1
|
Sun Y, Yu N, Chen G, Liu T, Wen S, Chen W. What Else Is Happening to the Mirror Neurons?-A Bibliometric Analysis of Mirror Neuron Research Trends and Future Directions (1996-2024). Brain Behav 2025; 15:e70486. [PMID: 40205860 PMCID: PMC11982629 DOI: 10.1002/brb3.70486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Since its discovery in the late 20th century, research on mirror neurons has become a pivotal area in neuroscience, linked to various cognitive and social functions. This bibliometric analysis explores the research trajectory, key research topics, and future trends in the field of mirror neuron research. METHODS We searched the Web of Science Core Collection (WoSCC) database for publications from 1996 to 2024 on mirror neuron research. Statistical and visualization analyses were performed using CiteSpace and VOSviewer. RESULTS Publication output on mirror neurons peaked in 2013 and remained active. High-impact journals such as Science, Brain, Neuron, PNAS, and NeuroImage frequently feature findings on the mirror neuron system, including its distribution, neural coding, and roles in intention understanding, affective empathy, motor learning, autism, and neurological disorders. Keyword clustering reveals major directions in cognitive neuroscience, motor neuroscience, and neurostimulation, whereas burst detection underscores the emerging significance of brain-computer interfaces (BCIs). Research methodologies have been evolving from traditional electrophysiological recordings to advanced techniques such as functional magnetic resonance imaging, transcranial magnetic stimulation, and BCIs, highlighting a dynamic, multidisciplinary progression. CONCLUSIONS This study identifies key areas associated with mirror neurons and anticipates that future work will integrate findings with artificial intelligence, clinical interventions, and novel neuroimaging techniques, providing new perspectives on complex socio-cognitive issues and their applications in both basic science and clinical practice.
Collapse
Affiliation(s)
- Yangyang Sun
- Center for Brain, Mind and EducationShaoxing UniversityShaoxingChina
- Faculty of EducationUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Ningyao Yu
- Department of PsychologyShaoxing UniversityShaoxingChina
| | - Guanchu Chen
- Department of PsychologyShaoxing UniversityShaoxingChina
| | - Tongwei Liu
- Department of PhilosophyShanghai Normal UniversityShanghaiChina
| | - Shengjun Wen
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Wei Chen
- Center for Brain, Mind and EducationShaoxing UniversityShaoxingChina
- Department of PsychologyShaoxing UniversityShaoxingChina
- Interdisciplinary Center for Philosophy and Cognitive SciencesRenmin University of ChinaBeijingChina
| |
Collapse
|
2
|
Li M, Su Y, Huang HY, Cheng J, Hu X, Zhang X, Wang H, Qin Y, Wang X, Lindquist KA, Liu Z, Zhang D. Language-specific representation of emotion-concept knowledge causally supports emotion inference. iScience 2024; 27:111401. [PMID: 39669430 PMCID: PMC11635025 DOI: 10.1016/j.isci.2024.111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/10/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Humans no doubt use language to communicate about their emotional experiences, but does language in turn help humans understand emotions, or is language just a vehicle of communication? This study used a form of artificial intelligence (AI) known as large language models (LLMs) to assess whether language-based representations of emotion causally contribute to the AI's ability to generate inferences about the emotional meaning of novel situations. Fourteen attributes of human emotion concept representation were found to be represented by the LLM's distinct artificial neuron populations. By manipulating these attribute-related neurons, we in turn demonstrated the role of emotion concept knowledge in generative emotion inference. The attribute-specific performance deterioration was related to the importance of different attributes in human mental space. Our findings provide a proof-in-concept that even an LLM can learn about emotions in the absence of sensory-motor representations and highlight the contribution of language-derived emotion-concept knowledge for emotion inference.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Yusheng Su
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Hsiu-Yuan Huang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiali Cheng
- Miner School of Computer and Information Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Xin Hu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xinmiao Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Huadong Wang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Yujia Qin
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Xiaozhi Wang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Kristen A. Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhiyuan Liu
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Dan Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Wei B, Huang X, Ji Y, Fu WW, Cheng Q, Shu BL, Huang QY, Chai H, Zhou L, Yuan HY, Wu XR. Analyzing the topological properties of resting-state brain function network connectivity based on graph theoretical methods in patients with high myopia. BMC Ophthalmol 2024; 24:315. [PMID: 39075405 PMCID: PMC11287926 DOI: 10.1186/s12886-024-03592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
AIM Recent imaging studies have found significant abnormalities in the brain's functional or structural connectivity among patients with high myopia (HM), indicating a heightened risk of cognitive impairment and other behavioral changes. However, there is a lack of research on the topological characteristics and connectivity changes of the functional networks in HM patients. In this study, we employed graph theoretical analysis to investigate the topological structure and regional connectivity of the brain function network in HM patients. METHODS We conducted rs-fMRI scans on 82 individuals with HM and 59 healthy controls (HC), ensuring that the two groups were matched for age and education level. Through graph theoretical analysis, we studied the topological structure of whole-brain functional networks among participants, exploring the topological properties and differences between the two groups. RESULTS In the range of 0.05 to 0.50 of sparsity, both groups demonstrated a small-world architecture of the brain network. Compared to the control group, HM patients showed significantly lower values of normalized clustering coefficient (γ) (P = 0.0101) and small-worldness (σ) (P = 0.0168). Additionally, the HM group showed lower nodal centrality in the right Amygdala (P < 0.001, Bonferroni-corrected). Notably, there is an increase in functional connectivity (FC) between the saliency network (SN) and Sensorimotor Network (SMN) in the HM group, while the strength of FC between the basal ganglia is relatively weaker (P < 0.01). CONCLUSION HM Patients exhibit reduced small-world characteristics in their brain networks, with significant drops in γ and σ values indicating weakened global interregional information transfer ability. Not only that, the topological properties of the amygdala nodes in HM patients significantly decline, indicating dysfunction within the brain network. In addition, there are abnormalities in the FC between the SN, SMN, and basal ganglia networks in HM patients, which is related to attention regulation, motor impairment, emotions, and cognitive performance. These findings may provide a new mechanism for central pathology in HM patients.
