray matter volume in regions such as the insula, putamen, and prefrontal lobes. Functional MRI studies demonstrated increased right-hemispheric language processing among preterm children. Altered activation of the frontoparietal network related to numerical abilities was also reported. Prenatal alcohol exposure studies reported alterations in white matter microstructure linked to deficits in cognitive functioning and academic achievement, including mathematics, reading, and vocabulary skills. Volumetric studies reported reductions in cerebral, cerebellar, and subcortical gray matter volumes associated with decreased scores on measures of executive functioning, attention, working memory, and academic performance. Functional MRI studies demonstrated broad, diffuse activation, reduced activation in canonical regions, and increased activation in non-canonical regions during numeric tasks. Discussion A preponderance of studies linked prematurity and prenatal alcohol exposure to altered neurodevelopmental processes and suboptimal academic achievement. Limitations and recommendations for future research are discussed. Systematic review registration Identifier: DOI 10.17605/OSF.IO/ZAN67.
Collapse
Affiliation(s)
- Deborah Schneider
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
- Webster University, Geneva, Switzerland
| | | | - Caroline G. Richter
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Radu Costache
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Catalina Costache
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Kaitlyn Kirchhoffer
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Vatsa Sheth
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Ibo MacDonald
- Institute of Higher Education and Research in Healthcare, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Ingvaldsen SH, Jørgensen AP, Grøtting A, Sand T, Eikenes L, Håberg AK, Indredavik MS, Lydersen S, Austeng D, Morken TS, Evensen KAI. Visual outcomes and their association with grey and white matter microstructure in adults born preterm with very low birth weight. Sci Rep 2024; 14:2624. [PMID: 38297018 PMCID: PMC10831077 DOI: 10.1038/s41598-024-52836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
Individuals born with very low birth weight (VLBW; < 1500 g) have a higher risk of reduced visual function and brain alterations. In a longitudinal cohort study, we assessed differences in visual outcomes and diffusion metrics from diffusion tensor imaging (DTI) at 3 tesla in the visual white matter pathway and primary visual cortex at age 26 in VLBW adults versus controls and explored whether DTI metrics at 26 years was associated with visual outcomes at 32 years. Thirty-three VLBW adults and 50 term-born controls was included in the study. Visual outcomes included best corrected visual acuity, contrast sensitivity, P100 latency, and retinal nerve fibre layer thickness. Mean diffusivity, axial diffusivity, radial diffusivity, and fractional anisotropy was extracted from seven regions of interest in the visual pathway: splenium, genu, and body of corpus callosum, optic radiations, lateral geniculate nucleus, inferior-fronto occipital fasciculus, and primary visual cortex. On average the VLBW group had lower contrast sensitivity, a thicker retinal nerve fibre layer and higher axial diffusivity and radial diffusivity in genu of corpus callosum and higher radial diffusivity in optic radiations than the control group. Higher fractional anisotropy in corpus callosum areas were associated with better visual function in the VLBW group but not the control group.
Collapse
Affiliation(s)
- Sigrid Hegna Ingvaldsen
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Anna Perregaard Jørgensen
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnstein Grøtting
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- NorHEAD - Norwegian Centre for Headache Research, Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Radiology and Nuclear Medicine, MR-Center, Trondheim University Hospital, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, MR-Center, Trondheim University Hospital, Trondheim, Norway
| | - Marit S Indredavik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dordi Austeng
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora Sund Morken
- Department of Neuromedicine and Movement Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
6
|
Martini S, Lenzi J, Paoletti V, Maffei M, Toni F, Fetta A, Aceti A, Cordelli DM, Zuccarini M, Guarini A, Sansavini A, Corvaglia L. Neurodevelopmental Correlates of Brain Magnetic Resonance Imaging Abnormalities in Extremely Low-birth-weight Infants. J Pediatr 2023; 262:113646. [PMID: 37516269 DOI: 10.1016/j.jpeds.2023.113646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE To evaluate the relationship between impaired brain growth and structural brain abnormalities at term-equivalent age (TEA) and neurodevelopment in extremely low-birth-weight (ELBW) infants over the first 2 years. METHODS ELBW infants born from 2009 through 2018 and undergoing brain magnetic resonance imaging (MRI) at TEA were enrolled in this retrospective cohort study. MRI scans were reviewed using a validated quali-quantitative score, including several white and gray matter items. Neurodevelopment was assessed at 6, 12, 18, and 24 months using the Griffiths scales. The independent associations between MRI subscores and the trajectories of general and specific neurodevelopmental functions were analyzed by generalized estimating equations. RESULTS One hundred-nine ELBW infants were included. White matter volume reduction and delayed myelination were associated with worse general development (b = -2.33, P = .040; b = -6.88, P = .049 respectively), social skills (b = -3.13, P = .019; b = -4.79, P = .049), and eye-hand coordination (b = -3.48, P = .009; b = -7.21, P = .045). Cystic white matter lesions were associated with poorer motor outcomes (b = -4.99, P = .027), while white matter signal abnormalities and corpus callosum thinning were associated with worse nonverbal cognitive performances (b = -6.42, P = .010; b = -6.72, P = .021, respectively). Deep gray matter volume reduction correlated with worse developmental trajectories. CONCLUSIONS Distinctive MRI abnormalities correlate with specific later developmental skills. This finding may suggest that TEA brain MRI may assist with neurodevelopmental prediction, counseling of families, and development of targeted supportive interventions to improve neurodevelopment in ELBW neonates.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOUBO, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Jacopo Lenzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Monica Maffei
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC di Neuroradiologia, Bologna, Italy
| | - Francesco Toni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC di Neuroradiologia, Bologna, Italy
| | - Anna Fetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy.
