1
|
van den Boom MA, Gregg NM, Ojeda Valencia G, Lundstrom BN, Miller KJ, van Blooijs D, Huiskamp GJM, Leijten FSS, Worrell GA, Hermes D. ER-detect: A pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data. J Neurosci Methods 2025; 418:110389. [PMID: 39952481 DOI: 10.1016/j.jneumeth.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. However, the methods used for the detection of responses in cortico-cortical evoked potential (CCEP) data vary across studies, from visual inspection with manual annotation to a variety of automated methods. NEW METHOD To provide a robust workflow to process CCEP data and detect early evoked responses in a fully automated and reproducible fashion, we developed the Early Response (ER)-detect toolbox. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three early response detection methods, which were validated against 14 manually annotated CCEP datasets from two different clinical sites by four independent raters. RESULTS AND COMPARISON WITH EXISTING METHODS ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ∼0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. CONCLUSION ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results for both research and clinical purposes.
Collapse
Affiliation(s)
- Max A van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, Netherlands
| | - Geertjan J M Huiskamp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Togo M, Matsumoto R, Shimotake A, Kobayashi T, Nakae T, Kobayashi K, Usami K, Kikuchi T, Yoshida K, Matsuhashi M, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Role of the premotor and the precentral negative motor area in praxis: A direct electrical stimulation study with behavioral analysis. Clin Neurophysiol 2025; 173:66-75. [PMID: 40085996 DOI: 10.1016/j.clinph.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/18/2024] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Although the negative motor area (NMA) is defined as the area where electrical cortical stimulation inhibits voluntary movements, detail functions of NMA on praxis have not been elucidated. We investigated its role in praxis by motion analysis during stimulation at a smaller intensity. METHODS Patients were six intractable partial epilepsy patients undergoing implantation of intracranial electrodes. Motion impairments by stimulation were studied in finger tapping, reach-to-grasp, finger gesture, and pantomime of tool use. RESULTS NMAs were identified on the precentral gyrus (4 patients), ventral premotor area (1), and at their border (1). In patients with precentral NMA, quantitative analysis revealed decreased tapping stroke and grasping aperture, while reaching velocity and pantomime did not change. As for more rostral NMA, quantitative stroke, aperture, and reaching velocity were decreased. One patient showed the arrest of finger gestures and pantomime, and the other had prolongation of reaction time. These two NMAs showed distinct connectivity pattern in connectivity analysis. CONCLUSIONS Precentral NMA seemed to play a role in elementary finger movement control, whereas more rostral NMA in complex movement. The findings indicate functional differences within NMAs. SIGNIFICANCE These findings elucidated the contribution of the human premotor area to the highly skilled hand movements.
Collapse
Affiliation(s)
- Masaya Togo
- Division of Neurology, Kobe University Graduate School of Medicine, Japan; Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan; Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Tamaki Kobayashi
- Department of Neurosurgery, Japanese Red Cross Otsu Hospital, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Shiga General Hospital, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Kiyohide Usami
- Department of Epilepsy, Movement Disorder, and Physiology, Kyoto University Graduate School of Medicine, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorder, and Physiology, Kyoto University Graduate School of Medicine, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorder, and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
3
|
Marino S, Menna G, Bilgin L, Mattogno PP, Gaudino S, Quaranta D, Caraglia N, Olivi A, Berger MS, Doglietto F, Della Pepa GM. "False friends" in Language Subcortical Mapping: A Systematic Literature Review. World Neurosurg 2024; 190:350-361.e20. [PMID: 38968990 DOI: 10.1016/j.wneu.2024.06.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Subcortical brain mapping in awake glioma surgery might optimize the extent of resection while minimizing neurological morbidity, but it requires a correct interpretation of responses evoked during surgery. To define, with a systematic review: 1) a comprehensive 'map' of the principal white matter bundles involved in awake surgery on language-related networks, describing the most employed tests and the expected responses; 2) In linguistics, a false friend is a word in a different language that looks or sounds like a word in given language but differs significantly in meaning. Similarly, our aim is to give the surgeons a comprehensive review of potentially misleading responses, namely "false friends", in subcortical language mapping. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Standardized data extraction was conducted. RESULTS Out of a total of 224 initial papers, 67 were included for analysis. Expected responses, common tests, and potential "false friends" were recorded for each of the following white matter bundles: frontal aslant tract, superior and inferior longitudinal fascicles, arcuate fascicle, inferior fronto-occipital fascicle, uncinate fascicle. Practical examples are discussed to underline the risk of intraoperative fallouts ("false friends") that might lead to an early interruption (false positive) or a risky surgical removal (false negative). CONCLUSIONS This paper represents a critical review of the present status of subcortical awake mapping and underlines practical "false-friend" in mapping critical crossroads in language-related networks.
Collapse
Affiliation(s)
- Salvatore Marino
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Grazia Menna
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Lal Bilgin
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Pier Paolo Mattogno
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Simona Gaudino
- Diagnostic Neuroradiology Unit, Department of Radiological and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Davide Quaranta
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Naike Caraglia
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Francesco Doglietto
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giuseppe Maria Della Pepa
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy.
| |
Collapse
|
4
|
Hadar PN, Zelmann R, Salami P, Cash SS, Paulk AC. The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond. Front Hum Neurosci 2024; 18:1439541. [PMID: 39296917 PMCID: PMC11408201 DOI: 10.3389/fnhum.2024.1439541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
As the pace of research in implantable neurotechnology increases, it is important to take a step back and see if the promise lives up to our intentions. While direct electrical stimulation applied intracranially has been used for the treatment of various neurological disorders, such as Parkinson's, epilepsy, clinical depression, and Obsessive-compulsive disorder, the effectiveness can be highly variable. One perspective is that the inability to consistently treat these neurological disorders in a standardized way is due to multiple, interlaced factors, including stimulation parameters, location, and differences in underlying network connectivity, leading to a trial-and-error stimulation approach in the clinic. An alternate view, based on a growing knowledge from neural data, is that variability in this input (stimulation) and output (brain response) relationship may be more predictable and amenable to standardization, personalization, and, ultimately, therapeutic implementation. In this review, we assert that the future of human brain neurostimulation, via direct electrical stimulation, rests on deploying standardized, constrained models for easier clinical implementation and informed by intracranial data sets, such that diverse, individualized therapeutic parameters can efficiently produce similar, robust, positive outcomes for many patients closer to a prescriptive model. We address the pathway needed to arrive at this future by addressing three questions, namely: (1) why aren't we already at this prescriptive future?; (2) how do we get there?; (3) how far are we from this Neurostimulationist prescriptive future? We first posit that there are limited and predictable ways, constrained by underlying networks, for direct electrical stimulation to induce changes in the brain based on past literature. We then address how identifying underlying individual structural and functional brain connectivity which shape these standard responses enable targeted and personalized neuromodulation, bolstered through large-scale efforts, including machine learning techniques, to map and reverse engineer these input-output relationships to produce a good outcome and better identify underlying mechanisms. This understanding will not only be a major advance in enabling intelligent and informed design of neuromodulatory therapeutic tools for a wide variety of neurological diseases, but a shift in how we can predictably, and therapeutically, prescribe stimulation treatments the human brain.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Giampiccolo D, Matsumoto R. Mapping cortico-cortical evoked potentials to glioma grading and language outcome. Clin Neurophysiol 2024; 161:244-245. [PMID: 38538419 DOI: 10.1016/j.clinph.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Department of Neurosurgery, Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan; Epilepsy Center & Center for Cognitive and Memory Disorders, Kobe University Hospital, Kobe, Japan.
| |
Collapse
|
7
|
Seidel K, Wermelinger J, Alvarez-Abut P, Deletis V, Raabe A, Zhang D, Schucht P. Cortico-cortical evoked potentials of language tracts in minimally invasive glioma surgery guided by Penfield stimulation. Clin Neurophysiol 2024; 161:256-267. [PMID: 38521679 DOI: 10.1016/j.clinph.2023.12.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/19/2023] [Accepted: 12/23/2023] [Indexed: 03/25/2024]
Abstract
OBJECTIVE We investigated the feasibility of recording cortico-cortical evoked potentials (CCEPs) in patients with low- and high-grade glioma. We compared CCEPs during awake and asleep surgery, as well as those stimulated from the functional Broca area and recorded from the functional Wernicke area (BtW), and vice versa (WtB). We also analyzed CCEP properties according to tumor location, histopathology, and aphasia. METHODS We included 20 patients who underwent minimally invasive surgery in an asleep-awake-asleep setting. Strip electrode placement was guided by classical Penfield stimulation of positive language sites and fiber tracking of the arcuate fascicle. CCEPs were elicited with alternating monophasic single pulses of 1.1 Hz frequency and recorded as averaged signals. Intraoperatively, there was no post-processing of the signal. RESULTS Ninety-seven CCEPs from 19 patients were analyzed. There was no significant difference in CCEP properties when comparing awake versus asleep, nor BtW versus WtB. CCEP amplitude and latency were affected by tumor location and histopathology. CCEP features after tumor resection correlated with short- and long-term postoperative aphasia. CONCLUSION CCEP recordings are feasible during minimally invasive surgery. CCEPs might be surrogate markers for altered connectivity of the language tracts. SIGNIFICANCE This study may guide the incorporation of CCEPs into intraoperative neurophysiological monitoring.