Collapse
Affiliation(s)
- Bin Wei
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yu Ji
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Wen Fu
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Qi Cheng
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Ben-Liang Shu
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Qin-Yi Huang
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Hua Chai
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Lin Zhou
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Hao-Yu Yuan
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Xiao-Rong Wu
- Department of Ophthalmology, Jiangxi Medical College, Nanchang University, The 1st Affiliated Hospital, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Pitcher D, Sliwinska MW, Kaiser D. TMS disruption of the lateral prefrontal cortex increases neural activity in the default mode network when naming facial expressions. Soc Cogn Affect Neurosci 2023; 18:nsad072. [PMID: 38048419 PMCID: PMC10695328 DOI: 10.1093/scan/nsad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Recognizing facial expressions is dependent on multiple brain networks specialized for different cognitive functions. In the current study, participants (N = 20) were scanned using functional magnetic resonance imaging (fMRI), while they performed a covert facial expression naming task. Immediately prior to scanning thetaburst transcranial magnetic stimulation (TMS) was delivered over the right lateral prefrontal cortex (PFC), or the vertex control site. A group whole-brain analysis revealed that TMS induced opposite effects in the neural responses across different brain networks. Stimulation of the right PFC (compared to stimulation of the vertex) decreased neural activity in the left lateral PFC but increased neural activity in three nodes of the default mode network (DMN): the right superior frontal gyrus, right angular gyrus and the bilateral middle cingulate gyrus. A region of interest analysis showed that TMS delivered over the right PFC reduced neural activity across all functionally localised face areas (including in the PFC) compared to TMS delivered over the vertex. These results suggest that visually recognizing facial expressions is dependent on the dynamic interaction of the face-processing network and the DMN. Our study also demonstrates the utility of combined TMS/fMRI studies for revealing the dynamic interactions between different functional brain networks.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, Heslington, York YO105DD, UK
| | | | - Daniel Kaiser
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen 35392, Germany
- Center for Mind, Brain and Behaviour, Philipps-Universität Marburg, and Justus-Liebig-Universität Gießen, Marburg 35032, Germany
| |
Collapse
|
5
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Sharma R, Dillon K, Williams SEE, McIntosh R. Does emotion regulation network mediate the effect of social network on psychological distress among older adults? Soc Neurosci 2023; 18:142-154. [PMID: 37267049 DOI: 10.1080/17470919.2023.2218619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Socio-emotional interactions are integral for regulating emotions and buffering psychological distress. Social neuroscience perspectives on aging suggest that empathetic interpersonal interactions are supported by the activation of brain regions involved in regulating negative affect. The current study tested whether resting state functional connectivity of a network of brain regions activated during cognitive emotion regulation, i.e., emotion regulation network (ERN), statistically mediates the frequency of social contact with friends or family on psychological distress. Here, a 10-min resting-state functional MRI scan was collected along with self-reported anxiety/depressive, somatic, and thought problems and social networking from 90 community-dwelling older adults (aged 65-85 years). The frequency of social interactions with family, but not friends and neighbors, was associated with lower psychological distress. The magnitude of this effect was reduced by 33.34% to non-significant upon adding resting state ERN connectivity as a mediator. Follow-up whole-brain graph network analyses revealed that efficiency and centrality of the left inferior frontal gyrus and the right middle temporal gyrus relate to greater family interactions and lower distress. These hubs may help to buffer psychological problems in older adults through interactions involving empathetic and cognitive emotion regulation with close family.
Collapse
Affiliation(s)
| | - Kaitlyn Dillon
- Department of Psychology, University of Miami, Miami, Florida, USA
| | | | - Roger McIntosh
- Department of Psychology, University of Miami, Miami, Florida, USA
| |
Collapse
|
7
|
Wang R, Lu X, Jiang Y. Distributed and hierarchical neural encoding of multidimensional biological motion attributes in the human brain. Cereb Cortex 2023; 33:8510-8522. [PMID: 37118887 PMCID: PMC10786095 DOI: 10.1093/cercor/bhad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/30/2023] Open
Abstract
The human visual system can efficiently extract distinct physical, biological, and social attributes (e.g. facing direction, gender, and emotional state) from biological motion (BM), but how these attributes are encoded in the brain remains largely unknown. In the current study, we used functional magnetic resonance imaging to investigate this issue when participants viewed multidimensional BM stimuli. Using multiple regression representational similarity analysis, we identified distributed brain areas, respectively, related to the processing of facing direction, gender, and emotional state conveyed by BM. These brain areas are governed by a hierarchical structure in which the respective neural encoding of facing direction, gender, and emotional state is modulated by each other in descending order. We further revealed that a portion of the brain areas identified in representational similarity analysis was specific to the neural encoding of each attribute and correlated with the corresponding behavioral results. These findings unravel the brain networks for encoding BM attributes in consideration of their interactions, and highlight that the processing of multidimensional BM attributes is recurrently interactive.
Collapse
Affiliation(s)
- Ruidi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Chinese Institute for Brain Research, 26 Science Park Road, Beijing 102206, China
| | - Xiqian Lu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Chinese Institute for Brain Research, 26 Science Park Road, Beijing 102206, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Chinese Institute for Brain Research, 26 Science Park Road, Beijing 102206, China
| |
Collapse
|
8
|
Leocadi M, Canu E, Paldino A, Agosta F, Filippi M. Awareness impairment in Alzheimer's disease and frontotemporal dementia: a systematic MRI review. J Neurol 2023; 270:1880-1907. [PMID: 36512063 DOI: 10.1007/s00415-022-11518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
This review aims to define awareness impairment and related disturbances in neurodegenerative diseases, including Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) spectrum of disorders. An update of the available scientific literature on the use of magnetic resonance imaging (MRI) in the study of awareness in these disorders is also offered. MRI plays an important role in the characterization of neurodegenerative signatures and can increase our knowledge on brain structural and functional correlates of awareness. In the reviewing process, we established a-priori criteria and we searched the scientific literature for relevant articles on this topic. In summary, we selected 36 articles out of 1340 publications retrieved from PubMed. Based on this selection, this review discusses the multiple terms used to define different or overlapping aspects of awareness impairment, and specifically summarizes recent application of MRI for investigating anosognosia, social cognition, including theory of mind and emotional processing, free will, and autonoetic awareness alterations in different neurodegenerative disorders, with most of these studies focused on AD and FTLD. This systematic review highlights the importance of awareness impairment and related domains in neurodegenerative disorders, especially in AD and FTLD, and it outlines MRI structural and functional correlates in these populations.
Collapse
Affiliation(s)
- Michela Leocadi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Angela Paldino
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
9
|
Vandenbulcke M, Van de Vliet L, Sun J, Huang YA, Van Den Bossche MJA, Sunaert S, Peeters R, Zhu Q, Vanduffel W, de Gelder B, De Winter FL, Van den Stock J. A paleo-neurologic investigation of the social brain hypothesis in frontotemporal dementia. Cereb Cortex 2023; 33:622-633. [PMID: 35253853 DOI: 10.1093/cercor/bhac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/03/2023] Open
Abstract
The social brain hypothesis posits that a disproportionate encephalization in primates enabled to adapt behavior to a social context. Also, it has been proposed that phylogenetically recent brain areas are disproportionally affected by neurodegeneration. Using structural and functional magnetic resonance imaging, the present study investigates brain-behavior associations and neural integrity of hyperspecialized and domain-general cortical social brain areas in behavioral variant frontotemporal dementia (bvFTD). The results revealed that both structure and function of hyperspecialized social areas in the middle portion of the superior temporal sulcus (STS) are compromised in bvFTD, while no deterioration was observed in domain general social areas in the posterior STS. While the structural findings adhered to an anterior-posterior gradient, the functional group differences only occurred in the hyperspecialized locations. Activity in specialized regions was associated with structural integrity of the amygdala and with social deficits in bvFTD. In conclusion, the results are in line with the paleo-neurology hypothesis positing that neurodegeneration primarily hits cortical areas showing increased specialization, but also with the compatible alternative explanation that anterior STS regions degenerate earlier, based on stronger connections to and trans-neuronal spreading from regions affected early in bvFTD.