| | - Arianna Aceti
- Neonatal Intensive Care Unit, IRCCS AOUBO, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Mariagrazia Zuccarini
- Department of Education Studies "Giovanni Maria Bertin", University of Bologna, Bologna, Italy
| | - Annalisa Guarini
- Department of Psychology "Renzo Canestrari", University of Bologna, Bologna, Italy
| | - Alessandra Sansavini
- Department of Psychology "Renzo Canestrari", University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, IRCCS AOUBO, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Siffredi V, Liverani MC, Van De Ville D, Freitas LGA, Borradori Tolsa C, Hüppi PS, Ha-Vinh Leuchter R. Corpus callosum structural characteristics in very preterm children and adolescents: Developmental trajectory and relationship to cognitive functioning. Dev Cogn Neurosci 2023; 60:101211. [PMID: 36780739 PMCID: PMC9925611 DOI: 10.1016/j.dcn.2023.101211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Previous studies suggest that structural alteration of the corpus callosum, i.e., the largest white matter commissural pathway, occurs after a preterm birth in the neonatal period and lasts across development. The present study aims to unravel corpus callosum structural characteristics across childhood and adolescence in very preterm (VPT) individuals, and their associations with general intellectual, executive and socio-emotional functioning. Neuropsychological assessments, T1-weighted and multi-shell diffusion MRI were collected in 79 VPT and 46 full term controls aged 6-14 years. Volumetric, diffusion tensor and neurite orientation dispersion and density imaging (NODDI) measures were extracted on 7 callosal portions using TractSeg. A multivariate data-driven approach (partial least squares correlation) and a cohort-based age normative modelling approach were used to explore associations between callosal characteristics and neuropsychological outcomes. The VPT and a full-term control groups showed similar trends of white-matter maturation over time, i.e., increase FA and reduced ODI, in all callosal segments, that was associated with increase in general intellectual functioning. However, using a cohort-based age-related normative modelling, findings show atypical pattern of callosal development in the VPT group, with reduced callosal maturation over time that was associated with poorer general intellectual and working memory functioning, as well as with lower gestational age.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland.
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Lorena G A Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
8
|
Liu Y, Nie B, Wang Y, He F, Ma Q, Han T, Mao G, Liu J, Zu H, Mu X, Wu B. Correlation of abnormal brain changes with perinatal factors in very preterm infants based on diffusion tensor imaging. Front Neurosci 2023; 17:1137559. [PMID: 37065913 PMCID: PMC10101202 DOI: 10.3389/fnins.2023.1137559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundIt remains unclear whether very preterm (VP) infants have the same level of brain structure and function as full-term (FT) infants. In addition, the relationship between potential differences in brain white matter microstructure and network connectivity and specific perinatal factors has not been well characterized.ObjectiveThis study aimed to investigate the existence of potential differences in brain white matter microstructure and network connectivity between VP and FT infants at term-equivalent age (TEA) and examine the potential association of these differences with perinatal factors.MethodsA total of 83 infants were prospectively selected for this study: 43 VP infants (gestational age, or GA: 27–32 weeks) and 40 FT infants (GA: 37–44 weeks). All infants at TEA underwent both conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Significant differences in white matter fractional anisotropy (FA) and mean diffusivity (MD) images between the VP and FT groups were observed using tract-based spatial statistics (TBSS). The fibers were tracked between each pair of regions in the individual space, using the automated anatomical labeling (AAL) atlas. Then, a structural brain network was constructed, where the connection between each pair of nodes was defined by the number of fibers. Network-based statistics (NBS) were used to examine differences in brain network connectivity between the VP and FT groups. Additionally, multivariate linear regression was conducted to investigate potential correlations between fiber bundle numbers and network metrics (global efficiency, local efficiency, and small-worldness) and perinatal factors.ResultsSignificant differences in FA were observed between the VP and FT groups in several regions. These differences were found to be significantly associated with perinatal factors such as bronchopulmonary dysplasia (BPD), activity, pulse, grimace, appearance, respiratory (APGAR) score, gestational hypertension, and infection. Significant differences in network connectivity were observed between the VP and FT groups. Linear regression results showed significant correlations between maternal years of education, weight, the APGAR score, GA at birth, and network metrics in the VP group.ConclusionsThe findings of this study shed light on the influence of perinatal factors on brain development in VP infants. These results may serve as a basis for clinical intervention and treatment to improve the outcome of preterm infants.
