1
|
Mihara M, Izumika R, Tsukiura T. Remembering unexpected beauty: Contributions of the ventral striatum to the processing of reward prediction errors regarding the facial attractiveness in face memory. Neuroimage 2023; 282:120408. [PMID: 37838105 DOI: 10.1016/j.neuroimage.2023.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The COVID-19 pandemic has led people to predict facial attractiveness from partially covered faces. Differences in the predicted and observed facial attractiveness (i.e., masked and unmasked faces, respectively) are defined as reward prediction error (RPE) in a social context. Cognitive neuroscience studies have elucidated the neural mechanisms underlying RPE-induced memory improvements in terms of monetary rewards. However, little is known about the mechanisms underlying RPE-induced memory modulation in terms of social rewards. To elucidate this, the present functional magnetic resonance imaging (fMRI) study investigated activity and functional connectivity during face encoding. In encoding trials, participants rated the predicted attractiveness of faces covered except for around the eyes (prediction phase) and then rated the observed attractiveness of these faces without any cover (outcome phase). The difference in ratings between these phases was defined as RPE in facial attractiveness, and RPE was categorized into positive RPE (increased RPE from the prediction to outcome phases), negative RPE (decreased RPE from the prediction to outcome phases), and non-RPE (no difference in RPE between the prediction and outcome phases). During retrieval, participants were presented with individual faces that had been seen and unseen in the encoding trials, and were required to judge whether or not each face had been seen in the encoding trials. Univariate activity in the ventral striatum (VS) exhibited a linear increase with increased RPE in facial attractiveness. In the multivariate pattern analysis (MVPA), activity patterns in the VS and surrounding areas (extended VS) significantly discriminated between positive/negative RPE and non-RPE. In the functional connectivity analysis, significant functional connectivity between the extended VS and the hippocampus was observed most frequently in positive RPE. Memory improvements by face-based RPE could be involved in functional networks between the extended VS (representing RPE) and the hippocampus, and the interaction could be modulated by RPE values in a social context.
Collapse
Affiliation(s)
- Moe Mihara
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Reina Izumika
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Tsukiura
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Schultz H, Stoffregen H, Benoit RG. A reward effect on memory retention, consolidation, and generalization? Learn Mem 2023; 30:169-174. [PMID: 37679044 PMCID: PMC10519399 DOI: 10.1101/lm.053842.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Reward improves memory through both encoding and consolidation processes. In this preregistered study, we tested whether reward effects on memory generalize from high-rewarded items to low-rewarded but episodically related items. Fifty-nine human volunteers incidentally encoded associations between unique objects and repeated scenes. Some scenes typically yielded high reward, whereas others typically yielded low reward. Memory was tested immediately after encoding (n = 29) or the next day (n = 30). Overall, reward had only a limited influence on memory. It did not enhance consolidation and its effect did not generalize to episodically related stimuli. We thus contribute to understanding the boundary conditions of reward effects on memory.
Collapse
Affiliation(s)
- Heidrun Schultz
- Max Planck Research Group: Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Hanna Stoffregen
- Max Planck Research Group: Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- International Max Planck Research School NeuroCom, 04103 Leipzig, Germany
| | - Roland G Benoit
- Max Planck Research Group: Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Weinstein AM. Reward, motivation and brain imaging in human healthy participants - A narrative review. Front Behav Neurosci 2023; 17:1123733. [PMID: 37035621 PMCID: PMC10079947 DOI: 10.3389/fnbeh.2023.1123733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Over the past 20 years there has been an increasing number of brain imaging studies on the mechanisms underlying reward motivation in humans. This narrative review describes studies on the neural mechanisms associated with reward motivation and their relationships with cognitive function in healthy human participants. The brain's meso-limbic dopamine reward circuitry in humans is known to control reward-motivated behavior in humans. The medial and lateral Pre-Frontal Cortex (PFC) integrate motivation and cognitive control during decision-making and the dorsolateral PFC (dlPFC) integrates and transmits signals of reward to the mesolimbic and meso-cortical dopamine circuits and initiates motivated behavior. The thalamus and insula influence incentive processing in humans and the motor system plays a role in response to action control. There are reciprocal relationships between reward motivation, learning, memory, imagery, working memory, and attention. The most common method of assessing reward motivation is the monetary incentive delay task (DMRT) and there are several meta-analyses of this paradigm. Genetics modulates motivation reward, and dopamine provides the basis for the interaction between motivational and cognitive control. There is some evidence that male adolescents take more risky decisions than female adolescents and that the lateralization of reward-related DA release in the ventral striatum is confined to men. These studies have implications for our understanding of natural reward and psychiatric conditions like addiction, depression and ADHD. Furthermore, the association between reward and memory can help develop treatment techniques for drug addiction that interfere with consolidation of memory. Finally, there is a lack of research on reward motivation, genetics and sex differences and this can improve our understanding of the relationships between reward, motivation and the brain.