Collapse
Affiliation(s)
- Mathieu Vandenbulcke
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Laura Van de Vliet
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Jiaze Sun
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Yun-An Huang
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Maarten J A Van Den Bossche
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Ron Peeters
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands.,Department of Computer Science, University College London, London WC1E 6BT, UK
| | - François-Laurent De Winter
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Jan Van den Stock
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
10
|
Zheng N, Ou Y, Li H, Liu F, Xie G, Li P, Lang B, Guo W. Shared and differential fractional amplitude of low-frequency fluctuation patterns at rest in major depressive disorders with or without sleep disturbance. Front Psychol 2023; 14:1153335. [PMID: 37034932 PMCID: PMC10075231 DOI: 10.3389/fpsyg.2023.1153335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Sleep disturbances (SD) are commonly found in patients with major depressive disorder (MDD). This study aims to explore the influence of SD symptoms on clinical characteristics in patients with MDD and to investigate the shared and distinct fractional amplitude of low-frequency fluctuation (fALFF) patterns in these patients with or without SD symptoms. Methods Twenty-four MDD patients with SD symptoms (Pa_s), 33 MDD patients without SD symptoms (Pa_ns) and 32 healthy controls (HCs) were included in this study. The fALFF and correlation analyses were applied to analyze the features of imaging and clinical data. Results Pa_s showed more severe anxiety and depression than Pa_ns. Compared with Pa_ns, Pa_s exhibited increased fALFF value in the left precuneus. Patients shared abnormal fALFF in the frontal-occipital brain regions. There was a positive correlation between fALFF values of the left precuneus and sleep disturbance scores (r = 0.607, p = 0.0000056734) in all patients in addition to a negative correlation between fALFF values of the left MOG/cuneus and HAMD-17 total scores (r = -0.595, p = 0.002141) in Pa_s. The receiver operating characteristic (ROC) results of the fALFF could be used to discriminate Pa_s from Pa_ns with a specificity of 72.73% and a sensitivity of 70.83%. Conclusion Pa_s displayed more serious anxiety and depression symptoms. Patients shared abnormal fALFF in the frontal-occipital brain regions, which may be a common characteristic for MDD. And increased fALFF value in the left precuneus might be a specific neuroimaging feature of MDD patients with SD symptoms.
Collapse
Affiliation(s)
- Nanxi Zheng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yangpan Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bing Lang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Bing Lang,
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Wenbin Guo,
| |
Collapse
|
11
|
Gonzalez-Gomez R, Ibañez A, Moguilner S. Multiclass characterization of frontotemporal dementia variants via multimodal brain network computational inference. Netw Neurosci 2023; 7:322-350. [PMID: 37333999 PMCID: PMC10270711 DOI: 10.1162/netn_a_00285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/03/2022] [Indexed: 04/03/2024] Open
Abstract
Characterizing a particular neurodegenerative condition against others possible diseases remains a challenge along clinical, biomarker, and neuroscientific levels. This is the particular case of frontotemporal dementia (FTD) variants, where their specific characterization requires high levels of expertise and multidisciplinary teams to subtly distinguish among similar physiopathological processes. Here, we used a computational approach of multimodal brain networks to address simultaneous multiclass classification of 298 subjects (one group against all others), including five FTD variants: behavioral variant FTD, corticobasal syndrome, nonfluent variant primary progressive aphasia, progressive supranuclear palsy, and semantic variant primary progressive aphasia, with healthy controls. Fourteen machine learning classifiers were trained with functional and structural connectivity metrics calculated through different methods. Due to the large number of variables, dimensionality was reduced, employing statistical comparisons and progressive elimination to assess feature stability under nested cross-validation. The machine learning performance was measured through the area under the receiver operating characteristic curves, reaching 0.81 on average, with a standard deviation of 0.09. Furthermore, the contributions of demographic and cognitive data were also assessed via multifeatured classifiers. An accurate simultaneous multiclass classification of each FTD variant against other variants and controls was obtained based on the selection of an optimum set of features. The classifiers incorporating the brain's network and cognitive assessment increased performance metrics. Multimodal classifiers evidenced specific variants' compromise, across modalities and methods through feature importance analysis. If replicated and validated, this approach may help to support clinical decision tools aimed to detect specific affectations in the context of overlapping diseases.
Collapse
Affiliation(s)
- Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Trinity College Dublin, Dublin, Ireland
| | - Sebastian Moguilner
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Ferreira LK, Lindberg O, Santillo AF, Wahlund LO. Functional connectivity in behavioral variant frontotemporal dementia. Brain Behav 2022; 12:e2790. [PMID: 36306386 PMCID: PMC9759144 DOI: 10.1002/brb3.2790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Functional connectivity (FC)-which reflects relationships between neural activity in different brain regions-has been used to explore the functional architecture of the brain in neurodegenerative disorders. Although an increasing number of studies have explored FC changes in behavioral variant frontotemporal dementia (bvFTD), there is no focused, in-depth review about FC in bvFTD. METHODS Comprehensive literature search and narrative review to summarize the current field of FC in bvFTD. RESULTS (1) Decreased FC within the salience network (SN) is the most consistent finding in bvFTD; (2) FC changes extend beyond the SN and affect the interplay between networks; (3) results within the Default Mode Network are mixed; (4) the brain as a network is less interconnected and less efficient in bvFTD; (5) symptoms, functional impairment, and cognition are associated with FC; and (6) the functional architecture resembles patterns of neuropathological spread. CONCLUSIONS FC has potential as a biomarker, and future studies are expected to advance the field with multicentric initiatives, longitudinal designs, and methodological advances.
Collapse
Affiliation(s)
- Luiz Kobuti Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit and Psychiatry, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Xu XM, Liu Y, Feng Y, Xu JJ, Gao J, Salvi R, Wu Y, Yin X, Chen YC. Degree centrality and functional connections in presbycusis with and without cognitive impairments. Brain Imaging Behav 2022; 16:2725-2734. [DOI: 10.1007/s11682-022-00734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
14
|
Zhao X, Liu Y, Chen T, Wang S, Chen J, Wang L, Liu G. Differences in brain activations between micro- and macro-expressions based on electroencephalography. Front Neurosci 2022; 16:903448. [PMID: 36172039 PMCID: PMC9511965 DOI: 10.3389/fnins.2022.903448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Micro-expressions can reflect an individual's subjective emotions and true mental state and are widely used in the fields of mental health, justice, law enforcement, intelligence, and security. However, the current approach based on image and expert assessment-based micro-expression recognition technology has limitations such as limited application scenarios and time consumption. Therefore, to overcome these limitations, this study is the first to explore the brain mechanisms of micro-expressions and their differences from macro-expressions from a neuroscientific perspective. This can be a foundation for micro-expression recognition based on EEG signals. We designed a real-time supervision and emotional expression suppression (SEES) experimental paradigm to synchronously collect facial expressions and electroencephalograms. Electroencephalogram signals were analyzed at the scalp and source levels to determine the temporal and spatial neural patterns of micro- and macro-expressions. We found that micro-expressions were more strongly activated in the premotor cortex, supplementary motor cortex, and middle frontal gyrus in frontal regions under positive emotions than macro-expressions. Under negative emotions, micro-expressions were more weakly activated in the somatosensory cortex and corneal gyrus regions than macro-expressions. The activation of the right temporoparietal junction (rTPJ) was stronger in micro-expressions under positive than negative emotions. The reason for this difference is that the pathways of facial control are different; the production of micro-expressions under positive emotion is dependent on the control of the face, while micro-expressions under negative emotions are more dependent on the intensity of the emotion.