Collapse
Affiliation(s)
- Ying Liu
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yituo Wang
- Department of Radiology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang He
- Child Growth and Development Clinic, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiaozhi Ma
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Han
- Department of Neonatology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guangjuan Mao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiqiang Liu
- Department of Magnetic Resonance Imaging, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Haiping Zu
- Department of Radiology, Specialized Medical Center of the Rocket Army, Beijing, China
| | - Xuetao Mu
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xuetao Mu
| | - Bing Wu
- Department of Radiology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- Bing Wu
| |
Collapse
|
9
|
Han-Menz C, Whiteley G, Evans R, Razak A, Malhotra A. Systemic postnatal corticosteroids and magnetic resonance imaging measurements of corpus callosum and cerebellum of extremely preterm infants. J Paediatr Child Health 2023; 59:282-287. [PMID: 36404722 PMCID: PMC10098787 DOI: 10.1111/jpc.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
AIM To compare the size of the corpus callosum (CC) and cerebellum on magnetic resonance imaging (MRI) brain scans conducted at term equivalent age (TEA) in extremely preterm infants who received systemic postnatal corticosteroids (PCS) to extremely preterm infants who did not receive systemic PCS and determine the dose-dependent effects on these outcomes. METHODS Single-centre retrospective cohort study including extremely preterm infants (born < 26 weeks' gestation) who had MRI brain scans at TEA. CC and cerebellar measurements were evaluated by two radiologists who were blinded to steroid use and their independent measurements were averaged. Comparative analyses were conducted between exposed (to systemic PCS) and non-exposed groups. RESULTS Eighty-three extremely preterm infants with mean (SD) 24.9 (0.91) weeks' gestational age, 721.8 (156) g birthweight were included; 38 with systemic PCS exposure and 45 without exposure. After adjustment for birthweight and other significant neonatal morbidities, there was no significant difference noted in corpus callosum length (CCL) between unexposed and exposed groups (adjusted mean (SE) 39.5 (0.57) mm vs. 38.5 (0.62) mm; P = 0.29). Similarly, the ratios of CCL/fronto-occipital diameter (FOD) and CCL/biparietal diameter (BPD) were not significantly different between the groups (CCL/FOD (0.40 (0.01) vs. 0.41 (0.01); P = 0.70) and CCL/BPD (0.51 (0.01) vs. 0.52 (0.01); P = 0.62)). Finally, no significant differences in cerebellar measurements, such as vermian height (adjusted mean (SE) 24.0 (0.46) mm vs. 23.5 (0.51 mm); P = 0.47) and transcerebellar diameter (adjusted mean (SE) 49.3 (0.74) mm vs. 4.78 (0.82) mm; P = 0.22) were found. No dose-dependent effects of systemic PCS on CC and cerebellar measurements were identified. CONCLUSIONS Systemic PCS use in extremely preterm infants was not associated with a change in the CC and cerebellar measurements on MRI brain scan at TEA.
Collapse
Affiliation(s)
- Charmaine Han-Menz
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Gillian Whiteley
- Diagnostic Imaging, Monash Health, Melbourne, Victoria, Australia
| | - Rachel Evans
- Diagnostic Imaging, Monash Health, Melbourne, Victoria, Australia
| | - Abdul Razak
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Haebich KM, Willmott C, Scratch SE, Pascoe L, Lee KJ, Spencer-Smith MM, Cheong JLY, Inder TE, Doyle LW, Thompson DK, Anderson PJ. Neonatal brain abnormalities and brain volumes associated with goal setting outcomes in very preterm 13-year-olds. Brain Imaging Behav 2021; 14:1062-1073. [PMID: 30684152 DOI: 10.1007/s11682-019-00039-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Executive dysfunction including impaired goal setting (i.e., planning, organization skills, strategic reasoning) is documented in children born very preterm (VP; <30 weeks/<1250 g), however the neurological basis for this impairment is unknown. This study sought to examine the relationship between brain abnormalities and brain volumes on neonatal magnetic resonance imaging (MRI) and goal setting abilities of VP 13-year-olds. Participants were 159 children born VP in a prospective longitudinal study. Qualitative brain abnormality scores and quantitative brain volumes were derived from neonatal MRI brain scans (40 weeks' gestational age ± 2 weeks). Goal setting at 13 years was assessed using the Delis-Kaplan Executive Function Systems Tower Test, the Rey Complex Figure, and the Behavioural Assessment of the Dysexecutive System for Children Zoo Map and Six Part Test. A composite score was generated denoting overall performance on these goal setting measures. Separate regression models examined the association of neonatal brain abnormality scores and brain volumes with goal setting performance. There was evidence that higher neonatal white matter, deep grey matter and cerebellum abnormality scores were associated with poorer goal setting scores at 13 years. There was also evidence of positive associations between total brain volume, cerebellum, thalamic and cortical grey matter volumes and goal setting performance. Evidence for the associations largely persisted after controlling for potential confounders. Neonatal brain abnormality and brain volumes are associated with goal setting outcome in VP 13-year-olds. Used in conjunction with other clinical indicators, neonatal MRI may help to identify VP children at risk for later executive dysfunction.