Collapse
Affiliation(s)
- Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Jonathan Wermelinger
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pablo Alvarez-Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vedran Deletis
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia; Albert Einstein College of Medicine, New York, NY, USA
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Zhang
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
van Blooijs D, Blok S, Huiskamp GJM, van Eijsden P, Meijer HGE, Leijten FSS. The effect of propofol on effective brain networks. Clin Neurophysiol 2024; 161:222-230. [PMID: 38522268 DOI: 10.1016/j.clinph.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE We compared the effective networks derived from Single Pulse Electrical Stimulation (SPES) in intracranial electrocorticography (ECoG) of awake epilepsy patients and while under general propofol-anesthesia to investigate the effect of propofol on these brain networks. METHODS We included nine patients who underwent ECoG for epilepsy surgery evaluation. We performed SPES when the patient was awake (SPES-clinical) and repeated this under propofol-anesthesia during the surgery in which the ECoG grids were removed (SPES-propofol). We detected the cortico-cortical evoked potentials (CCEPs) with an automatic detector. We constructed two effective networks derived from SPES-clinical and SPES-propofol. We compared three network measures (indegree, outdegree and betweenness centrality), the N1-peak-latency and amplitude of CCEPs between the two effective networks. RESULTS Fewer CCEPs were observed during SPES-propofol (median: 6.0, range: 0-29) compared to SPES-clinical (median: 10.0, range: 0-36). We found a significant correlation for the indegree, outdegree and betweenness centrality between SPES-clinical and SPES-propofol (respectively rs = 0.77, rs = 0.70, rs = 0.55, p < 0.001). The median N1-peak-latency increased from 22.0 ms during SPES-clinical to 26.4 ms during SPES-propofol. CONCLUSIONS Our findings suggest that the number of effective network connections decreases, but network measures are only marginally affected. SIGNIFICANCE The primary network topology is preserved under propofol.
Collapse
Affiliation(s)
- D van Blooijs
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), P.O.box 540, 2130 AM Hoofddorp, The Netherlands.
| | - S Blok
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| | - G J M Huiskamp
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| | - P van Eijsden
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| | - H G E Meijer
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - F S S Leijten
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85500, 3584 GA Utrecht, The Netherlands.
| |
Collapse
|
9
|
Seas A, Noor MS, Choi KS, Veerakumar A, Obatusin M, Dahill-Fuchel J, Tiruvadi V, Xu E, Riva-Posse P, Rozell CJ, Mayberg HS, McIntyre CC, Waters AC, Howell B. Subcallosal cingulate deep brain stimulation evokes two distinct cortical responses via differential white matter activation. Proc Natl Acad Sci U S A 2024; 121:e2314918121. [PMID: 38527192 PMCID: PMC10998591 DOI: 10.1073/pnas.2314918121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Subcallosal cingulate (SCC) deep brain stimulation (DBS) is an emerging therapy for refractory depression. Good clinical outcomes are associated with the activation of white matter adjacent to the SCC. This activation produces a signature cortical evoked potential (EP), but it is unclear which of the many pathways in the vicinity of SCC is responsible for driving this response. Individualized biophysical models were built to achieve selective engagement of two target bundles: either the forceps minor (FM) or cingulum bundle (CB). Unilateral 2 Hz stimulation was performed in seven patients with treatment-resistant depression who responded to SCC DBS, and EPs were recorded using 256-sensor scalp electroencephalography. Two distinct EPs were observed: a 120 ms symmetric response spanning both hemispheres and a 60 ms asymmetrical EP. Activation of FM correlated with the symmetrical EPs, while activation of CB was correlated with the asymmetrical EPs. These results support prior model predictions that these two pathways are predominantly activated by clinical SCC DBS and provide first evidence of a link between cortical EPs and selective fiber bundle activation.
Collapse
Affiliation(s)
- Andreas Seas
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Neurosurgery, Duke University, Durham, NC27708
| | - M. Sohail Noor
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Mosadoluwa Obatusin
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Jacob Dahill-Fuchel
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Elisa Xu
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Neurosurgery, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| | - Allison C. Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Bryan Howell
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| |
Collapse
|
10
|
Feys O, Wens V, Rovai A, Schuind S, Rikir E, Legros B, De Tiège X, Gaspard N. Delayed effective connectivity characterizes the epileptogenic zone during stereo-EEG. Clin Neurophysiol 2024; 158:59-68. [PMID: 38183887 DOI: 10.1016/j.clinph.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVE Single-pulse electrical stimulations (SPES) can elicit normal and abnormal responses that might characterize the epileptogenic zone, including spikes, high-frequency oscillations and cortico-cortical evoked potentials (CCEPs). In this study, we investigate their association with the epileptogenic zone during stereoelectroencephalography (SEEG) in 28 patients with refractory focal epilepsy. METHODS Characteristics of CCEPs (distance-corrected or -uncorrected latency, amplitude and the connectivity index) and the occurrence of spikes and ripples were assessed. Responses within the epileptogenic zone and within the non-involved zone were compared using receiver operating characteristics curves and analysis of variance (ANOVA) either in all patients, patients with well-delineated epileptogenic zone, and patients older than 15 years old. RESULTS We found an increase in distance-corrected CCEPs latency after stimulation within the epileptogenic zone (area under the curve = 0.71, 0.72, 0.70, ANOVA significant after false discovery rate correction). CONCLUSIONS The increased distance-corrected CCEPs latency suggests that neuronal propagation velocity is altered within the epileptogenic network. This association might reflect effective connectivity changes at cortico-cortical or cortico-subcortico-cortical levels. Other responses were not associated with the epileptogenic zone, including the CCEPs amplitude, the connectivity index, the occurrences of induced ripples and spikes. The discrepancy with previous descriptions may be explained by different spatial brain sampling between subdural and depth electrodes. SIGNIFICANCE Increased distance-corrected CCEPs latency, indicating delayed effective connectivity, characterizes the epileptogenic zone. This marker could be used to help tailor surgical resection limits after SEEG.
Collapse
Affiliation(s)
- Odile Feys
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium.
| | - Vincent Wens
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Antonin Rovai
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Sophie Schuind
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurosurgery, Bruxelles, Belgium
| | - Estelle Rikir
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium
| | - Benjamin Legros
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium
| | - Xavier De Tiège
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN(2)T), Bruxelles, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Translational Neuroimaging, Bruxelles, Belgium
| | - Nicolas Gaspard
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Department of Neurology, Bruxelles, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratory of Experimental Neurology, Bruxelles, Belgium; Yale University, Department of Neurology, New Haven, CT, USA
| |
Collapse
|
11
|
van den Boom MA, Gregg NM, Valencia GO, Lundstrom BN, Miller KJ, van Blooijs D, Huiskamp GJ, Leijten FS, Worrell GA, Hermes D. ER-detect: a pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574915. [PMID: 38260687 PMCID: PMC10802406 DOI: 10.1101/2024.01.09.574915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.
Collapse
Affiliation(s)
- Max A. van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | | | | | | | - Kai J. Miller
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
- Stichting Epilepsie Instellingen Nederland (SEIN); Zwolle, The Netherlands
| | - Geertjan J.M. Huiskamp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Frans S.S. Leijten
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Gregory A. Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN; USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
| |
Collapse
|
12
|
Bonosi L, Torrente A, Brighina F, Tito Petralia CC, Merlino P, Avallone C, Gulino V, Costanzo R, Brunasso L, Iacopino DG, Maugeri R. Corticocortical Evoked Potentials in Eloquent Brain Tumor Surgery. A Systematic Review. World Neurosurg 2024; 181:38-51. [PMID: 37832637 DOI: 10.1016/j.wneu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Eloquent brain tumor surgery involves the delicate task of resecting tumors located in regions of the brain responsible for critical functions, such as language, motor control, and sensory perception. Preserving these functions is of paramount importance to maintain the patient's quality of life. Corticocortical evoked potentials (CCEPs) have emerged as a valuable intraoperative monitoring technique that aids in identifying and preserving eloquent cortical areas during surgery. This systematic review aimed to assess the utility of CCEPs in eloquent brain tumor surgery and determine their effectiveness in improving patient outcomes. A comprehensive literature search was conducted using electronic databases, including PubMed/Medline and Scopus. The search strategy identified 11 relevant articles for detailed analysis. The findings of the included studies consistently demonstrated the potential of CCEPs in guiding surgical decision making, minimizing the risk of postoperative neurological deficits, and mapping functional connectivity during surgery. However, further research and standardization are needed to fully establish the clinical benefits and refine the implementation of CCEPs in routine neurosurgical practice.