Collapse
|
4
|
Yan T, Wang G, Wang L, Liu T, Li T, Wang L, Chen D, Funahashi S, Wu J, Wang B, Suo D. Episodic memory in aspects of brain information transfer by resting-state network topology. Cereb Cortex 2022; 32:4969-4985. [PMID: 35174851 DOI: 10.1093/cercor/bhab526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
Cognitive functionality emerges due to neural interactions. The interregional signal interactions underlying episodic memory are a complex process. Thus, we need to quantify this process more accurately to understand how brain regions receive information from other regions. Studies suggest that resting-state functional connectivity (FC) conveys cognitive information; additionally, activity flow estimates the contribution of the source region to the activation pattern of the target region, thus decoding the cognitive information transfer. Therefore, we performed a combined analysis of task-evoked activation and resting-state FC voxel-wise by activity flow mapping to estimate the information transfer pattern of episodic memory. We found that the cinguloopercular (CON), frontoparietal (FPN) and default mode networks (DMNs) were the most recruited structures in information transfer. The patterns and functions of information transfer differed between encoding and retrieval. Furthermore, we found that information transfer was a better predictor of memory ability than previous methods. Additional analysis indicated that structural connectivity (SC) had a transportive role in information transfer. Finally, we present the information transfer mechanism of episodic memory from multiple neural perspectives. These findings suggest that information transfer is a better biological indicator that accurately describes signal communication in the brain and strongly influences the function of episodic memory.
Collapse
Affiliation(s)
- Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Gongshu Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Luyao Wang
- School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology, Beijing 100081, China
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jinglong Wu
- School of Mechatronical Engineering, Intelligent Robotics Institute, Beijing Institute of Technology, Beijing 100081, China.,Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China.,International Joint Research Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China
| | - Bin Wang
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Ding Q, Zhu J, Yan C. Encoding tasks moderated the reward effect on brain activity during memory retrieval. Sci Rep 2022; 12:8246. [PMID: 35581311 PMCID: PMC9114383 DOI: 10.1038/s41598-022-12344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Previous studies have explored the effects of retrieval reward and depth of processing in encoding on recognition, but it remains unclear whether and how reward and depth of processing during encoding influence recognition. We investigated the effect and neural mechanisms of encoding reward and processing depth on recognition using event-related potentials (ERPs) in this study. In the study phase, participants were asked to perform two encoding tasks: congruity-judgment (deep processing) and size-judgment (shallow processing) in reward and no-reward conditions. The test phases included object (item) and background (source) tests. The results of item retrieval showed that the accuracy of rewarded items was higher than that of unrewarded items only in the congruity-judgment task, and the reward effect (the average amplitudes in the reward condition were significantly more positive than those in the no-reward condition) in the 300–500 and 500–700 ms were greater in the congruity-judgment task than in the size-judgment task. The results of source retrieval showed that the accuracy of rewarded items was higher than that of unrewarded items, that the difference in the size-judgment task was significantly larger, and that the reward effect in the 300–500 and 500–700 ms were greater in the size-judgment task than in the congruity-judgment task. In conclusion, the encoding task moderated the reward effect in item and source memory.
Collapse
Affiliation(s)
- Qianqian Ding
- College of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Jinfu Zhu
- College of Psychology, Xinxiang Medical University, Xinxiang, China.
| | - Chunping Yan
- College of Psychology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
6
|
Reward Value Enhances Sequence Monitoring Ramping Dynamics as Ending Rewards Approach in the Rostrolateral Prefrontal Cortex. eNeuro 2022; 9:ENEURO.0003-22.2022. [PMID: 35168953 PMCID: PMC8906790 DOI: 10.1523/eneuro.0003-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Many fundamental human behaviors contain multiple sequences performed to reach a desired outcome, such as cooking. Reward is inherently associated with sequence completion and has been shown to generally enhance cognitive control. However, the impact of reward on cognitive sequence processing remains unexplored. To address this key question, we focused on the rostrolateral prefrontal cortex (RLPFC). This area is necessary and exhibits increasing (“ramping”) activation during sequences, a dynamic that may be related to reward processing in other brain regions. To separate these dynamics, we designed a task where reward was only provided after multiple four-item sequences (“iterations”), rather than each individual sequence. Using fMRI in humans, we investigated three possible interactions of reward and sequential control signals in RLPFC: (1) with the visibility of sequential cues, i.e., memory; (2) equally across individual sequence iterations; and (3) differently across individual sequence iterations (e.g., increasing as reward approaches). Evidence from previous, nonsequential cognitive control experiments suggested that reward would uniformly change RLPFC activity across iterations and may depend on the visibility of cues. However, we found the influence of reward on RLPFC ramping increased across sequence iterations and did not interact with memory. These results suggest an active, predictive, and distinctive role for RLPFC in sequence monitoring and integration of reward information, consistent with extant literature demonstrating similar accelerating reward-related dopamine dynamics in regions connected to RLPFC. These results have implications for understanding sequential behavior in daily life, and when they go awry in disorders such as addiction.