Collapse
Affiliation(s)
- Kristina M Haebich
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Catherine Willmott
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Monash Epworth Rehabilitation Research Centre, Melbourne, Australia
| | - Shannon E Scratch
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Leona Pascoe
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Katherine J Lee
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Megan M Spencer-Smith
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie L Y Cheong
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Premature Infant Follow-up Programme, Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lex W Doyle
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Premature Infant Follow-up Programme, Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne, Australia
| | - Deanne K Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Florey Institute of Neurosciences and Mental Health, Melbourne, Australia
| | - Peter J Anderson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia. .,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
11
|
Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: A fixel-based analysis. Neuroimage 2020; 220:117068. [DOI: 10.1016/j.neuroimage.2020.117068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
|
12
|
Treyvaud K, Thompson DK, Kelly CE, Loh WY, Inder TE, Cheong JLY, Doyle LW, Anderson PJ. Early parenting is associated with the developing brains of children born very preterm. Clin Neuropsychol 2020; 35:885-903. [DOI: 10.1080/13854046.2020.1811895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Karli Treyvaud
- Department of Psychology and Counselling, La Trobe University, Victoria, Australia
- Clinical Sciences, Murdoch Children’s Research Institute, Victoria, Australia
- Newborn Research, Royal Women’s Hospital, Victoria, Australia
| | - Deanne K. Thompson
- Clinical Sciences, Murdoch Children’s Research Institute, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Claire E. Kelly
- Clinical Sciences, Murdoch Children’s Research Institute, Victoria, Australia
| | - Wai Yen Loh
- Clinical Sciences, Murdoch Children’s Research Institute, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Terrie E. Inder
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jeanie L. Y. Cheong
- Clinical Sciences, Murdoch Children’s Research Institute, Victoria, Australia
- Newborn Research, Royal Women’s Hospital, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Lex W. Doyle
- Clinical Sciences, Murdoch Children’s Research Institute, Victoria, Australia
- Newborn Research, Royal Women’s Hospital, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Peter J. Anderson
- Clinical Sciences, Murdoch Children’s Research Institute, Victoria, Australia
- Turner Institute for Brain & Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
13
|
Ottolini KM, Andescavage N, Kapse K, Jacobs M, Limperopoulos C. Improved brain growth and microstructural development in breast milk-fed very low birth weight premature infants. Acta Paediatr 2020; 109:1580-1587. [PMID: 31922288 DOI: 10.1111/apa.15168] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
Abstract
AIM Breast milk feeding is linked to improved neurodevelopmental outcomes in very low birth weight (VLBW) infants, though the mechanisms are not well understood. This study utilised quantitative magnetic resonance imaging (qMRI) techniques to compare brain growth and white matter development in preterm infants receiving primarily breast milk versus formula feeds. METHODS We prospectively enrolled infants born at very low birth weight (<1500 g) and <32 weeks gestational age and performed MRI at term-equivalent age. We utilised volumetric segmentation to calculate regional and total brain volumes and diffusion tensor imaging to evaluate white matter microstructural organisation. Daily nutritional data were extracted from the medical record. RESULTS Nutritional and MRI data were obtained for 68 infants admitted within the first week of life (44 breast milk and 24 formula). Breast milk-fed infants demonstrated significantly larger total brain volumes (P = .04) as well as volumes in the amygdala-hippocampus and cerebellum (P < .01) compared with formula-fed. Infants receiving breast milk also demonstrated greater white matter microstructural organisation in the corpus callosum, posterior limb of internal capsule and cerebellum (P < .01 to .03). CONCLUSION VLBW infants receiving primarily breast milk versus preterm formula in this small exploratory study demonstrated significantly greater regional brain volumes and white matter microstructural organisation by term-equivalent age.
Collapse
Affiliation(s)
- Katherine M. Ottolini
- Department of Neonatology 18th Medical Operations Squadron Kadena AB Okinawa Japan
- Department of Pediatrics Division of Neonatology Uniformed Services University Bethesda MD USA
| | - Nickie Andescavage
- Department of Neonatology Children's National Health Systems Washington DC USA
| | - Kushal Kapse
- Developing Brain Research Laboratory Children's National Health Systems Washington DC USA
| | - Marni Jacobs
- Division of Biostatistics & Study Methodology Children's National Health Systems Washington DC USA
| | - Catherine Limperopoulos
- Developing Brain Research Laboratory Children's National Health Systems Washington DC USA
- Department of Pediatrics Department of Radiology George Washington University School of Medicine Washington DC USA
| |
Collapse
|
14
|
Mongerson CRL, Jaimes C, Zurakowski D, Jennings RW, Bajic D. Infant Corpus Callosum Size After Surgery and Critical Care for Long-Gap Esophageal Atresia: Qualitative and Quantitative MRI. Sci Rep 2020; 10:6408. [PMID: 32286423 PMCID: PMC7156662 DOI: 10.1038/s41598-020-63212-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/26/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies in preterm infants report white matter abnormalities of the corpus callosum (CC) as an important predictor of neurodevelopmental outcomes. Our cross-sectional study aimed to describe qualitative and quantitative CC size in critically ill infants following surgical and critical care for long-gap esophageal atresia (LGEA) - in comparison to healthy infants - using MRI. Non-sedated brain MRI was acquired for full-term (n = 13) and premature (n = 13) patients following treatment for LGEA, and controls (n = 20) <1 year corrected age. A neuroradiologist performed qualitative evaluation of T1-weighted images. ITK-SNAP was used for linear, 2-D and 3-D manual CC measures and segmentations as part of CC size quantification. Qualitative MRI analysis indicated underdeveloped CC in both patient groups in comparison to controls. We show no group differences in mid-sagittal CC length. Although 2-D results were inconclusive, volumetric analysis showed smaller absolute (F(2,42) = 20.40, p < 0.001) and normalized (F(2,42) = 16.61, p < 0.001) CC volumes following complex perioperative treatment for LGEA in both full-term and premature patients, suggesting delayed or diminished CC growth in comparison to controls, with no difference between patient groups. Future research should look into etiology of described differences, neurodevelopmental outcomes, and role of the CC as an early marker of neurodevelopment in this unique infant population.