Collapse
Affiliation(s)
- Xingcong Zhao
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Ying Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- School of Music, Southwest University, Chongqing, China
| | - Tong Chen
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Shiyuan Wang
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Jiejia Chen
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Linwei Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Guangyuan Liu
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Luo W, Wang J, Chen M, Zhou S, Deng D, Liu F, Yu Y. Alterations of Cerebral Blood Flow and Its Connectivity in Olfactory-Related Brain Regions of Type 2 Diabetes Mellitus Patients. Front Neurosci 2022; 16:904468. [PMID: 35898415 PMCID: PMC9309479 DOI: 10.3389/fnins.2022.904468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the alteration of cerebral blood flow (CBF) and its connectivity patterns in olfactory-related regions of type 2 diabetes mellitus (T2DM) patients using arterial spin labeling (ASL). Sixty-nine patients with T2DM and 63 healthy controls (HCs) underwent ASL scanning using 3.0T magnetic resonance imaging. We compared the CBF values of the olfactory-related brain regions between the two groups and analyzed the correlation between their changes and clinical variables. We also used these regions as seeds to explore the differences in CBF connectivity patterns in olfactory-related brain regions between the T2DM patients and HCs. Compared with the HC group, the CBF of the right orbital part of the inferior frontal gyrus (OIFG), right insula, and bilateral olfactory cortex was decreased in the T2DM patients. Moreover, the duration of the patients was negatively correlated with the CBF changes in the right OIFG, right insula, and right olfactory cortex. The CBF changes in the right OIFG were positively correlated with the Self-Rating Depression Scale scores, those in the right insula were negatively correlated with the max blood glucose of continuous glucose, and those in the right olfactory cortex were negatively correlated with the mean blood glucose of continuous glucose. In addition, the T2DM patients also showed decreased CBF connectivity between the right OIFG and the left temporal pole of the middle temporal gyrus and increased CBF connectivity between the right medial orbital part of the superior frontal gyrus and the right orbital part of the superior frontal gyrus and between the right olfactory cortex and the bilateral caudate and the left putamen. Patients with T2DM have decreased CBF and altered CBF connectivity in multiple olfactory-related brain regions. These changes may help explain why olfactory dysfunction occurs in patients with T2DM, thus providing insights into the neuropathological mechanism of olfactory dysfunction and cognitive decline in T2DM patients.
Collapse
Affiliation(s)
- Wei Luo
- Department of Imaging, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Mimi Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fujun Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Imaging, Chaohu Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- *Correspondence: Yongqiang Yu,
| |
Collapse
|
16
|
Setién-Suero E, Murillo-García N, Sevilla-Ramos M, Abreu-Fernández G, Pozueta A, Ayesa-Arriola R. Exploring the Relationship Between Deficits in Social Cognition and Neurodegenerative Dementia: A Systematic Review. Front Aging Neurosci 2022; 14:778093. [PMID: 35572150 PMCID: PMC9093607 DOI: 10.3389/fnagi.2022.778093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeurodegenerative diseases might affect social cognition in various ways depending on their components (theory of mind, emotional processing, attribution bias, and social perception) and the subtype of dementia they cause. This review aims to explore this difference in cognitive function among individuals with different aetiologies of dementia.MethodsThe following databases were explored: MEDLINE via PubMed, Cochrane Library, Lilacs, Web of Science, and PsycINFO. We selected studies examining social cognition in individuals with neurodegenerative diseases in which dementia was the primary symptom that was studied. The neurodegenerative diseases included Alzheimer's disease, Lewy body disease and frontotemporal lobar degeneration. The search yielded 2,803 articles.ResultsOne hundred twenty-two articles were included in the present review. The summarised results indicate that people with neurodegenerative diseases indeed have deficits in social cognitive performance. Both in populations with Alzheimer's disease and in populations with frontotemporal dementia, we found that emotional processing was strongly affected. However, although theory of mind impairment could also be observed in the initial stages of frontotemporal dementia, in Alzheimer's disease it was only appreciated when performing highly complex task or in advanced stages of the disease.ConclusionsEach type of dementia has a differential profile of social cognition deterioration. This review could provide a useful reference for clinicians to improve detection and diagnosis, which would undoubtedly guarantee better interventions.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020152562, PROSPERO, identifier: CRD42020152562.
Collapse
Affiliation(s)
- Esther Setién-Suero
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
- *Correspondence: Esther Setién-Suero ; orcid.org/0000-0002-8027-6546
| | - Nancy Murillo-García
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | | | - Georgelina Abreu-Fernández
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Ana Pozueta
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
- Neurology Service and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, School of Medicine, University of Cantabria, University Hospital Marqués de Valdecilla, Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
17
|
Resting state functional brain networks associated with emotion processing in frontotemporal lobar degeneration. Mol Psychiatry 2022; 27:4809-4821. [PMID: 35595978 PMCID: PMC9734056 DOI: 10.1038/s41380-022-01612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
This study investigated the relationship between emotion processing and resting-state functional connectivity (rs-FC) of the brain networks in frontotemporal lobar degeneration (FTLD). Eighty FTLD patients (including cases with behavioral variant of frontotemporal dementia, primary progressive aphasia, progressive supranuclear palsy syndrome, motor neuron disease) and 65 healthy controls underwent rs-functional MRI. Emotion processing was tested using the Comprehensive Affect Testing System (CATS). In patients and controls, correlations were investigated between each emotion construct and rs-FC changes within critical networks. Mean rs-FC of the clusters significantly associated with CATS scoring were compared among FTLD groups. FTLD patients had pathological CATS scores compared with controls. In controls, increased rs-FC of the cerebellar and visuo-associative networks correlated with better scores in emotion-matching and discrimination tasks, respectively; while decreased rs-FC of the visuo-spatial network was related with better performance in the affect-matching and naming. In FTLD, the associations between rs-FC and CATS scores involved more brain regions, such as orbitofrontal and middle frontal gyri within anterior networks (i.e., salience and default-mode), parietal and somatosensory regions within visuo-spatial and sensorimotor networks, caudate and thalamus within basal-ganglia network. Rs-FC changes associated with CATS were similar among all FTLD groups. In FTLD compared to controls, the pattern of rs-FC associated with emotional processing involves a larger number of brain regions, likely due to functional specificity loss and compensatory attempts. These associations were similar across all FTLD groups, suggesting a common physiopathological mechanism of emotion processing breakdown, regardless the clinical presentation and pattern of atrophy.
Collapse
|
18
|
Anderl‐Straub S, Lausser L, Lombardi J, Uttner I, Fassbender K, Fliessbach K, Huppertz H, Jahn H, Kornhuber J, Obrig H, Schneider A, Semler E, Synofzik M, Danek A, Prudlo J, Kassubek J, Landwehrmeyer B, Lauer M, Volk AE, Wiltfang J, Diehl‐Schmid J, Ludolph AC, Schroeter ML, Kestler HA, Otto M. Predicting disease progression in behavioral variant frontotemporal dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12262. [PMID: 35005196 PMCID: PMC8719425 DOI: 10.1002/dad2.12262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The behavioral variant of frontotemporal dementia (bvFTD) is a rare neurodegenerative disease. Reliable predictors of disease progression have not been sufficiently identified. We investigated multivariate magnetic resonance imaging (MRI) biomarker profiles for their predictive value of individual decline. METHODS One hundred five bvFTD patients were recruited from the German frontotemporal lobar degeneration (FTLD) consortium study. After defining two groups ("fast progressors" vs. "slow progressors"), we investigated the predictive value of MR brain volumes for disease progression rates performing exhaustive screenings with multivariate classification models. RESULTS We identified areas that predict disease progression rate within 1 year. Prediction measures revealed an overall accuracy of 80% across our 50 top classification models. Especially the pallidum, middle temporal gyrus, inferior frontal gyrus, cingulate gyrus, middle orbitofrontal gyrus, and insula occurred in these models. DISCUSSION Based on the revealed marker combinations an individual prognosis seems to be feasible. This might be used in clinical studies on an individualized progression model.