Collapse
Affiliation(s)
- Lapo Bonosi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cateno Concetto Tito Petralia
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Pietro Merlino
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Careggi University Hospital and University of Florence, Florence, Italy
| | - Chiara Avallone
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Vincenzo Gulino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
De Benedictis A, de Palma L, Rossi-Espagnet MC, Marras CE. Connectome-based approaches in pediatric epilepsy surgery: "State-of-the art" and future perspectives. Epilepsy Behav 2023; 149:109523. [PMID: 37944286 DOI: 10.1016/j.yebeh.2023.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Modern epilepsy science has overcome the traditional interpretation of a strict region-specific origin of epilepsy, highlighting the involvement of wider patterns of altered neuronal circuits. In selected cases, surgery may constitute a valuable option to achieve both seizure freedom and neurocognitive improvement. Although epilepsy is now considered as a brain network disease, the most relevant literature concerning the "connectome-based" epilepsy surgery mainly refers to adults, with a limited number of studies dedicated to the pediatric population. In this review, the Authors summarized the main current available knowledge on the relevance of WM surgical anatomy in epilepsy surgery, the post-surgical modifications of brain structural connectivity and the related clinical impact of such modifications within the pediatric context. In the last part, possible implications and future perspectives of this approach have been discussed, especially concerning the optimization of surgical strategies and the predictive value of the epilepsy network analysis for planning tailored approaches, with the final aim of improving case selection, presurgical planning, intraoperative management, and postoperative results.
Collapse
Affiliation(s)
| | - Luca de Palma
- Epilepsy and Movement Disorders Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | |
Collapse
|
14
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
15
|
Kang KM, Kim KM, Kim IS, Kim JH, Kang H, Ji SY, Dho YS, Oh H, Park HP, Seo HG, Kim SM, Choi SH, Park CK. Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging for Language Mapping in Brain Tumor Surgery: Validation With Direct Cortical Stimulation and Cortico-Cortical Evoked Potential. Korean J Radiol 2023; 24:553-563. [PMID: 37271209 DOI: 10.3348/kjr.2022.1001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging-derived tractography (DTI-t) contribute to the localization of language areas, but their accuracy remains controversial. This study aimed to investigate the diagnostic performance of preoperative fMRI and DTI-t obtained with a simultaneous multi-slice technique using intraoperative direct cortical stimulation (DCS) or corticocortical evoked potential (CCEP) as reference standards. MATERIALS AND METHODS This prospective study included 26 patients (23-74 years; male:female, 13:13) with tumors in the vicinity of Broca's area who underwent preoperative fMRI and DTI-t. A site-by-site comparison between preoperative (fMRI and DTI-t) and intraoperative language mapping (DCS or CCEP) was performed for 226 cortical sites to calculate the sensitivity and specificity of fMRI and DTI-t for mapping Broca's areas. For sites with positive signals on fMRI or DTI-t, the true-positive rate (TPR) was calculated based on the concordance and discordance between fMRI and DTI-t. RESULTS Among 226 cortical sites, DCS was performed in 100 sites and CCEP was performed in 166 sites. The specificities of fMRI and DTI-t ranged from 72.4% (63/87) to 96.8% (122/126), respectively. The sensitivities of fMRI (except for verb generation) and DTI-t were 69.2% (9/13) to 92.3% (12/13) with DCS as the reference standard, and 40.0% (16/40) or lower with CCEP as the reference standard. For sites with preoperative fMRI or DTI-t positivity (n = 82), the TPR was high when fMRI and DTI-t were concordant (81.2% and 100% using DCS and CCEP, respectively, as the reference standards) and low when fMRI and DTI-t were discordant (≤ 24.2%). CONCLUSION fMRI and DTI-t are sensitive and specific for mapping Broca's area compared with DCS and specific but insensitive compared with CCEP. A site with a positive signal on both fMRI and DTI-t represents a high probability of being an essential language area.
Collapse
Affiliation(s)
- Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Min Kim
- Department of Neurosurgery, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | | | - Joo Hyun Kim
- Department of Clinical Science, MR, Philips Healthcare Korea, Seoul, Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - So Young Ji
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun-Sik Dho
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Hyongmin Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Pyoung Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Almairac F, Parker D, Mondot L, Isan P, Onno M, Papadopoulo T, Filipiak P, Fontaine D, Verma R. Free-water correction DTI-based tractography in brain tumor surgery: assessment with functional and electrophysiological mapping of the white matter. Acta Neurochir (Wien) 2023; 165:1675-1681. [PMID: 37129683 DOI: 10.1007/s00701-023-05608-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Peritumoral edema prevents fiber tracking from diffusion tensor imaging (DTI). A free-water correction may overcome this drawback, as illustrated in the case of a patient undergoing awake surgery for brain metastasis. The anatomical plausibility and accuracy of tractography with and without free-water correction were assessed with functional mapping and axono-cortical evoked-potentials (ACEPs) as reference methods. The results suggest a potential synergy between corrected DTI-based tractography and ACEPs to reliably identify and preserve white matter tracts during brain tumor surgery.
Collapse
Affiliation(s)
- Fabien Almairac
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 06000, Nice, France.
- UR2CA PIN, Université Côte d'Azur, Nice, France.
| | - Drew Parker
- Diffusion and Connectomics in Precision Healthcare Research Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydiane Mondot
- Neuroradiology department, Pasteur 2 Hospital, University Hospital of Nice, 06000, Nice, France
- UR2CA URRIS, Université Côte d'Azur, Nice, France
| | - Petru Isan
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
| | - Marie Onno
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 06000, Nice, France
| | | | | | - Denys Fontaine
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
| | - Ragini Verma
- Diffusion and Connectomics in Precision Healthcare Research Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Arihara M, Enatsu R, Ochi S, Sasagawa A, Hirano T, Kuribara T, Yamada S, Kimura Y, Matsuhashi M, Mikuni N. Steady-State Cortico-Cortical Evoked Potential. J Clin Neurophysiol 2023; 40:301-309. [PMID: 34387274 DOI: 10.1097/wnp.0000000000000887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The present study evaluated the utility of the steady-state responses of cortico-cortical evoked potentials (SSCCEPs) and compared them with the responses of conventional CCEPs. METHODS Eleven patients with medically intractable focal epilepsy who underwent the implantation of subdural electrodes or stereoelectroencephalography were enrolled. Conventional CCEPs were obtained by averaging responses to alternating 1-Hz electrical stimuli, and 5-Hz stimuli were delivered for recording SSCCEPs. The distribution of SSCCEPs was assessed by a frequency analysis of fast Fourier transform and compared with conventional CCEPs. RESULTS Steady-state responses of cortico-cortical evoked potentials were successfully recorded in areas consistent with conventional CCEPs in all patients. However, SSCCEPs were more easily disturbed by the 5-Hz stimulation, and small responses had difficulty generating SSCCEPs. CONCLUSIONS Steady-state responses of cortico-cortical evoked potentials may be a useful alternative to conventional CCEPs.
Collapse
Affiliation(s)
- Masayasu Arihara
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Satoko Ochi
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Ayaka Sasagawa
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Tsukasa Hirano
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | | | - Shoto Yamada
- Division of Clinical Engineering, Sapporo Medical University Hospital, Sapporo, Japan; and
| | - Yusuke Kimura
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
18
|
Yamao Y, Sawamoto N, Kunieda T, Inano R, Shibata S, Kikuchi T, Arakawa Y, Yoshida K, Matsumoto R, Ikeda A, Takahashi R, Fukuyama H, Miyamoto S. Changes in Distributed Motor Network Connectivity Correlates With Functional Outcome After Surgical Resection of Brain Tumors. NEUROSURGERY PRACTICE 2023; 4:e00028. [PMID: 39959718 PMCID: PMC11809952 DOI: 10.1227/neuprac.0000000000000028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/19/2022] [Indexed: 02/18/2025]
Abstract
BACKGROUND In patients with brain tumors around the motor cortices, deterioration of motor performance may be observed even if the integrity of the cortical output is maintained. Especially, resection of medial premotor area (PM) can cause postoperative deterioration called supplementary motor area syndrome. OBJECTIVE To clarify the neuronal mechanisms underlying postsurgical deterioration with a case-control study. METHODS Twelve patients with brain tumors underwent preoperative and postoperative sessions consisting of motor performance evaluation and 3T-magnetic resonance imaging data acquisition. Based on additional postsurgical motor deficits, 6 patients were classified into "deficit group," and 6 others were into "no deficit group." Using resting-state functional magnetic resonance imaging (fMRI), the integrity of functional connectivity was evaluated by placing a seed in the ipsilesional primary motor area (M1). With motor task fMRI, hand and foot representations were identified in the M1 and lateral and medial PMs. Probabilistic tractography assessed anatomic connectivity in the cortico-cortical and corticofugal networks. RESULTS Functional connectivity among M1 and lateral and medial PMs during resting-state fMRI was reduced postoperatively in the deficit group (P < .05, corrected) and preserved in the no deficit group. The deficit was unlikely to be attributable to surgical resection of specific anatomic connectivity. The amplitude of motor-evoked potential was maintained in available cases. These intraoperative observations agree with imaging findings suggesting preserved anatomic connectivity of the estimated corticofugal pathway. CONCLUSION The present findings suggest that supplementary motor area syndrome is caused by disorganization of functional connectivity among cortical motor networks rather than resection of anatomic connectivity of corticofugal pathway.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Rika Inano
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sumiya Shibata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Almairac F, Isan P, Onno M, Papadopoulo T, Mondot L, Chanalet S, Fernandez C, Clerc M, Deriche R, Fontaine D, Filipiak P. Identifying subcortical connectivity during brain tumor surgery: a multimodal study. Brain Struct Funct 2023; 228:815-830. [PMID: 36840759 DOI: 10.1007/s00429-023-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Bipolar direct electrical stimulation (DES) of an awake patient is the reference technique for identifying brain structures to achieve maximal safe tumor resection. Unfortunately, DES cannot be performed in all cases. Alternative surgical tools are, therefore, needed to aid identification of subcortical connectivity during brain tumor removal. In this pilot study, we sought to (i) evaluate the combined use of evoked potential (EP) and tractography for identification of white matter (WM) tracts under the functional control of DES, and (ii) provide clues to the electrophysiological effects of bipolar stimulation on neural pathways. We included 12 patients (mean age of 38.4 years) who had had a dMRI-based tractography and a functional brain mapping under awake craniotomy for brain tumor removal. Electrophysiological recordings of subcortical evoked potentials (SCEPs) were acquired during bipolar low frequency (2 Hz) stimulation of the WM functional sites identified during brain mapping. SCEPs were successfully triggered in 11 out of 12 patients. The median length of the stimulated fibers was 43.24 ± 19.55 mm, belonging to tracts of median lengths of 89.84 ± 24.65 mm. The electrophysiological (delay, amplitude, and speed of propagation) and structural (number and lengths of streamlines, and mean fractional anisotropy) measures were correlated. In our experimental conditions, SCEPs were essentially limited to a subpart of the bundles, suggesting a selectivity of action of the DES on the brain networks. Correlations between functional, structural, and electrophysiological measures portend the combined use of EPs and tractography as a potential intraoperative tool to achieve maximum safe resection in brain tumor surgery.