Collapse
Affiliation(s)
- Chandler R L Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Camilo Jaimes
- Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
| | - Russell W Jennings
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Esophageal and Airway Treatment Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Dewey D, Thompson DK, Kelly CE, Spittle AJ, Cheong JLY, Doyle LW, Anderson PJ. Very preterm children at risk for developmental coordination disorder have brain alterations in motor areas. Acta Paediatr 2019; 108:1649-1660. [PMID: 30891804 DOI: 10.1111/apa.14786] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 11/28/2022]
Abstract
AIM Brain alterations in very preterm children at risk for developmental coordination disorder were investigated. METHODS Infants born very preterm with gestation age <30 weeks or birthweight <1250 g were recruited from Royal Women's Hospital Melbourne from 2001 to 2003. Volumetric imaging was performed at term equivalent age; at seven years, volumetric imaging and diffusion tensor imaging were performed. At seven years, 53 of 162 children without cerebral palsy had scores ≤16th percentile on the Movement Assessment Battery for Children-Second Edition and were considered at risk for developmental coordination disorder. RESULTS At term equivalent age, smaller brain volumes were found for total brain tissue, cortical grey matter, cerebellum, caudate accumbens, pallidum and thalamus in children at risk for developmental coordination disorder (p < 0.05); similar patterns were present at seven years. There was no evidence for catch-up brain growth in at-risk children. At seven years, at-risk children displayed altered microstructural organisation in many white matter tracts (p < 0.05). CONCLUSION Infants born very preterm at risk for developmental coordination disorder displayed smaller brain volumes at term equivalent age and seven years, and altered white matter microstructure at seven years, particularly in motor areas. There was no catch-up growth from infancy to seven years.
Collapse
Affiliation(s)
- Deborah Dewey
- Department of Pediatrics University of Calgary Calgary AB Canada
- Departments of Community Health Sciences University of Calgary Calgary AB Canada
- Owerko Centre Alberta Children's Hospital Research Institute University of Calgary Calgary AB Canada
| | - Deanne K. Thompson
- Victorian Infant Brain Study (VIBeS) Murdoch Children's Research Institute Melbourne Vic. Australia
- Developmental Imaging Murdoch Children's Research Institute Melbourne Vic. Australia
- Department of Paediatrics University of Melbourne Melbourne Vic. Australia
- Florey Institute of Neurosciences and Mental Health Melbourne Vic. Australia
| | - Claire E. Kelly
- Victorian Infant Brain Study (VIBeS) Murdoch Children's Research Institute Melbourne Vic. Australia
- Developmental Imaging Murdoch Children's Research Institute Melbourne Vic. Australia
| | - Alicia J. Spittle
- Victorian Infant Brain Study (VIBeS) Murdoch Children's Research Institute Melbourne Vic. Australia
- Department of Physiotherapy University of Melbourne Melbourne Vic. Australia
| | - Jeanie L. Y. Cheong
- Victorian Infant Brain Study (VIBeS) Murdoch Children's Research Institute Melbourne Vic. Australia
- Department of Obstetrics and Gynaecology the Royal Women's Hospital University of Melbourne Melbourne Vic. Australia
- Neonatal Services Royal Women's Hospital Melbourne Vic. Australia
| | - Lex W. Doyle
- Victorian Infant Brain Study (VIBeS) Murdoch Children's Research Institute Melbourne Vic. Australia
- Department of Paediatrics University of Melbourne Melbourne Vic. Australia
- Department of Obstetrics and Gynaecology the Royal Women's Hospital University of Melbourne Melbourne Vic. Australia
- Neonatal Services Royal Women's Hospital Melbourne Vic. Australia
| | - Peter J. Anderson
- Victorian Infant Brain Study (VIBeS) Murdoch Children's Research Institute Melbourne Vic. Australia
- Monash Institute of Cognitive & Clinical Neurosciences Monash University Melbourne Vic. Australia
| |
Collapse
|
16
|
Mills M, Pelling V, Harris LM, Smith J, Aiton N, Rabe H, Fernandez-Alvarez JR. Comparison of MRI and neurosonogram 1- and 2-dimensional morphological measurements of the newborn corpus callosum. Pediatr Res 2019; 86:355-359. [PMID: 30965354 DOI: 10.1038/s41390-019-0386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Developmental abnormalities of the corpus callosum (CC) are linked to multiple neuro-developmental disorders, for which neonatal neuroimaging may allow earlier diagnosis and intervention. MRI is often considered the most sensitive imaging modality to white matter changes, while neurosonogram (NS) remains the clinical staple. This study assesses the correlation between MRI and US measurements of the neonatal CC using a protocol derived from established methodologies. METHODS MR and NS images from an existing cohort of term infants (≥37 weeks gestational age) were studied. Length and area measurements of the CC made with linear (LUS) and phased array US (PUS) data were compared to those from MRI. Intra-observer reliabilities were estimated. RESULTS Moderate-to-strong correlation strengths were observed for length measurements and the total area of the CC. Sectional area measurements showed poorer correlations. Bland-Altman plots support improved correspondence of length and total area measurements. LUS data appeared to correspond closer to MRI. All three modalities showed comparable repeatability. CONCLUSION NS correlates well with some MRI measurements of the CC and shows similar levels of repeatability, making them possibly interchangeable. Use of LUS, a technique rarely used for NS, may be preferable to the standard approach for morphological studies.