Collapse
Affiliation(s)
| | - Ludwig Lausser
- Institute of Medical Systems BiologyUniversity of UlmUlmGermany
| | | | - Ingo Uttner
- Department of NeurologyUniversity of UlmUlmGermany
| | | | - Klaus Fliessbach
- Clinic for Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
| | | | - Holger Jahn
- Department of Psychiatry and PsychotherapyUniversity Hospital Hamburg EppendorfHamburgGermany
| | - Johannes Kornhuber
- Department of Psychiatry and PsychotherapyUniversity ErlangenErlangenGermany
| | - Hellmuth Obrig
- Max‐Planck‐Institute of Human Cognitive and Brain Sciences & Clinic for Cognitive NeurologyUniversity Hospital LeipzigLeipzigGermany
| | - Anja Schneider
- Clinic for Neurodegenerative Diseases and Geriatric PsychiatryUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Elisa Semler
- Department of NeurologyUniversity of UlmUlmGermany
| | - Matthis Synofzik
- Department of Neurodegenerative DiseasesCenter of Neurology and Hertie‐Institute for Clinical Brain ResearchUniversityTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Adrian Danek
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Johannes Prudlo
- Department of NeurologyRostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Jan Kassubek
- Department of NeurologyUniversity of UlmUlmGermany
| | | | - Martin Lauer
- Department of Psychiatry and PsychotherapyUniversity of WürzburgWürzburgGermany
| | - Alexander E. Volk
- Institute for Human GeneticsUniversity Hospital Hamburg EppendorfHamburgGermany
| | - Jens Wiltfang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Göttingen (UMG)GöttingenGermany
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Neurosciences and Signaling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Janine Diehl‐Schmid
- Department of Psychiatry and PsychotherapyTechnical University of MunichMunichGermany
| | | | - Matthias L. Schroeter
- Max‐Planck‐Institute of Human Cognitive and Brain Sciences & Clinic for Cognitive NeurologyUniversity Hospital LeipzigLeipzigGermany
| | - Hans A. Kestler
- Institute of Medical Systems BiologyUniversity of UlmUlmGermany
| | - Markus Otto
- Department of NeurologyUniversity of UlmUlmGermany
- Department of NeurologyMartin Luther University Halle‐WittenbergUniversity clinic HalleHalle (Saale)Germany
| | | |
Collapse
|
19
|
Geraudie A, Battista P, García AM, Allen IE, Miller ZA, Gorno-Tempini ML, Montembeault M. Speech and language impairments in behavioral variant frontotemporal dementia: A systematic review. Neurosci Biobehav Rev 2021; 131:1076-1095. [PMID: 34673112 DOI: 10.1016/j.neubiorev.2021.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023]
Abstract
Although behavioral variant frontotemporal dementia (bvFTD) is classically defined by behavioral and socio-emotional changes, impairments often extend to other cognitive functions. These include early speech and language deficits related to the disease's core neural disruptions. Yet, their scope and clinical relevance remains poorly understood. This systematic review characterizes such disturbances in bvFTD, considering clinically, neuroanatomically, genetically, and neuropathologically defined subgroups. We included 181 experimental studies, with at least 5 bvFTD patients diagnosed using accepted criteria, comparing speech and language outcomes between bvFTD patients and healthy controls or between bvFTD subgroups. Results reveal extensive and heterogeneous deficits across cohorts, with (a) consistent lexico-semantic, reading & writing, and prosodic impairments; (b) inconsistent deficits in motor speech and grammar; and (c) relative preservation of phonological skills. Also, preliminary findings suggest that the severity of speech and language deficits might be associated with global cognitive impairment, predominantly temporal or fronto-temporal atrophy and MAPT mutations (vs C9orf72). Although under-recognized, these impairments contribute to patient characterization and phenotyping, while potentially informing diagnosis and management.
Collapse
Affiliation(s)
- Amandine Geraudie
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Neurology Department, Toulouse University Hospital, Toulouse, France
| | - Petronilla Battista
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA; Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Via Generale Nicola Bellomo, Bari, Italy
| | - Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, USA; Universidad De San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel E Allen
- Global Brain Health Institute, University of California, San Francisco, USA; Department of Epidemiology & Biostatistics, University of California San Francisco, CA, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA.
| |
Collapse
|
20
|
Measuring social cognition in frontotemporal lobar degeneration: a clinical approach. J Neurol 2021; 269:2227-2244. [PMID: 34797433 DOI: 10.1007/s00415-021-10889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Alterations in social cognition, a broad term indicating our ability to understand others and adapt our behavior accordingly, have been the focus of growing attention in the past years. Some neurological conditions, such as those belonging to the frontotemporal lobar degeneration (FTLD) spectrum, are associated to varying degrees with social cognition deficits, encompassing problems with theory of mind (ToM), empathy, perception of social stimuli, and social behavior. In this review, we outline a clinical framework for the evaluation of social cognition and discuss its role in the assessment of patients affected by a range of FTLD conditions.
Collapse
|
21
|
Souter NE, Lindquist KA, Jefferies E. Impaired emotion perception and categorization in semantic aphasia. Neuropsychologia 2021; 162:108052. [PMID: 34624259 DOI: 10.1016/j.neuropsychologia.2021.108052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
According to a constructionist model of emotion, conceptual knowledge plays a foundational role in emotion perception; reduced availability of relevant conceptual knowledge should therefore impair emotion perception. Conceptual deficits can follow both degradation of semantic knowledge (e.g., semantic 'storage' deficits in semantic dementia) and deregulation of retrieval (e.g., semantic 'access' deficits in semantic aphasia). While emotion recognition deficits are known to accompany degraded conceptual knowledge, less is known about the impact of semantic access deficits. Here, we examined emotion perception and categorization tasks in patients with semantic aphasia, who have difficulty accessing semantic information in a flexible and controlled fashion following left hemisphere stroke. In Study 1, participants were asked to sort faces according to the emotion they portrayed - with numbers, written labels and picture examples each provided as category anchors across tasks. Semantic aphasia patients made more errors and showed a larger benefit from word anchors that reduced the need to internally constrain categorization than comparison participants. They successfully sorted portrayals that differed in valence (positive vs. negative) but had difficulty categorizing different negative emotions. They were unimpaired on a control task that involved sorting faces by identity. In Study 2, participants matched facial emotion portrayals to written labels following vocal emotion prosody cues, miscues, or no cues. Patients presented with overall poorer performance and benefited from cue trials relative to within-valence miscue trials. This same effect was seen in comparison participants, who also showed deleterious effects of within-valence miscue relative to no cue trials. Overall, we found that patients with deregulated semantic retrieval have deficits in emotional perception but that word anchors and cue conditions can facilitate emotion perception by increasing access to relevant emotion concepts and reducing reliance on semantic control. Semantic control may be of particular importance in emotion perception when it is necessary to interpret ambiguous inputs, or when there is interference between conceptually similar emotional states. These findings extend constructionist accounts of emotion to encompass difficulties in controlled semantic retrieval.