Collapse
Affiliation(s)
- Fabien Almairac
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France.
- UR2CA PIN, Université Côte d'Azur, Nice, France.
| | - Petru Isan
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Marie Onno
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
| | | | - Lydiane Mondot
- Neuroradiology Department, Pasteur 2 Hospital, University Hospital of Nice, Nice, France
- UR2CA URRIS, Université Côte d'Azur, Nice, France
| | - Stéphane Chanalet
- Neuroradiology Department, Pasteur 2 Hospital, University Hospital of Nice, Nice, France
| | - Charlotte Fernandez
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
| | - Maureen Clerc
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Rachid Deriche
- Athena Team, Centre Inria d'Université Côte d'Azur, Sophia Antipolis, France
| | - Denys Fontaine
- Neurosurgery Department, Pasteur 2 Hospital, University Hospital of Nice, 30 Avenue de La Voie Romaine, 06000, Nice, France
- UR2CA PIN, Université Côte d'Azur, Nice, France
| | | |
Collapse
|
20
|
Kim KM, Kim SM, Kang H, Ji SY, Dho YS, Choi YD, Kwak GH, Kim BE, Oh H, Park HP, Kang KM, Choi SH, Kwon YN, Lee ST, Seo HG, Park CK. Preservation of language function by mapping the arcuate fasciculus using intraoperative corticocortical evoked potential under general anesthesia in glioma surgery. J Neurosurg 2022; 137:1535-1543. [PMID: 35303703 DOI: 10.3171/2022.1.jns212658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraoperative language mapping under general anesthesia is imperative for brain tumor surgery because awake surgery is not always feasible. Monitoring corticocortical evoked potential (CCEP) is known to be a useful method for tracking neuronal connectivity and localizing functional areas. The authors evaluated the clinical benefit of intraoperative CCEP monitoring for language function preservation in patients undergoing glioma surgery. METHODS Between January 2019 and June 2021, the authors performed a total of 29 consecutive glioma surgeries using CCEP monitoring under general anesthesia because of a risk of speech impairment; these were analyzed. Language area mapping was implemented by the anterior language area to posterior language area CCEP method for arcuate fasciculus mapping, and tumor resection was performed while avoiding the localized language areas. Language function before and after surgery was evaluated by the Controlled Oral Word Association Test (COWAT). RESULTS Intraoperative CCEP was successfully monitored in 25 patients (86.2%), and a valid signal was undetectable in the other 4 patients. Language function evaluation was possible before and after surgery in a total of 20 patients. Overall, the preservation rate of language function was 65.0%, and the deterioration rate was 35.0% after tumor resection with CCEP monitoring. Among those 8 patients with preoperative COWAT scores ≥ 18, 5 patients (62.5%) successfully preserved their language function, with COWAT scores > 18 after tumor resection. Among the 12 patients with preoperative deteriorated language function (COWAT score < 18), 8 patients (66.7%) showed improvement or preserved language function after surgery. CONCLUSIONS Intraoperative CCEP monitoring of the arcuate fasciculus is an acceptable technology for the preservation of language function under general anesthesia in glioma surgery in patients in whom awake surgery is not feasible.
Collapse
Affiliation(s)
- Kyung Min Kim
- 1Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Sung-Min Kim
- 2Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Ho Kang
- 1Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - So Young Ji
- 3Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam
| | - Yun-Sik Dho
- 4Department of Neurosurgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju
| | - Young-Doo Choi
- 1Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Gil Ho Kwak
- 1Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Bo Eun Kim
- 1Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Hyongmin Oh
- 5Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Hee-Pyoung Park
- 5Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Koung Mi Kang
- 6Department of Radiology, Seoul National University College of Medicine, Seoul; and
| | - Seung Hong Choi
- 6Department of Radiology, Seoul National University College of Medicine, Seoul; and
| | - Young Nam Kwon
- 2Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Soon-Tae Lee
- 2Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Han Gil Seo
- 7Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- 1Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| |
Collapse
|
21
|
Monitoring Cortico-cortical Evoked Potentials Using Only Two 6-strand Strip Electrodes for Gliomas Extending to the Dominant Side of Frontal Operculum During One-step Tumor Removal Surgery. World Neurosurg 2022; 165:e732-e742. [PMID: 35798294 DOI: 10.1016/j.wneu.2022.06.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Resection of the dominant side of gliomas extending to the frontal operculum has high risk of severe language dysfunction. Here, we report recording cortico-cortical evoked potentials (CCEP) using only two 6-strand strip electrodes to monitor language-related fibers intraoperatively. We examined whether this simple procedure is useful for removing gliomas extending to the dominant side of frontal operculum. METHODS This study included 7 cases of glioma extending to the left frontal operculum. The frontal language area (FLA) was first identified by functional mapping during awake craniotomy. Next, a 6-strand strip electrode was placed on the FLA, while on the temporal side, an electrode was placed so as to slide parallel to the sylvian fissure toward the posterior language area. Electrical stimulation was performed using the electrode on the frontal side, and CCEPs were measured from the electrode on the temporal side. RESULTS CCEPs were detected in all cases. Immediately after surgery, all patients demonstrated language dysfunction to varying degree. CCEP decreased to 10% in 1 patient, who recovered language function after 24 months. CCEP decreased slightly 80% in 1, and, in the 5 other cases, CCEPs did not change. These 5 patients soon recovered language function within 2 weeks to 1 month. CONCLUSIONS This study confirmed the utility of CCEP monitoring using only two 6-strand strip electrodes during one-step surgery. We believe this simple method helped in monitoring intraoperative language function and predicting its postoperative recovery in patients with gliomas extending to the dominant side of frontal operculum.
Collapse
|
22
|
Sawada M, Adolphs R, Dlouhy BJ, Jenison RL, Rhone AE, Kovach CK, Greenlee JDW, Howard Iii MA, Oya H. Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation. Nat Commun 2022; 13:4909. [PMID: 35987994 PMCID: PMC9392722 DOI: 10.1038/s41467-022-32644-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 08/08/2022] [Indexed: 01/21/2023] Open
Abstract
The primate amygdala is a complex consisting of over a dozen nuclei that have been implicated in a host of cognitive functions, individual differences, and psychiatric illnesses. These functions are implemented through distinct connectivity profiles, which have been documented in animals but remain largely unknown in humans. Here we present results from 25 neurosurgical patients who had concurrent electrical stimulation of the amygdala with intracranial electroencephalography (electrical stimulation tract-tracing; es-TT), or fMRI (electrical stimulation fMRI; es-fMRI), methods providing strong inferences about effective connectivity of amygdala subdivisions with the rest of the brain. We quantified functional connectivity with medial and lateral amygdala, the temporal order of these connections on the timescale of milliseconds, and also detail second-order effective connectivity among the key nodes. These findings provide a uniquely detailed characterization of human amygdala functional connectivity that will inform functional neuroimaging studies in healthy and clinical populations.