Collapse
Affiliation(s)
- Michael Mills
- Department of Radiological Sciences, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK.
| | - Vincent Pelling
- Department of Radiological Sciences, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Lisa M Harris
- Department of Radiological Sciences, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Joely Smith
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Neil Aiton
- Brighton and Sussex Medical School, Brighton, UK.,Department of Neonatology, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Heike Rabe
- Brighton and Sussex Medical School, Brighton, UK.,Department of Neonatology, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| | - Jose Ramon Fernandez-Alvarez
- Brighton and Sussex Medical School, Brighton, UK.,Department of Neonatology, Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
| |
Collapse
|
17
|
White matter microstructure correlates with mathematics but not word reading performance in 13-year-old children born very preterm and full-term. NEUROIMAGE-CLINICAL 2019; 24:101944. [PMID: 31426019 PMCID: PMC6706654 DOI: 10.1016/j.nicl.2019.101944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/24/2023]
Abstract
Individuals born very preterm (VPT; <32 weeks' gestational age) are at increased risk of impaired mathematics and word reading performance, as well as widespread white matter microstructural alterations compared with individuals born full term (FT; ≥37 weeks' gestational age). To date, the link between academic performance and white matter microstructure is not well understood. This study aimed to investigate the associations between mathematics and reading performance with white matter microstructure in 114 VPT and 36 FT 13-year-old children. Additionally, we aimed to investigate whether the association of mathematics and reading performance with white matter microstructure in VPT children varied as a function of impairment. To do this, we used diffusion tensor imaging and advanced diffusion modelling techniques (Neurite Orientation Dispersion and Density Imaging and the Spherical Mean Technique), combined with a whole-brain analysis approach (Tract-Based Spatial Statistics). Mathematics performance across VPT and FT groups was positively associated with white matter microstructural measurements of fractional anisotropy and neurite density, and negatively associated with radial and mean diffusivities in widespread, bilateral regions. Furthermore, VPT children with a mathematics impairment (>1 standard deviation below FT mean) had significantly reduced neurite density compared with VPT children without an impairment. Reading performance was not significantly associated with any of the white matter microstructure parameters. Additionally, the associations between white matter microstructure and mathematics and reading performance did not differ significantly between VPT and FT groups. Our findings suggest that alterations in white matter microstructure, and more specifically lower neurite density, are associated with poorer mathematics performance in 13-year-old VPT and FT children. More research is required to understand the association between reading performance and white matter microstructure in 13-year-old children. Diffusion tensor and neurite density metrics were associated with mathematics. Associations were present in very preterm and full-term children. Associations were widespread throughout the white matter microstructure. Decreased neurite density was evident in children with a mathematics impairment. Limited evidence of associations between white matter microstructure and reading.
Collapse
|
18
|
Altered transcallosal inhibition evidenced by transcranial magnetic stimulation highlights neurophysiological consequences of premature birth in early adulthood. J Neurol Sci 2018; 393:18-23. [PMID: 30098499 DOI: 10.1016/j.jns.2018.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE A very preterm birth can induce deleterious neurophysiological consequences beyond childhood; alterations of the corpus callosum (CC) are reported in adolescents born very preterm along with cognitive impairments. The question remains whether neurophysiological alterations are still detectable in adulthood such as an alteration in CC inhibitory function. The aim of the present study was thus to examine transcallosal inhibition in young adults born very preterm compared to counterparts born at term. STUDY PARTICIPANTS & METHODS Transcallosal inhibition was probed by measuring the ipsilateral silent period (iSP) using transcranial magnetic stimulation (TMS) in 13 young adults born at 33w of gestation or less (20 ± 3. 2y) and 12 young adults born at term (22 ± 1. 75y). Single high-intensity TMS were delivered to the primary motor cortex (M1) ipsilateral to the preactivated first dorsal interosseous (FDI) muscle. Occurrence, latency, and duration of iSP were measured in the FDI EMG activity, for both hemispheres alternatively (10-12 trials each) along with their resting motor threshold (RMT). RESULTS In individuals born very preterm as compared to individuals born at term, ISP occurred less frequently (p < .0001), its latency was longer (p = .004), especially in the non-dominant hemisphere, its duration shorter (p < .0001), and RMT was higher in the non-dominant M1 than in the dominant. CONCLUSIONS Impairment of transcallosal inhibition along with asymmetry of M1 excitability in young adults born very preterm as compared to those born at term underline that neurophysiological consequences of a preterm birth can still be detected in early adulthood.
Collapse
|
19
|
Kelly CE, Ooi WL, Yang JYM, Chen J, Adamson C, Lee KJ, Cheong JLY, Anderson PJ, Doyle LW, Thompson DK. Caffeine for apnea of prematurity and brain development at 11 years of age. Ann Clin Transl Neurol 2018; 5:1112-1127. [PMID: 30250867 PMCID: PMC6144456 DOI: 10.1002/acn3.628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Caffeine therapy for apnea of prematurity has been reported to improve brain white matter microstructure at term‐equivalent age, but its long‐term effects are unknown. This study aimed to investigate whether caffeine affects (1) brain structure at 11 years of age, and (2) brain development from term‐equivalent age to 11 years of age, compared with placebo. Methods Preterm infants born ≤1250 g were randomly allocated to caffeine or placebo. Magnetic resonance imaging (MRI) was performed on 70 participants (33 caffeine, 37 placebo) at term‐equivalent age and 117 participants (63 caffeine, 54 placebo) at 11 years of age. Global and regional brain volumes and white matter microstructure were measured at both time points. Results In general, there was little evidence for differences between treatment groups in brain volumes or white matter microstructure at age 11 years. There was, however, evidence that the caffeine group had a smaller corpus callosum than the placebo group. Volumetric brain development from term‐equivalent to 11 years of age was generally similar between treatment groups. However, there was evidence that caffeine was associated with slower growth of the corpus callosum, and slower decreases in axial, radial, and mean diffusivities in the white matter, particularly at the level of the centrum semiovale, over time than placebo. Interpretation This study suggests any benefits of neonatal caffeine therapy on brain structure in preterm infants weaken over time and are not clearly detectable by MRI at age 11 years, although caffeine may have long‐term effects on corpus callosum development.