Collapse
Affiliation(s)
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
| | | |
Collapse
|
22
|
Satpute AB, Lindquist KA. At the Neural Intersection Between Language and Emotion. AFFECTIVE SCIENCE 2021; 2:207-220. [PMID: 36043170 PMCID: PMC9382959 DOI: 10.1007/s42761-021-00032-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
What role does language play in emotion? Behavioral research shows that emotion words such as "anger" and "fear" alter emotion experience, but questions still remain about mechanism. Here, we review the neuroscience literature to examine whether neural processes associated with semantics are also involved in emotion. Our review suggests that brain regions involved in the semantic processing of words: (i) are engaged during experiences of emotion, (ii) coordinate with brain regions involved in affect to create emotions, (iii) hold representational content for emotion, and (iv) may be necessary for constructing emotional experience. We relate these findings with respect to four theoretical relationships between language and emotion, which we refer to as "non-interactive," "interactive," "constitutive," and "deterministic." We conclude that findings are most consistent with the interactive and constitutive views with initial evidence suggestive of a constitutive view, in particular. We close with several future directions that may help test hypotheses of the constitutive view.
Collapse
Affiliation(s)
- Ajay B. Satpute
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115 USA
| | - Kristen A. Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
23
|
Dai D, Lacadie CM, Holmes SE, Cool R, Anticevic A, Averill C, Abdallah C, Esterlis I. Ketamine Normalizes the Structural Alterations of Inferior Frontal Gyrus in Depression. CHRONIC STRESS 2021; 4:2470547020980681. [PMID: 33426409 PMCID: PMC7758564 DOI: 10.1177/2470547020980681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Background Ketamine is a novel fast-acting antidepressant. Acute ketamine treatment can reverse microstructure deficits and normalize functional alterations in the brain, but little is known about the impacts of ketamine on brain volumes in individuals with depression. Methods We used 3 T magnetic resonance imaging (MRI) and tensorbased morphological methods to investigate the regional volume differences for 29 healthy control (HC) subjects and 21 subjects with major depressive disorder (MDD), including 10 subjects with comorbid post-traumatic stress disorder (PTSD). All the subjects participated in MRI scanning before and 24 h post intravenous ketamine infusion. The effects of acute ketamine administration on HC, MDD, and MDD/PTSD groups were examined separately by whole-brain voxel-wise t-tests. Results Our data showed smaller volume of inferior frontal gyrus (IFG, opercular part) in MDD and MDD/PTSD subjects compared to HC, and a significant correlation between opercular IFG volume and depressive severity in MDD subjects only. Ketamine administration normalized the structural alterations of opercular IFG in both MDD and MDD/PTSD groups, and significantly improved depressive and PTSD symptoms. Twenty-four hours after a single ketamine infusion, there were two clusters of voxels with volume changes in MDD subjects, including significantly increased volumes of opercular IFG. No significant structural alterations were found in the MDD/PTSD or HC groups. Conclusion These findings provide direct evidence that acute ketamine administration can normalize structural alterations associated with depression and highlight the importance of IFG in the guidance of future therapeutic targets.
Collapse
Affiliation(s)
- Dan Dai
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Sophie E Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan Cool
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Yale University School of Medicine, New Haven, Connecticut
| | - Chris Averill
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut
| | - Chadi Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut.,Michael E. DeBakey, VA Medical Center, Houston, Texas.,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut
| |
Collapse
|
24
|
Smallwood Shoukry RF, Clark MG, Floeter MK. Resting State Functional Connectivity Is Decreased Globally Across the C9orf72 Mutation Spectrum. Front Neurol 2020; 11:598474. [PMID: 33329355 PMCID: PMC7710968 DOI: 10.3389/fneur.2020.598474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
A repeat expansion mutation in the C9orf72 gene causes amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), or symptoms of both, and has been associated with gray and white matter changes in brain MRI scans. We used graph theory to examine the network properties of brain function at rest in a population of mixed-phenotype C9orf72 mutation carriers (C9+). Twenty-five C9+ subjects (pre-symptomatic, or diagnosed with ALS, behavioral variant FTD (bvFTD), or both ALS and FTD) and twenty-six healthy controls underwent resting state fMRI. When comparing all C9+ subjects with healthy controls, both global and connection-specific decreases in resting state connectivity were observed, with no substantial reorganization of network hubs. However, when analyzing subgroups of the symptomatic C9+ patients, those with bvFTD (with and without comorbid ALS) show remarkable reorganization of hubs compared to patients with ALS alone (without bvFTD), indicating that subcortical regions become more connected in the network relative to other regions. Additionally, network connectivity measures of the right hippocampus and bilateral thalami increased with increasing scores on the Frontal Behavioral Inventory, indicative of worsening behavioral impairment. These results indicate that while C9orf72 mutation carriers across the ALS-FTD spectrum have global decreased resting state brain connectivity, phenotype-specific effects can also be observed at more local network levels.
Collapse
Affiliation(s)
| | | | - Mary Kay Floeter
- Motor Neuron Disease Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Huang YA, Dupont P, Van de Vliet L, Jastorff J, Peeters R, Theys T, van Loon J, Van Paesschen W, Van den Stock J, Vandenbulcke M. Network level characteristics in the emotion recognition network after unilateral temporal lobe surgery. Eur J Neurosci 2020; 52:3470-3484. [PMID: 32618060 DOI: 10.1111/ejn.14849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
The human amygdala is considered a key region for successful emotion recognition. We recently reported that temporal lobe surgery (TLS), including resection of the amygdala, does not affect emotion recognition performance (Journal of Neuroscience, 2018, 38, 9263). In the present study, we investigate the neural basis of this preserved function at the network level. We use generalized psychophysiological interaction and graph theory indices to investigate network level characteristics of the emotion recognition network in TLS patients and healthy controls. Based on conflicting emotion processing theories, we anticipated two possible outcomes: a substantial increase of the non-amygdalar connections of the emotion recognition network to compensate functionally for the loss of the amygdala, in line with basic emotion theory versus only minor changes in network level properties as predicted by psychological construction theory. We defined the emotion recognition network in the total sample and investigated group differences on five network level indices (i.e. characteristic path length, global efficiency, clustering coefficient, local efficiency and small-worldness). The results did not reveal a significant increase in the left or right temporal lobectomy group (compared to the control group) in any of the graph measures, indicating that preserved behavioural emotion recognition in TLS is not associated with a massive connectivity increase between non-amygdalar nodes at network level. We conclude that the emotion recognition network is robust and functionally able to compensate for structural damage without substantial global reorganization, in line with a psychological construction theory.