Collapse
Affiliation(s)
- Masahiro Sawada
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Japan
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Rick L Jenison
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, USA
| | - Ariane E Rhone
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher K Kovach
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Matthew A Howard Iii
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
23
|
Smith EE, Choi KS, Veerakumar A, Obatusin M, Howell B, Smith AH, Tiruvadi V, Crowell AL, Riva-Posse P, Alagapan S, Rozell CJ, Mayberg HS, Waters AC. Time-frequency signatures evoked by single-pulse deep brain stimulation to the subcallosal cingulate. Front Hum Neurosci 2022; 16:939258. [PMID: 36061500 PMCID: PMC9433578 DOI: 10.3389/fnhum.2022.939258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Precision targeting of specific white matter bundles that traverse the subcallosal cingulate (SCC) has been linked to efficacy of deep brain stimulation (DBS) for treatment resistant depression (TRD). Methods to confirm optimal target engagement in this heterogenous region are now critical to establish an objective treatment protocol. As yet unexamined are the time-frequency features of the SCC evoked potential (SCC-EP), including spectral power and phase-clustering. We examined these spectral features—evoked power and phase clustering—in a sample of TRD patients (n = 8) with implanted SCC stimulators. Electroencephalogram (EEG) was recorded during wakeful rest. Location of electrical stimulation in the SCC target region was the experimental manipulation. EEG was analyzed at the surface level with an average reference for a cluster of frontal sensors and at a time window identified by prior study (50–150 ms). Morlet wavelets generated indices of evoked power and inter-trial phase clustering. Enhanced phase clustering at theta frequency (4–7 Hz) was observed in every subject and was significantly correlated with SCC-EP magnitude, but only during left SCC stimulation. Stimulation to dorsal SCC evinced stronger phase clustering than ventral SCC. There was a weak correlation between phase clustering and white matter density. An increase in evoked delta power (2–4 Hz) was also coincident with SCC-EP, but was less consistent across participants. DBS evoked time-frequency features index mm-scale changes to the location of stimulation in the SCC target region and correlate with structural characteristics implicated in treatment optimization. Results also imply a shared generative mechanism (inter-trial phase clustering) between evoked potentials evinced by electrical stimulation and evoked potentials evinced by auditory/visual stimuli and behavioral tasks. Understanding how current injection impacts downstream cortical activity is essential to building new technologies that adapt treatment parameters to individual differences in neurophysiology.
Collapse
Affiliation(s)
| | - Ki Sueng Choi
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashan Veerakumar
- Department of Psychiatry, Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Mosadoluwa Obatusin
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bryan Howell
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Andrew H. Smith
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vineet Tiruvadi
- Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, United States
| | - Andrea L. Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Sankaraleengam Alagapan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Helen S. Mayberg
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allison C. Waters
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Allison C. Waters,
| |
Collapse
|
24
|
Cognitive deficits in adult patients with high-grade glioma: A systematic review. Clin Neurol Neurosurg 2022; 219:107296. [DOI: 10.1016/j.clineuro.2022.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
|
25
|
Herta J, Winter F, Pataraia E, Feucht M, Czech T, Porsche B, Leiss U, Slavc I, Peyrl A, Kasprian G, Rössler K, Dorfer C. Awake brain surgery for language mapping in pediatric patients: a single-center experience. J Neurosurg Pediatr 2022:1-11. [PMID: 35276657 DOI: 10.3171/2022.1.peds21569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to evaluate the feasibility, benefit, and safety of awake brain surgery (ABS) and intraoperative language mapping in children and adolescents with structural epilepsies. Whereas ABS is an established method to monitor language function in adults intraoperatively, reports of ABS in children are scarce. METHODS A retrospective chart review of pediatric patients ≤ 18 years of age who underwent ABS and cortical language mapping for supratentorial tumors and nontumoral epileptogenic lesions between 2008 and 2019 was conducted. The authors evaluated the global intellectual and specific language performance by using detailed neuropsychological testing, the patient's intraoperative compliance, results of intraoperative language mapping assisted by electrocorticography (ECoG), and postsurgical language development and seizure outcomes. Descriptive statistics were used for this study, with a statistical significance of p < 0.05. RESULTS Eleven children (7 boys) with a median age of 13 years (range 10-18 years) underwent ABS for a lesion in close vicinity to cortical language areas as defined by structural and functional MRI (left hemisphere in 9 children, right hemisphere in 2). Patients were neurologically intact but experiencing seizures; these were refractory to therapy in 9 patients. Compliance during the awake phase was high in 10 patients and low in 1 patient. Cortical mapping identified eloquent language areas in 6/10 (60%) patients and was concordant in 3/8 (37.5%), discordant in 3/8 (37.5%), and unclear in 2/8 (25%) patients compared to preoperative functional MRI. Stimulation-induced seizures occurred in 2 patients and could be interrupted easily. ECoG revealed that afterdischarge potentials (ADP) were involved in 5/9 (56%) patients with speech disturbances during stimulation. None of these patients harbored postoperative language dysfunction. Gross-total resection was achieved in 10/11 (91%) patients, and all were seizure free after a median follow-up of 4.3 years. Neuropsychological testing using the Wechsler Intelligence Scale for Children and the verbal learning and memory test showed an overall nonsignificant trend toward an immediate postoperative deterioration followed by an improvement to above preoperative levels after 1 year. CONCLUSIONS ABS is a valuable technique in selected pediatric patients with lesions in language areas. An interdisciplinary approach, careful patient selection, extensive preoperative training of patients, and interpretation of intraoperative ADP are pivotal to a successful surgery.
Collapse
|
26
|
Paulk AC, Zelmann R, Crocker B, Widge AS, Dougherty DD, Eskandar EN, Weisholtz DS, Richardson RM, Cosgrove GR, Williams ZM, Cash SS. Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters. Brain Stimul 2022; 15:491-508. [PMID: 35247646 PMCID: PMC8985164 DOI: 10.1016/j.brs.2022.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electrical neuromodulation via direct electrical stimulation (DES) is an increasingly common therapy for a wide variety of neuropsychiatric diseases. Unfortunately, therapeutic efficacy is inconsistent, likely due to our limited understanding of the relationship between the massive stimulation parameter space and brain tissue responses. OBJECTIVE To better understand how different parameters induce varied neural responses, we systematically examined single pulse-induced cortico-cortico evoked potentials (CCEP) as a function of stimulation amplitude, duration, brain region, and whether grey or white matter was stimulated. METHODS We measured voltage peak amplitudes and area under the curve (AUC) of intracranially recorded stimulation responses as a function of distance from the stimulation site, pulse width, current injected, location relative to grey and white matter, and brain region stimulated (N = 52, n = 719 stimulation sites). RESULTS Increasing stimulation pulse width increased responses near the stimulation location. Increasing stimulation amplitude (current) increased both evoked amplitudes and AUC nonlinearly. Locally (<15 mm), stimulation at the boundary between grey and white matter induced larger responses. In contrast, for distant sites (>15 mm), white matter stimulation consistently produced larger responses than stimulation in or near grey matter. The stimulation location-response curves followed different trends for cingulate, lateral frontal, and lateral temporal cortical stimulation. CONCLUSION These results demonstrate that a stronger local response may require stimulation in the grey-white boundary while stimulation in the white matter could be needed for network activation. Thus, stimulation parameters tailored for a specific anatomical-functional outcome may be key to advancing neuromodulatory therapy.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Darin D Dougherty
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel S Weisholtz
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02114, USA
| | - R Mark Richardson
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, 02114, USA
| | - Ziv M Williams
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
28
|
Titov O, Bykanov A, Pitskhelauri D, Danilov G. Neuromonitoring of the language pathways using cortico-cortical evoked potentials: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:1883-1894. [PMID: 35031897 DOI: 10.1007/s10143-021-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Cortico-cortical evoked potentials (CCEPs) are a surge in activity of one cortical zone caused by stimulation of another cortical zone. Recording of CCEP may be a useful method of intraoperative monitoring of the brain pathways, particularly of the language-related tracts. We aimed to conduct a systematic review and meta-analysis, dedicated to the clinical question: Does the CCEP recording effectively predict the postoperative speech deficits in neurosurgical patients? We conducted language-restricted PubMed, Google Scholar, Scopus, and Cochrane database search for eligible studies of CCEP published until March 2021. There were 4 articles (3 case series and 1 case report), which met our inclusion/exclusion criteria. A total of 32 patients (30 cases of tumors and 2 cavernomas) included in the analysis were divided into two cohorts - quantitative and qualitative, in accordance with the method of evaluating changes in the amplitude of CCEP after the lesion resection and postoperative alterations in speech function. Quantitative variables were studied using the Spearman rank correlation coefficient. Categorical variables were compared in groups by Fisher's exact test. We found a strong positive correlation between the decrease in the N1 wave amplitude and the severity of postoperative speech deficits (quantitative cohort: r = 0.57, p = 0.01; qualitative cohort: p = 0.02). Thus, the CCEP method using the N1 wave amplitude as a marker enables to effectively predict postoperative speech outcomes. Nevertheless, the low level of evidence for the included works indicated the necessity for additional research on this issue.