Collapse
Affiliation(s)
- Claire E Kelly
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Wenn Lynn Ooi
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging Murdoch Children's Research Institute Melbourne Australia.,Department of Neurosurgery The Royal Children's Hospital Melbourne Australia.,Neuroscience Research Murdoch Children's Research Institute Melbourne Australia
| | - Jian Chen
- Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Chris Adamson
- Developmental Imaging Murdoch Children's Research Institute Melbourne Australia
| | - Katherine J Lee
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Clinical Epidemiology & Biostatistics Unit Murdoch Children's Research Institute Melbourne Australia.,Department of Paediatrics The University of Melbourne Melbourne Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Department of Neonatal Services The Royal Women's Hospital Melbourne Australia.,Department of Obstetrics and Gynaecology The University of Melbourne Melbourne Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Monash Institute of Cognitive and Clinical Neurosciences Monash University Melbourne Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Department of Paediatrics The University of Melbourne Melbourne Australia.,Department of Neonatal Services The Royal Women's Hospital Melbourne Australia.,Department of Obstetrics and Gynaecology The University of Melbourne Melbourne Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies Murdoch Children's Research Institute Melbourne Australia.,Developmental Imaging Murdoch Children's Research Institute Melbourne Australia.,Department of Paediatrics The University of Melbourne Melbourne Australia.,Florey Institute of Neuroscience and Mental Health Melbourne Australia
| |
Collapse
|
20
|
Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp Neurol 2017; 302:1-13. [PMID: 29288070 DOI: 10.1016/j.expneurol.2017.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Children who are born preterm are at risk for encephalopathy of prematurity, a leading cause of cerebral palsy, cognitive delay and behavioral disorders. Current interventions are limited and none have been shown to reverse cognitive and behavioral impairments, a primary determinant of poor quality of life for these children. Moreover, the mechanisms of perinatal brain injury that result in functional deficits and imaging abnormalities in the mature brain are poorly defined, limiting the potential to target interventions to those who may benefit most. To determine whether impairments are reversible after a prenatal insult, we investigated a spectrum of functional deficits and diffusion tensor imaging (DTI) abnormalities in young adult animals. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) would induce multiple functional deficits concomitant with reduced microstructural white and gray matter integrity, and tested whether these abnormalities could be ameliorated using postnatal erythropoietin (EPO), an emerging neurorestorative intervention. On embryonic day 18 uterine arteries were transiently occluded for 60min via laparotomy. Shams underwent anesthesia and laparotomy for 60min. Pups were born and TSHI pups were randomized to receive EPO or vehicle via intraperitoneal injection on postnatal days 1 to 5. Gait, social interaction, olfaction and open field testing was performed from postnatal day 25-35 before brains underwent ex vivo DTI to measure fractional anisotropy, axial diffusivity and radial diffusivity. Prenatal TSHI injury causes hyperactivity, impaired gait and poor social interaction in young adult rats that mimic the spectrum of deficits observed in children born preterm. Collectively, these data show for the first time in a model of encephalopathy of prematurity that postnatal EPO treatment mitigates impairments in social interaction, in addition to gait deficits. EPO also normalizes TSHI-induced microstructural abnormalities in fractional anisotropy and radial diffusivity in multiple regions, consistent with improved structural integrity and recovery of myelination. Taken together, these results show behavioral and memory deficits from perinatal brain injury are reversible. Furthermore, resolution of DTI abnormalities may predict responsiveness to emerging interventions, and serve as a biomarker of CNS injury and recovery.
Collapse
|
21
|
Keunen K, Benders MJ, Leemans A, Fieret-Van Stam PC, Scholtens LH, Viergever MA, Kahn RS, Groenendaal F, de Vries LS, van den Heuvel MP. White matter maturation in the neonatal brain is predictive of school age cognitive capacities in children born very preterm. Dev Med Child Neurol 2017; 59:939-946. [PMID: 28675542 DOI: 10.1111/dmcn.13487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 11/30/2022]
Abstract
AIM To investigate the association between white matter organization in the neonatal brain and cognitive capacities at early school age in children born very preterm. METHOD Thirty children born very preterm (gestational age median 27.5wks, interquartile range [IQR] 25.5-29.5; 18 males, 12 females) were included in this retrospective observational cohort study. Diffusion-weighted imaging (DWI) had been performed on a 3T system in the neonatal period (median 41.3 [IQR 40.0-42.6]wks) and cognitive functioning was formally assessed at age 5 years and 7 months (IQR 5.4-5.9y) using the Wechsler Preschool and Primary Scale of Intelligence. Structural connectivity maps were reconstructed from the DWI data using deterministic streamline tractography. Network metrics of global and local communication and mean fractional anisotropy of white matter pathways were related to IQ and processing speed at age 5 years using linear regression analyses. RESULTS Mean fractional anisotropy was significantly related to Performance IQ at age 5 years (F=8.48, p=0.007). Findings persisted after adjustment for maternal education level. INTERPRETATION Our findings provide evidence that the blueprint of later cognitive achievement is already present at term-equivalent age and suggest that white matter connectivity strength may be a valuable predictor for long-term cognitive functioning.