Collapse
Affiliation(s)
- Yun-An Huang
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Dupont
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Van de Vliet
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Jastorff
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ron Peeters
- Department of Imaging & Pathology, Radiology, KU Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Johannes van Loon
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Wim Van Paesschen
- Department of Neurosciences, Research Group Experimental Neurology, Laboratory for Epilepsy Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Van den Stock
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Functional Connectivity in Neurodegenerative Disorders: Alzheimer's Disease and Frontotemporal Dementia. Top Magn Reson Imaging 2020; 28:317-324. [PMID: 31794504 DOI: 10.1097/rmr.0000000000000223] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders are a growing cause of morbidity and mortality worldwide. Onset is typically insidious and clinical symptoms of behavioral change, memory loss, or cognitive dysfunction may not be evident early in the disease process. Efforts have been made to discover biomarkers that allow for earlier diagnosis of neurodegenerative disorders, to initiate treatment that may slow the course of clinical deterioration. Neuronal dysfunction occurs earlier than clinical symptoms manifest. Thus, assessment of neuronal function using functional brain imaging has been examined as a potential biomarker. While most early studies used task-functional magnetic resonance imaging (fMRI), with the more recent technique of resting-state fMRI, "intrinsic" relationships between brain regions or brain networks have been studied in greater detail in neurodegenerative disorders. In Alzheimer's disease, the most common neurodegenerative disorder, and frontotemporal dementia, another of the common dementias, specific brain networks may be particularly susceptible to dysfunction. In this review, we highlight the major findings of functional connectivity assessed by resting state fMRI in Alzheimer's disease and frontotemporal dementia.
Collapse
|
27
|
Farina E, Borgnis F, Pozzo T. Mirror neurons and their relationship with neurodegenerative disorders. J Neurosci Res 2020; 98:1070-1094. [DOI: 10.1002/jnr.24579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Thierry Pozzo
- INSERM UMR1093‐CAPS, Université Bourgogne Franche‐Comté Dijon France
- IT@UniFe Center for Translational Neurophysiology Istituto Italiano di Tecnologia Ferrara Italy
| |
Collapse
|
28
|
Satpute AB, Lindquist KA. The Default Mode Network's Role in Discrete Emotion. Trends Cogn Sci 2019; 23:851-864. [PMID: 31427147 PMCID: PMC7281778 DOI: 10.1016/j.tics.2019.07.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
Emotions are often assumed to manifest in subcortical limbic and brainstem structures. While these areas are clearly important for representing affect (e.g., valence and arousal), we propose that the default mode network (DMN) is additionally important for constructing discrete emotional experiences (of anger, fear, disgust, etc.). Findings from neuroimaging studies, invasive electrical stimulation studies, and lesion studies support this proposal. Importantly, our framework builds on a constructionist theory of emotion to explain how instances involving diverse physiological and behavioral patterns can be conceptualized as belonging to the same emotion category. We argue that this ability requires abstraction (from concrete features to broad mental categories), which the DMN is well positioned to support, and we make novel predictions from our proposed framework.
Collapse
Affiliation(s)
- Ajay B Satpute
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Van den Stock J, De Winter FL, Stam D, Van de Vliet L, Huang YA, Dries E, Van Assche L, Emsell L, Bouckaert F, Vandenbulcke M. Reduced tendency to attribute mental states to abstract shapes in behavioral variant frontotemporal dementia links with cerebellar structural integrity. NEUROIMAGE-CLINICAL 2019; 22:101770. [PMID: 30884367 PMCID: PMC6424142 DOI: 10.1016/j.nicl.2019.101770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/28/2019] [Accepted: 03/10/2019] [Indexed: 11/25/2022]
Abstract
Theory of mind (ToM) refers to the ability to attribute mental states to others. Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder characterized by profound deficits in social cognition, including ToM. We investigate whether bvFTD affects intention attribution tendency while viewing abstract animations and whether this might represent a primary deficit. A sample of 15 bvFTD patients and 19 matched controls were assessed on cognition and performed an implicit ToM task. They were instructed to describe what they observed in movement patterns displayed by geometrical shapes (triangles). These movement patterns either represented animacy, goal-directed actions or manipulation of mental state (ToM). The responses were scored for both accuracy and intentionality attribution. Using Voxel-Based Morphometry, we investigated the structural neuroanatomy associated with intention attribution tendency. The behavioral results revealed deficits in the bvFTD group on intentionality attribution that were specific for the ToM condition after controlling for global cognitive functioning (MMSE-score), visual attention (TMT B-score), fluid intelligence (RCPMT-score) and confrontation naming (BNT-score). In the bvFTD sample, the intention attribution tendency on the ToM-condition was associated with grey matter volume of a cluster in the cerebellum, spanning the right Crus I, Crus II, VIIIb, IX, left VIIb, IX and vermal IX and X. The results reveal a specific, primary, implicit domain-general ToM deficit in bvFTD that cannot be explained by cognitive dysfunction. Furthermore, the findings point to a contribution of the cerebellum in the social-cognitive phenotype of bvFTD. We show a reduction in intention attribution tendency to abstract shapes in bvFTD. Cognitive or subordinate processes did not explain the reduction. The reduction was associated with structural integrity of a cerebellar cluster.
Collapse
Affiliation(s)
- Jan Van den Stock
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium; Brain and Emotion Laboratory, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - François-Laurent De Winter
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Daphne Stam
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium
| | - Laura Van de Vliet
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium
| | - Yun-An Huang
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium
| | - Eva Dries
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Lies Van Assche
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Louise Emsell
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium; Translational MRI, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Filip Bouckaert
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Briggs RG, Chakraborty AR, Anderson CD, Abraham CJ, Palejwala AH, Conner AK, Pelargos PE, O'Donoghue DL, Glenn CA, Sughrue ME. Anatomy and white matter connections of the inferior frontal gyrus. Clin Anat 2019; 32:546-556. [DOI: 10.1002/ca.23349] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Robert G. Briggs
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Arpan R. Chakraborty
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Christopher D. Anderson
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Carol J. Abraham
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Ali H. Palejwala
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Andrew K. Conner
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Panayiotis E. Pelargos
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Daniel L. O'Donoghue
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Chad A. Glenn
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Michael E. Sughrue
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| |
Collapse
|
31
|
Anterior Temporal Lobectomy Impairs Neural Classification of Body Emotions in Right Superior Temporal Sulcus and Reduces Emotional Enhancement in Distributed Brain Areas without Affecting Behavioral Classification. J Neurosci 2018; 38:9263-9274. [PMID: 30228228 DOI: 10.1523/jneurosci.0634-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Humans with amygdalar lesions show proportional reductions of the emotional response to facial expressions in the fusiform face area as well as deficits in emotion recognition from facial expressions. While processing of bodily expressions shares many similarities with facial expressions, there is no substantial evidence that lesions of the amygdala result in similar behavioral and neural sequelae. We combined behavioral assessment with functional neuroimaging in a group of male and female humans with unilateral anterior temporal lobe (ATL) resections, including the amygdala (right: n = 10; left: n = 10) and 12 matched controls. The objective was to assess whether the amygdala is crucial for the recognition of body expressions and for modulatory effects on distant areas during perception of body expressions. The behavioral results revealed normal performance in both patient groups on emotion categorization of body expressions. The neuroimaging results showed that ATL patients displayed no enhanced activations in right fusiform body area and left extrastriate body area and that left ATL patients additionally displayed no enhanced activations in right posterior superior temporal sulcus and right extrastriate body area, respectively. Multivoxel pattern analysis revealed altered categorization capacity between emotional and neutral stimuli in right posterior superior temporal sulcus in right ATL patients. In addition, we also found emotional enhancement in frontal, parietal, occipital, and cingulate regions in controls. Together, our data show that the amygdala and ATLs are not necessary for recognition of dynamic body expressions, but suggest that amygdala lesions affect body emotion processing in distant brain areas.SIGNIFICANCE STATEMENT For humans, information from emotional expressions of others is crucial to support social interactions. The majority of emotion studies has focused on facial expressions; however, in daily life, we also use information from body postures and body movement. Visual processing of body expressions relies on a brain network, including body-specific visual areas and visuomotor areas. Even though the importance of the amygdala and its modulatory effects on distant brain regions have been documented, it remains unclear whether the amygdala plays a crucial role in emotional body processing. By combining behavioral and neuroimaging data in patients with amygdalar lesions, we provide further evidence for its modulatory effect on distant areas during the perception of body expressions.