Collapse
Affiliation(s)
- Oleg Titov
- Burdenko Neurosurgery Center, Moscow, Russia. .,OPEN BRAIN - Neurosurgical Laboratory of Open Access, Moscow, Russia.
| | | | | | | |
Collapse
|
29
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
30
|
Giampiccolo D, Parmigiani S, Basaldella F, Russo S, Pigorini A, Rosanova M, Cattaneo L, Sala F. Reply to "Intraoperative cortico-cortical evoked potentials for monitoring the arcuate fasciculus: Feasible under general anesthesia?". Clin Neurophysiol 2021; 133:177-178. [PMID: 34776357 DOI: 10.1016/j.clinph.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Parmigiani
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | | | - Simone Russo
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | - Andrea Pigorini
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ''Luigi Sacco", University of Milan, Milan, Italy
| | - Luigi Cattaneo
- CIMEC - Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
31
|
Yamao Y, Matsumoto R. Intraoperative cortico-cortical evoked potentials for monitoring the arcuate fasciculus: Feasible under general anesthesia? Clin Neurophysiol 2021; 133:175-176. [PMID: 34696959 DOI: 10.1016/j.clinph.2021.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 01/28/2023]
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
32
|
Yamao Y, Matsumoto R, Kunieda T, Nakae T, Nishida S, Inano R, Shibata S, Kikuchi T, Arakawa Y, Yoshida K, Ikeda A, Miyamoto S. Effects of propofol on cortico-cortical evoked potentials in the dorsal language white matter pathway. Clin Neurophysiol 2021; 132:1919-1926. [PMID: 34182277 DOI: 10.1016/j.clinph.2021.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE In order to evaluate the clinical utility even under general anesthesia, the present study aimed to clarify the effect of anesthesia on the cortico-cortical evoked potentials (CCEPs). METHODS We analyzed 14 patients' data in monitoring the integrity of the dorsal language pathway by using CCEPs both under general anesthesia with propofol and remifentanil and awake condition, with the main aim of clarifying the effect of anesthesia on the distribution and waveform of CCEPs. RESULTS The distribution of larger CCEP response sites, including the locus of the maximum CCEP response site, was marginally affected by anesthesia. With regard to similarity of waveforms, the mean waveform correlation coefficient indicated a strong agreement. CCEP N1 amplitude increased by an average of 25.8% from general anesthesia to waking, except three patients. CCEP N1 latencies had no correlation in changes between the two conditions. CONCLUSIONS We demonstrated that the distribution of larger CCEP responses was marginally affected by anesthesia and that the CCEP N1 amplitude had tendency to increase from general anesthesia to the awake condition. SIGNIFICANCE The CCEP method provides the efficiency of intraoperative monitoring for dorsal language white matter pathway even under general anesthesia.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Nishida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rika Inano
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sumiya Shibata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
33
|
Boëx C, Goga C, Bérard N, Al Awadhi A, Bartoli A, Meling T, Bijlenga P, Schaller K. Intraoperative subcortico-cortical evoked potentials of the visual pathway under general anesthesia. Clin Neurophysiol 2021; 132:1381-1388. [PMID: 34023622 DOI: 10.1016/j.clinph.2021.02.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To assess whether intraoperative subcortical mapping of the visual pathways during brain surgeries was feasible. METHODS Subcortico-cortical evoked potentials (SCEPs: 30 stimulations/site, biphasic single pulse, 1.3 Hz, 0.2 ms/phase, maximum 10 mA; bipolar probe) were measured in 12 patients for stimulation of the optic radiation, Meyer's loop or optic nerve. Recorded sites were bilateral central, parietal, parieto-occipital, occipital (subdermal scalp electrodes, 5-4000 Hz). The minimum distances from the stimulation locations, i.e. the closest border of the resection cavity to the diffusion tensor imaging based visual pathways, were evaluated postoperatively (smallest distance across coronal, sagittal and axial planes). RESULTS Stimulation elicited SCEPs when the visual tracts were close (≤4.5 mm). The responses consisted of a short (P1, 3.0-5.6 ms; 8/8 patients) and of a middle (P2, 15-21.6 ms; 3/8 patients) latency waveforms. In agreement with the neuroanatomy, ipsilateral occipital responses were obtained for temporal or parietal stimulations, and bi-occipital responses for optic nerve stimulations. CONCLUSIONS For the first time to our knowledge, intraoperative SCEPs were observed for stimulations of the optic radiation and of Meyer's loop. Short latency responses were found in agreement with fast conduction of the visual pathway's connecting myelinated fibers. SIGNIFICANCE The mapping of the visual pathways was found feasible for neurosurgeries under general anesthesia.
Collapse
Affiliation(s)
- Colette Boëx
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Cristina Goga
- Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Bérard
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Abdullah Al Awadhi
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Bartoli
- Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Torstein Meling
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Departement of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
34
|
Drane DL, Pedersen NP, Sabsevitz DS, Block C, Dickey AS, Alwaki A, Kheder A. Cognitive and Emotional Mapping With SEEG. Front Neurol 2021; 12:627981. [PMID: 33912122 PMCID: PMC8072290 DOI: 10.3389/fneur.2021.627981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 02/05/2023] Open
Abstract
Mapping of cortical functions is critical for the best clinical care of patients undergoing epilepsy and tumor surgery, but also to better understand human brain function and connectivity. The purpose of this review is to explore existing and potential means of mapping higher cortical functions, including stimulation mapping, passive mapping, and connectivity analyses. We examine the history of mapping, differences between subdural and stereoelectroencephalographic approaches, and some risks and safety aspects, before examining different types of functional mapping. Much of this review explores the prospects for new mapping approaches to better understand other components of language, memory, spatial skills, executive, and socio-emotional functions. We also touch on brain-machine interfaces, philosophical aspects of aligning tasks to brain circuits, and the study of consciousness. We end by discussing multi-modal testing and virtual reality approaches to mapping higher cortical functions.
Collapse
Affiliation(s)
- Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Nigel P. Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David S. Sabsevitz
- Department of Psychology and Psychiatry, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Cady Block
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Adam S. Dickey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar Kheder
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
35
|
Intraoperative Corticocortical Evoked Potentials for Language Monitoring in Epilepsy Surgery. World Neurosurg 2021; 151:e109-e121. [PMID: 33819704 DOI: 10.1016/j.wneu.2021.03.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the applicability of corticocortical evoked potentials (CCEP) for intraoperative monitoring of the language network in epilepsy surgery under general anesthesia. To investigate the clinical relevance on language functions of intraoperative changes of CCEP recorded under these conditions. METHODS CCEP monitoring was performed in 14 epileptic patients (6 females, 4 children) during resections in the left perisylvian region under general anesthesia. Electrode strips were placed on the anterior language area (AL) and posterior language area (PL), identified by structural and functional magnetic resonance imaging. Single-pulse electric stimulations were delivered to pairs of adjacent contacts in a bipolar fashion. During resection, we monitored the integrity of the dorsal language pathway by stimulating either AL by recording CCEP from PL or vice versa, depending on stability and reproducibility of CCEP. We evaluated the first negative (N1) component of CCEP before, during, and after resection. RESULTS All procedures were successfully completed without adverse events. The best response was obtained from AL during stimulation of PL in 8 patients and from PL during stimulation of AL in 6 patients. None of 12 patients with a postresection N1 amplitude decrease of 0%-15% from baseline presented postoperative language impairment. Decreases of 28% and 24%, respectively, of the N1 amplitude were observed in 2 patients who developed transient postoperative speech disturbances. CONCLUSIONS The application of CCEP monitoring is possible and safe in epilepsy surgery under general anesthesia. Putative AL and PL can be identified using noninvasive presurgical neuroimaging. Decrease of N1 amplitude >15% from baseline may predict postoperative language deficits.