Collapse
Affiliation(s)
- Kristin Keunen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Manon J Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexander Leemans
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Petronella C Fieret-Van Stam
- Department of Medical Psychology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lianne H Scholtens
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Max A Viergever
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - René S Kahn
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Psychiatry, Icahn School of Medicine Mount Sinai, NY, USA
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martijn P van den Heuvel
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
22
|
Abstract
OBJECTIVES This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. METHODS A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. RESULTS VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected p<.05). Poorer sustained auditory attention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). CONCLUSIONS Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539-550).
Collapse
|
23
|
Thompson DK, Chen J, Beare R, Adamson CL, Ellis R, Ahmadzai ZM, Kelly CE, Lee KJ, Zalesky A, Yang JYM, Hunt RW, Cheong JLY, Inder TE, Doyle LW, Seal ML, Anderson PJ. Structural connectivity relates to perinatal factors and functional impairment at 7years in children born very preterm. Neuroimage 2016; 134:328-337. [PMID: 27046108 PMCID: PMC4912891 DOI: 10.1016/j.neuroimage.2016.03.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/17/2016] [Accepted: 03/26/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To use structural connectivity to (1) compare brain networks between typically and atypically developing (very preterm) children, (2) explore associations between potential perinatal developmental disturbances and brain networks, and (3) describe associations between brain networks and functional impairments in very preterm children. METHODS 26 full-term and 107 very preterm 7-year-old children (born <30weeks' gestational age and/or <1250g) underwent T1- and diffusion-weighted imaging. Global white matter fibre networks were produced using 80 cortical and subcortical nodes, and edges were created using constrained spherical deconvolution-based tractography. Global graph theory metrics were analysed, and regional networks were identified using network-based statistics. Cognitive and motor function were assessed at 7years of age. RESULTS Compared with full-term children, very preterm children had reduced density, lower global efficiency and higher local efficiency. Those with lower gestational age at birth, infection or higher neonatal brain abnormality score had reduced connectivity. Reduced connectivity within a widespread network was predictive of impaired IQ, while reduced connectivity within the right parietal and temporal lobes was associated with motor impairment in very preterm children. CONCLUSIONS This study utilised an innovative structural connectivity pipeline to reveal that children born very preterm have less connected and less complex brain networks compared with typically developing term-born children. Adverse perinatal factors led to disturbances in white matter connectivity, which in turn are associated with impaired functional outcomes, highlighting novel structure-function relationships.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia.
| | - Jian Chen
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Medicine, Monash Medical Centre, Monash University, 246 Clayton Rd, Melbourne, VIC 3168, Australia
| | - Richard Beare
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Medicine, Monash Medical Centre, Monash University, 246 Clayton Rd, Melbourne, VIC 3168, Australia
| | - Christopher L Adamson
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Rachel Ellis
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Zohra M Ahmadzai
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Claire E Kelly
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Katherine J Lee
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, 161 Barry St, Carlton, VIC 3053, Australia; Melbourne School of Engineering, Building 173, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph Y M Yang
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Neurosurgery, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Rodney W Hunt
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Neonatal Medicine, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Jeanie L Y Cheong
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Women's Newborn Research Centre, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC 3052, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, 20 Flemington Rd, Parkville, VIC 3052, Australia
| | - Terrie E Inder
- Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Lex W Doyle
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia; Women's Newborn Research Centre, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC 3052, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, 20 Flemington Rd, Parkville, VIC 3052, Australia
| | - Marc L Seal
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| |
Collapse
|
24
|
Kelly CE, Thompson DK, Chen J, Leemans A, Adamson CL, Inder TE, Cheong JLY, Doyle LW, Anderson PJ. Axon density and axon orientation dispersion in children born preterm. Hum Brain Mapp 2016; 37:3080-102. [PMID: 27133221 DOI: 10.1002/hbm.23227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density Imaging (NODDI). This study aimed to compare whole brain white matter FA, axon dispersion, and axon density between VPT children and controls (born ≥37 weeks' gestation), and to investigate associations with perinatal factors and neurodevelopmental outcomes. METHODS FA, neurite dispersion, and neurite density were estimated from multishell diffusion magnetic resonance images for 145 VPT and 33 control 7-year-olds. Diffusion values were compared between groups and correlated with perinatal factors (gestational age, birthweight, and neonatal brain abnormalities) and neurodevelopmental outcomes (IQ, motor, academic, and behavioral outcomes) using Tract-Based Spatial Statistics. RESULTS Compared with controls, VPT children had lower FA and higher axon dispersion within many major white matter fiber tracts. Neonatal brain abnormalities predicted lower FA and higher axon dispersion in many major tracts in VPT children. Lower FA, higher axon dispersion, and lower axon density in various tracts correlated with poorer neurodevelopmental outcomes in VPT children. CONCLUSIONS FA and NODDI measures distinguished VPT children from controls and were associated with neonatal brain abnormalities and neurodevelopmental outcomes. This study provides a more detailed and biologically meaningful interpretation of white matter microstructure changes associated with prematurity. Hum Brain Mapp 37:3080-3102, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claire E Kelly
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jian Chen
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Medicine, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jeanie L Y Cheong
- Murdoch Childrens Research Institute, Melbourne, Australia.,Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|