Collapse
|
32
|
Hohenfeld C, Werner CJ, Reetz K. Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker? Neuroimage Clin 2018; 18:849-870. [PMID: 29876270 PMCID: PMC5988031 DOI: 10.1016/j.nicl.2018.03.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Biomarkers in whichever modality are tremendously important in diagnosing of disease, tracking disease progression and clinical trials. This applies in particular for disorders with a long disease course including pre-symptomatic stages, in which only subtle signs of clinical progression can be observed. Magnetic resonance imaging (MRI) biomarkers hold particular promise due to their relative ease of use, cost-effectiveness and non-invasivity. Studies measuring resting-state functional MR connectivity have become increasingly common during recent years and are well established in neuroscience and related fields. Its increasing application does of course also include clinical settings and therein neurodegenerative diseases. In the present review, we critically summarise the state of the literature on resting-state functional connectivity as measured with functional MRI in neurodegenerative disorders. In addition to an overview of the results, we briefly outline the methods applied to the concept of resting-state functional connectivity. While there are many different neurodegenerative disorders cumulatively affecting a substantial number of patients, for most of them studies on resting-state fMRI are lacking. Plentiful amounts of papers are available for Alzheimer's disease (AD) and Parkinson's disease (PD), but only few works being available for the less common neurodegenerative diseases. This allows some conclusions on the potential of resting-state fMRI acting as a biomarker for the aforementioned two diseases, but only tentative statements for the others. For AD, the literature contains a relatively strong consensus regarding an impairment of the connectivity of the default mode network compared to healthy individuals. However, for AD there is no considerable documentation on how that alteration develops longitudinally with the progression of the disease. For PD, the available research points towards alterations of connectivity mainly in limbic and motor related regions and networks, but drawing conclusions for PD has to be done with caution due to a relative heterogeneity of the disease. For rare neurodegenerative diseases, no clear conclusions can be drawn due to the few published results. Nevertheless, summarising available data points towards characteristic connectivity alterations in Huntington's disease, frontotemporal dementia, dementia with Lewy bodies, multiple systems atrophy and the spinocerebellar ataxias. Overall at this point in time, the data on AD are most promising towards the eventual use of resting-state fMRI as an imaging biomarker, although there remain issues such as reproducibility of results and a lack of data demonstrating longitudinal changes. Improved methods providing more precise classifications as well as resting-state network changes that are sensitive to disease progression or therapeutic intervention are highly desirable, before routine clinical use could eventually become a reality.
Collapse
Affiliation(s)
- Christian Hohenfeld
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Cornelius J Werner
- RWTH Aachen University, Department of Neurology, Aachen, Germany; RWTH Aachen University, Section Interdisciplinary Geriatrics, Aachen, Germany
| | - Kathrin Reetz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
33
|
Van den Stock J, Stam D, De Winter F, Mantini D, Szmrecsanyi B, Van Laere K, Vandenberghe R, Vandenbulcke M. Moral processing deficit in behavioral variant frontotemporal dementia is associated with facial emotion recognition and brain changes in default mode and salience network areas. Brain Behav 2017; 7:e00843. [PMID: 29299378 PMCID: PMC5745238 DOI: 10.1002/brb3.843] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/10/2017] [Indexed: 12/04/2022] Open
Abstract
Introduction Behavioral variant frontotemporal dementia (bvFTD) is associated with abnormal emotion recognition and moral processing. Methods We assessed emotion detection, discrimination, matching, selection, and categorization as well as judgments of nonmoral, moral impersonal, moral personal low- and high-conflict scenarios. Results bvFTD patients gave more utilitarian responses on low-conflict personal moral dilemmas. There was a significant correlation between a facial emotion processing measure derived through principal component analysis and utilitarian responses on low-conflict personal scenarios in the bvFTD group (controlling for MMSE-score and syntactic abilities). Voxel-based morphometric multiple regression analysis in the bvFTD group revealed a significant association between the proportion of utilitarian responses on personal low-conflict dilemmas and gray matter volume in ventromedial prefrontal areas (pheight < .0001). In addition, there was a correlation between utilitarian responses on low-conflict personal scenarios in the bvFTD group and resting-state fractional Amplitude of Low Frequency Fluctuations (fALFF) in the anterior insula (pheight < .005). Conclusions The results underscore the importance of emotions in moral cognition and suggest a common basis for deficits in both abilities, possibly related to reduced experience of emotional sensations. At the neural level abnormal moral cognition in bvFTD is related to structural integrity of the medial prefrontal cortex and functional characteristics of the anterior insula. The present findings provide a common basis for emotion recognition and moral reasoning and link them with areas in the default mode and salience network.
Collapse
Affiliation(s)
- Jan Van den Stock
- Laboratory for Translational NeuropsychiatryDepartment of NeurosciencesKU LeuvenLeuvenBelgium
- Department of Old Age PsychiatryUniversity Psychiatry CenterLeuvenBelgium
| | - Daphne Stam
- Laboratory for Translational NeuropsychiatryDepartment of NeurosciencesKU LeuvenLeuvenBelgium
| | - François‐Laurent De Winter
- Laboratory for Translational NeuropsychiatryDepartment of NeurosciencesKU LeuvenLeuvenBelgium
- Department of Old Age PsychiatryUniversity Psychiatry CenterLeuvenBelgium
| | - Dante Mantini
- Research Center for Movement Control and NeuroplasticityKU LeuvenLeuvenBelgium
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | | | - Koen Van Laere
- Nuclear Medicine and Molecular ImagingDepartment of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Rik Vandenberghe
- Laboratory for Cognitive NeurologyDepartment of NeurosciencesKU LeuvenLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational NeuropsychiatryDepartment of NeurosciencesKU LeuvenLeuvenBelgium
- Department of Old Age PsychiatryUniversity Psychiatry CenterLeuvenBelgium
| |
Collapse
|
34
|
Lindquist KA. The role of language in emotion: existing evidence and future directions. Curr Opin Psychol 2017; 17:135-139. [DOI: 10.1016/j.copsyc.2017.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/26/2017] [Accepted: 07/08/2017] [Indexed: 02/01/2023]
|
35
|
Van den Stock J. Interaction between identity and emotion versus visual basic object recognition deficits: A commentary on Biotti & Cook. Cortex 2017; 101:294-297. [PMID: 28385210 DOI: 10.1016/j.cortex.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Jan Van den Stock
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium; Old Age Psychiatry Department, University Psychiatric Center, Leuven, Belgium.
| |
Collapse
|