Collapse
|
36
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
37
|
Yamao Y, Matsumoto R, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S. Intraoperative Brain Mapping by Cortico-Cortical Evoked Potential. Front Hum Neurosci 2021; 15:635453. [PMID: 33679353 PMCID: PMC7930065 DOI: 10.3389/fnhum.2021.635453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/04/2022] Open
Abstract
To preserve postoperative brain function, it is important for neurosurgeons to fully understand the brain's structure, vasculature, and function. Intraoperative high-frequency electrical stimulation during awake craniotomy is the gold standard for mapping the function of the cortices and white matter; however, this method can only map the "focal" functions and cannot monitor large-scale cortical networks in real-time. Recently, an in vivo electrophysiological method using cortico-cortical evoked potentials (CCEPs) induced by single-pulse electrical cortical stimulation has been developed in an extraoperative setting. By using the CCEP connectivity pattern intraoperatively, mapping and real-time monitoring of the dorsal language pathway is available. This intraoperative CCEP method also allows for mapping of the frontal aslant tract, another language pathway, and detection of connectivity between the primary and supplementary motor areas in the frontal lobe network. Intraoperative CCEP mapping has also demonstrated connectivity between the frontal and temporal lobes, likely via the ventral language pathway. Establishing intraoperative electrophysiological monitoring is clinically useful for preserving brain function, even under general anesthesia. This CCEP technique demonstrates potential clinical applications for mapping and monitoring large-scale cortical networks.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kikuchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
38
|
Bykanov AE, Pitskhelauri DI, Titov OY, Lin MC, Gulaev EV, Ogurtsova AA, Maryashev SA, Zhukov VY, Buklina SB, Lubnin AY, Beshplav ST, Konakova TA, Pronin IN. [Broca's area intraoperative mapping with cortico-cortical evoked potentials]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:49-58. [PMID: 33306299 DOI: 10.17116/neiro20208406149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Mapping of effective speech connections between the frontal and temporal lobes with cortico-cortical evoked potentials. MATERIAL AND METHODS There were 3 patients with brain tumors in the left frontoparietal region. The neoplasms were localized in the dominant hemisphere near cortical speech centers and pathways. Cortico-cortical evoked potentials were intraoperatively recorded in response to bipolar stimulation with a direct current delivered through the subdural electrodes (single rectangular biphasic impulses with duration of 300 μs and frequency of 1 Hz). Stimulation intensity was gradually increased from 2 mA within 3-4 mA. Registration was carried out by averaging ECoG (30-50 stimuli in each session) in the 300-ms epoch after stimulus. Direct cortical stimulation was used to validate the results of cortico-cortical speech mapping with cortico-cortical evoked potentials. RESULTS In our cases, we obtained cortico-cortical evoked potentials from inferior frontal gyrus after stimulation of superior temporal gyrus. In one case, this effective relationship was unidirectional, in the other two patients reciprocal. Mean latency of N1 peak was 65 ms (range 49.6-90 ms), mean amplitude 71 µV (range 50-100 µV). Cortico-cortical mapping data were confirmed by detection of Broca's area in 2 out of 3 cases out during direct cortical stimulation with maximum amplitude of N1 wave. «Awake craniotomy» protocol was applied. In one case, Broca's area was not detected during direct stimulation. No postoperative speech impairment was noted. CONCLUSION Initial results of cortical mapping with cortico-cortical evoked potentials in a small sample confirmed its practical significance for analysis of cortical projections of effective speech communications between the frontal and temporal lobes. Further study of this method in large samples is required.
Collapse
Affiliation(s)
- A E Bykanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - O Yu Titov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - E V Gulaev
- Ivanovo Regional Hospital, Ivanovo, Russia
| | | | | | - V Yu Zhukov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A Yu Lubnin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
39
|
Intraoperative Electrophysiologic Mapping of Medial Frontal Motor Areas and Functional Outcomes. World Neurosurg 2020; 138:e389-e404. [DOI: 10.1016/j.wneu.2020.02.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
|
40
|
Foley E, Wood AG, Furlong PL, Walsh AR, Kearney S, Bill P, Hillebrand A, Seri S. Mapping language networks and their association with verbal abilities in paediatric epilepsy using MEG and graph analysis. Neuroimage Clin 2020; 27:102265. [PMID: 32413809 PMCID: PMC7226893 DOI: 10.1016/j.nicl.2020.102265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 10/26/2022]
Abstract
Recent theoretical models of language have emphasised the importance of integration within distributed networks during language processing. This is particularly relevant to young patients with epilepsy, as the topology of the functional network and its dynamics may be altered by the disease, resulting in reorganisation of functional language networks. Thus, understanding connectivity within the language network in patients with epilepsy could provide valuable insights into healthy and pathological brain function, particularly when combined with clinical correlates. The objective of this study was to investigate interactions within the language network in a paediatric population of epilepsy patients using measures of MEG phase synchronisation and graph-theoretical analysis, and to examine their association with language abilities. Task dependent increases in connectivity were observed in fronto-temporal networks during verb generation across a group of 22 paediatric patients (9 males and 13 females; mean age 14 years). Differences in network connectivity were observed between patients with typical and atypical language representation and between patients with good and poor language abilities. In addition, node centrality in left frontal and temporal regions was significantly associated with language abilities, where patients with good language abilities had significantly higher node centrality within inferior frontal and superior temporal regions of the left hemisphere, compared to patients with poor language abilities. Our study is one of the first to apply task-based measures of MEG network synchronisation in paediatric epilepsy, and we propose that these measures of functional connectivity and node centrality could be used as tools to identify critical regions of the language network prior to epilepsy surgery.
Collapse
Affiliation(s)
- Elaine Foley
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK.
| | - Amanda G Wood
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK; School of Psychology, Faculty of Health, Melbourne Burwood Campus, Deakin University, Geelong, Victoria, Australia
| | - Paul L Furlong
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK
| | - A Richard Walsh
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Shauna Kearney
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Peter Bill
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefano Seri
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK; Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| |
Collapse
|
41
|
Shinohara H, Liu X, Nakajima R, Kinoshita M, Ozaki N, Hori O, Nakada M. Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum. Cereb Cortex 2020; 30:5218-5228. [PMID: 32324856 DOI: 10.1093/cercor/bhaa080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structural analysis of the superficial white matter is prerequisite for the understanding of highly integrated functions of the human cerebral cortex. However, the principal components, U-fibers, have been regarded as simple wires to connect adjacent gyri (inter-gyral U-fibers) but have never been thought as indispensable elements of anatomical structures to construct the cortical network. Here, we reported such novel structures made of U-fibers. Seven human cerebral hemispheres were treated with Klingler's method and subjected to fiber dissection (FD). Additionally, tractography using diffusion spectrum imaging (DSI) was performed. Our FD and DSI tractography succeeded disclosing a new type of U-fibers that was hidden in and ran along the white matter ridge of a gyral convolution (intra-gyral U-fibers). They were distinct from inter-gyral U-fibers which paved sulcal floors. Both intra- and inter-gyral U-fibers converged from various directions into junctional areas of white matter ridges, organizing novel anatomical structures, "pyramid-shape crossings". U-fibers to form pyramid-shape crossings also render routes for communication between crossings. There were 97 (mean, range 73-148) pyramid-shape crossings per lateral cortical surface. They are key structures to construct the neural network for intricate communications throughout the entire cerebrum. They can be new anatomical landmarks, too, for the segmentation of the cerebral cortex.
Collapse
Affiliation(s)
- Harumichi Shinohara
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
| | - Xiaoliang Liu
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
| | - Riho Nakajima
- Department of Occupational therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0934, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0934, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
42
|
Nakae T, Matsumoto R, Kunieda T, Arakawa Y, Kobayashi K, Shimotake A, Yamao Y, Kikuchi T, Aso T, Matsuhashi M, Yoshida K, Ikeda A, Takahashi R, Lambon Ralph MA, Miyamoto S. Connectivity Gradient in the Human Left Inferior Frontal Gyrus: Intraoperative Cortico-Cortical Evoked Potential Study. Cereb Cortex 2020; 30:4633-4650. [PMID: 32232373 PMCID: PMC7325718 DOI: 10.1093/cercor/bhaa065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
In the dual-stream model of language processing, the exact connectivity of the ventral stream to the anterior temporal lobe remains elusive. To investigate the connectivity between the inferior frontal gyrus (IFG) and the lateral part of the temporal and parietal lobes, we integrated spatiotemporal profiles of cortico-cortical evoked potentials (CCEPs) recorded intraoperatively in 14 patients who had undergone surgical resection for a brain tumor or epileptic focus. Four-dimensional visualization of the combined CCEP data showed that the pars opercularis (Broca’s area) is connected to the posterior temporal cortices and the supramarginal gyrus, whereas the pars orbitalis is connected to the anterior lateral temporal cortices and angular gyrus. Quantitative topographical analysis of CCEP connectivity confirmed an anterior–posterior gradient of connectivity from IFG stimulus sites to the temporal response sites. Reciprocality analysis indicated that the anterior part of the IFG is bidirectionally connected to the temporal or parietal area. This study shows that each IFG subdivision has different connectivity to the temporal lobe with an anterior–posterior gradient and supports the classical connectivity concept of Dejerine; that is, the frontal lobe is connected to the temporal lobe through the arcuate fasciculus and also a double fan-shaped structure anchored at the limen insulae.
Collapse
Affiliation(s)
- Takuro Nakae
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Neurosurgery, Shiga General Hospital, Moriyama, Shiga 524-0022, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime 791-0295, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Epilepsy Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
43
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
44
|
Kamada K, Kapeller C, Takeuchi F, Gruenwald J, Guger C. Tailor-Made Surgery Based on Functional Networks for Intractable Epilepsy. Front Neurol 2020; 11:73. [PMID: 32117032 PMCID: PMC7031351 DOI: 10.3389/fneur.2020.00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Normal and pathological networks related to seizure propagation have got attention to elucide complex seizure semiology and contribute to diagnosis and surgical monitoring in epilepsy treatment. Since focal and generalized epileptogenic syndromes abnormalities might involve multiple foci and large-scale networks, we applied electrophysiolpgy (cortco-cortico evoked potential; CCEP), and tractography to make detailed diagnosis for complex syndrome. All 14 epilepsy patients with no or little abnormality on images investigations underwent subdural grid implantation for epilepsy diagnosis. To perform quick network analysis, we recorded and analyzed high gamma activity (HGA) of epileptogenic activity and CCEPs to identify pathological activity distribution and network connectivity. [Results] Pathological CCEPs showed two negative deflections consisting of early (>40 ms) and late (>150 ms) components in electrically stable circumstance at bed side and early CCEPs appeared in 57% of the patients. On the basis of the CCEP findings, tractography detected anatomical connections. Early components of pathological CCEPs diminished after complete disconnection of tractoography-based fibers between the foci in seven of eight cases. One case with residual pathological CCEPs showed poorer outcome. Thirteen (92.8%) patients with or without CCEPs who underwent network surgery had favorable prognosis except for a case with wide traumatic epilepsy. Intraoperative CCEP measurements and HGA mapping enabled visualization of pathological networks and clinical impotence as a biomarker to improve functional prognosis. HGA/CCEP recording should shed light on pathological and complex propagation for epilepsy surgery.
Collapse
Affiliation(s)
- Kyousuke Kamada
- Department of Neurosurgery, Megumino Hospital, Eniwa, Japan.,ATR Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Christoph Kapeller
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Fumiya Takeuchi
- Department of Research Promotion Center, Asahikawa Medical University, Asahikawa, Japan
| | - Johannes Gruenwald
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Christoph Guger
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
45
|
Costabile JD, Alaswad E, D'Souza S, Thompson JA, Ormond DR. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front Oncol 2019; 9:426. [PMID: 31192130 PMCID: PMC6549594 DOI: 10.3389/fonc.2019.00426] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
In the treatment of brain tumors, surgical intervention remains a common and effective therapeutic option. Recent advances in neuroimaging have provided neurosurgeons with new tools to overcome the challenge of differentiating healthy tissue from tumor-infiltrated tissue, with the aim of increasing the likelihood of maximizing the extent of resection volume while minimizing injury to functionally important regions. Novel applications of diffusion tensor imaging (DTI), and DTI-derived tractography (DDT) have demonstrated that preoperative, non-invasive mapping of eloquent cortical regions and functionally relevant white matter tracts (WMT) is critical during surgical planning to reduce postoperative deficits, which can decrease quality of life and overall survival. In this review, we summarize the latest developments of applying DTI and tractography in the context of resective surgery and highlight its utility within each stage of the neurosurgical workflow: preoperative planning and intraoperative management to improve postoperative outcomes.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elsa Alaswad
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Shawn D'Souza
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - D Ryan Ormond
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
46
|
|
47
|
Yoshimoto T, Maruichi K, Itoh Y, Takamiya S, Kaneko T. Monitoring Corticocortical Evoked Potentials During Intracranial Vascular Surgery. World Neurosurg 2018; 122:e947-e954. [PMID: 30408608 DOI: 10.1016/j.wneu.2018.10.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Monitoring of corticocortical evoked potentials (CCEPs) during brain tumor surgery of patients under anesthesia was recently reported to be effective in assisting in preservation of speech function. The aim of this study was to investigate whether CCEPs can be reproducibly measured between the frontal and temporal lobes during standard intracranial vascular surgery under general anesthesia; whether dynamic changes in CCEPs caused by reduced focal cerebral blood flow can be measured; and whether CCEPs can be used to monitor speech function, particularly associated with the left side of the brain. METHODS We monitored CCEPs during 58 vascular surgeries (42 clipping procedures; 15 bypasses, 1 of which overlapped with clipping; and 2 hematoma removals from the left frontal and temporal lobe) at Kashiwaba Neurosurgical Hospital from October 2016 to January 2018. RESULTS CCEPs could be reproducibly and routinely monitored in bilateral vascular surgeries. None of the patients experienced any postoperative symptoms or showed any ischemic lesions on postoperative magnetic resonance imaging; however, 5 patients temporarily demonstrated reduced CCEPs intraoperatively that were caused by transient obstructions of blood flow. Motor evoked potentials and somatosensory evoked potentials were simultaneously monitored intraoperatively and did not show any changes. CONCLUSIONS The results of our pilot study show that CCEPs can be routinely monitored during bilateral intracranial vascular surgery and that they are sensitive to ischemia. CCEPs on the left side could serve as unique intraoperative monitoring of speech function under anesthesia.
Collapse
Affiliation(s)
- Tetsuyuki Yoshimoto
- Department of Neurosurgery, Kashiwaba Neurosurgical Hospital, Sapporo, Japan.
| | - Katsuhiko Maruichi
- Department of Neurosurgery, Kashiwaba Neurosurgical Hospital, Sapporo, Japan
| | - Yasuhiro Itoh
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Soichiro Takamiya
- Department of Neurosurgery, Kashiwaba Neurosurgical Hospital, Sapporo, Japan
| | - Tetsuya Kaneko
- Department of Neurophysiology, Kashiwaba Neurosurgical Hospital, Sapporo, Japan
| |
Collapse
|
48
|
Kamada K, Ogawa H, Kapeller C, Prueckl R, Hiroshima S, Tamura Y, Takeuchi F, Guger C. Disconnection of the pathological connectome for multifocal epilepsy surgery. J Neurosurg 2018; 129:1182-1194. [PMID: 29271713 DOI: 10.3171/2017.6.jns17452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVERecent neuroimaging studies suggest that intractable epilepsy involves pathological functional networks as well as strong epileptogenic foci. Combining cortico-cortical evoked potential (CCEP) recording and tractography is a useful strategy for mapping functional connectivity in normal and pathological networks. In this study, the authors sought to demonstrate the efficacy of preoperative combined CCEP recording, high gamma activity (HGA) mapping, and tractography for surgical planning, and of intraoperative CCEP measures for confirmation of selective pathological network disconnection.METHODSThe authors treated 4 cases of intractable epilepsy. Diffusion tensor imaging-based tractography data were acquired before the first surgery for subdural grid implantation. HGA and CCEP investigations were done after the first surgery, before the second surgery was performed to resect epileptogenic foci, with continuous CCEP monitoring during resection.RESULTSAll 4 patients in this report had measurable pathological CCEPs. The mean negative peak-1 latency of normal CCEPs related to language functions was 22.2 ± 3.5 msec, whereas pathological CCEP latencies varied between 18.1 and 22.4 msec. Pathological CCEPs diminished after complete disconnection in all cases. At last follow-up, all of the patients were in long-term postoperative seizure-free status, although 1 patient still suffered from visual aura every other month.CONCLUSIONSCombined CCEP measurement, HGA mapping, and tractography greatly facilitated targeted disconnection of pathological networks in this study. Although CCEP recording requires technical expertise, it allows for assessment of pathological network involvement in intractable epilepsy and may improve seizure outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fumiya Takeuchi
- 3Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan; and
| | | |
Collapse
|
49
|
Waters AC, Veerakumar A, Choi KS, Howell B, Tiruvadi V, Bijanki KR, Crowell A, Riva-Posse P, Mayberg HS. Test-retest reliability of a stimulation-locked evoked response to deep brain stimulation in subcallosal cingulate for treatment resistant depression. Hum Brain Mapp 2018; 39:4844-4856. [PMID: 30120851 DOI: 10.1002/hbm.24327] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) to the subcallosal cingulate cortex (SCC) is an emerging therapy for treatment resistant depression. Precision targeting of specific white matter fibers is now central to the model of SCC DBS treatment efficacy. A method to confirm SCC DBS target engagement is needed to reduce procedural variance across treatment providers and to optimize DBS parameters for individual patients. We examined the reliability of a novel cortical evoked response that is time-locked to a 2 Hz DBS pulse and shows the propagation of signal from the DBS target. The evoked response was detected in four individuals as a stereotyped series of components within 150 ms of a 6 V DBS pulse, each showing coherent topography on the head surface. Test-retest reliability across four repeated measures over 14 months met or exceeded standards for valid test construction in three of four patients. Several observations in this pilot sample demonstrate the prospective utility of this method to confirm surgical target engagement and instruct parameter selection. The topography of an orbital frontal component on the head surface showed specificity for patterns of forceps minor activation, which may provide a means to confirm DBS location with respect to key white matter structures. A divergent cortical response to unilateral stimulation of left (vs. right) hemisphere underscores the need for feedback acuity on the level of a single electrode, despite bilateral presentation of therapeutic stimulation. Results demonstrate viability of this method to explore patient-specific cortical responsivity to DBS for brain-circuit pathologies.
Collapse
Affiliation(s)
- Allison C Waters
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly R Bijanki
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Andrea Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
50
|
Electrical Stimulation Mapping of the Brain: Basic Principles and Emerging Alternatives. J Clin Neurophysiol 2018; 35:86-97. [PMID: 29499015 DOI: 10.1097/wnp.0000000000000440] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The application of electrical stimulation mapping (ESM) of the brain for clinical use is approximating a century. Despite this long-standing history, the value of ESM for guiding surgical resections and sparing eloquent cortex is documented largely by small retrospective studies, and ESM protocols are largely inherited and lack standardization. Although models are imperfect and mechanisms are complex, the probabilistic causality of ESM has guaranteed its perpetuation into the 21st century. At present, electrical stimulation of cortical tissue is being revisited for network connectivity. In addition, noninvasive and passive mapping techniques are rapidly evolving to complement and potentially replace ESM in specific clinical situations. Lesional and epilepsy neurosurgery cases now offer different opportunities for multimodal functional assessments.
Collapse
|