Collapse
|
7
|
Yan C, Ding Q, Wu M, Zhu J. The Effects of Reward on Associative Memory Depend on Unitization Depths. Front Psychol 2022; 13:839144. [PMID: 35237216 PMCID: PMC8882644 DOI: 10.3389/fpsyg.2022.839144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have found that reward effect is stronger for more difficult to retrieve items, but whether this effect holds true for the associative memory remains unclear too. We investigated the effects and neural mechanisms of the different unitization depths and reward sets on encoding associative memory using event-related potentials (ERPs), which were recorded through a Neuroscan system with a 64-channel electrode cap according to the international 10-20 system, and five electrodes (Fz, FCz, Cz, CPz, and Pz) were selected for analysis. Thirty healthy college students took part in this study. During encoding, participants were carried out two encoding tasks, a congruity-judgment task with high unitization and a color-judgment task with low unitization, with half of the items rewarded. The test phase was conducted immediately after the encoding phase. The results for false alarm rates and Prs (i.e., hit rates for old pairs minus false alarm rates for new pairs) in relational retrieval revealed that the reward differences in the color-judgment task were greater than those in the congruity-judgment task. The ERP results further showed significant reward effects (i.e., the reward significantly improved the average amplitudes compared to no reward) at P300 (300-500 ms) and LPP (500-800 ms) in the color-judgment task both for intact and rearranged items, and the reward effects at LPP (electrodes Fz, FCz, Cz, CPz, and Pz) were distributed more widely than the reward effects at P300 (electrodes Fz and FCz) in the color-judgment task. These results suggest that reward provided a greater boost when retrieving associative memory of low unitized items.
Collapse
|
8
|
Bowen HJ. Examining Memory in the Context of Emotion and Motivation. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Duan H, Fernández G, van Dongen E, Kohn N. The effect of intrinsic and extrinsic motivation on memory formation: insight from behavioral and imaging study. Brain Struct Funct 2020; 225:1561-1574. [PMID: 32350643 PMCID: PMC7286947 DOI: 10.1007/s00429-020-02074-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/18/2020] [Indexed: 01/20/2023]
Abstract
Motivation can be generated intrinsically or extrinsically, and both kinds of motivation show similar facilitatory effects on memory. However, effects of extrinsic and intrinsic motivation on memory formation have not been studied in combination and thus, it is unknown whether they interact and how such interplay is neurally implemented. In the present study, both extrinsic monetary reward and intrinsic curiosity enhanced memory performance, without evidence for an interaction. Functional magnetic resonance imaging revealed that curiosity-driven activity in the ventral striatal reward network appears to work cooperatively with the fronto-parietal attention network, while enhancing memory formation. In contrast, the monetary reward-modulated subsequent memory effect revealed deactivation in parietal midline regions. Thus, curiosity might enhance memory performance by allocation of attentional resources and reward-related processes; while, monetary reward does so by suppression of task-irrelevant processing.
Collapse
Affiliation(s)
- Hongxia Duan
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.,Center for Brain Disorder and Cognitive Science, Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China
| | - Guillén Fernández
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Eelco van Dongen
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Nils Kohn
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Samrani G, Marklund P, Engström L, Broman D, Persson J. Behavioral facilitation and increased brain responses from a high interference working memory context. Sci Rep 2018; 8:15308. [PMID: 30333513 PMCID: PMC6193025 DOI: 10.1038/s41598-018-33616-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Many real-life situations require flexible behavior in changing environments. Evidence suggests that anticipation of conflict or task difficulty results in behavioral and neural allocation of task-relevant resources. Here we used a high- and low-interference version of an item-recognition task to examine the neurobehavioral underpinnings of context-sensitive adjustment in working memory (WM). We hypothesized that task environments that included high-interference trials would require participants to allocate neurocognitive resources to adjust to the more demanding task context. The results of two independent behavioral experiments showed enhanced WM performance in the high-interference context, which indicated that a high-interference context improves performance on non-interference trials. A third behavioral experiment showed that when WM load was increased, this effect was no longer significant. Neuroimaging results further showed greater engagement of inferior frontal gyrus, striatum, parietal cortex, hippocampus, and midbrain in participants performing the task in the high- than in the low-interference context. This effect could arise from an active or dormant mode of anticipation that seems to engage fronto-striatal and midbrain regions to flexibly adjust resources to task demands. Our results extend the model of conflict adaptation beyond trial-to-trial adjustments by showing that a high interference context affects both behavioral and biological aspects of cognition.
Collapse
Affiliation(s)
- George Samrani
- Aging Research Center (ARC), Karolinska Institute and Stockholm University, Tomtebodavägen 18A, 171 65, Solna, Sweden
| | - Petter Marklund
- Department of Psychology, Stockholm University, 106 91, Stockholm, Sweden
| | - Lisa Engström
- School of Bioscience, University of Skövde, Högskolevägen, Box 408, 541 28, Skövde, Sweden
| | - Daniel Broman
- School of Bioscience, University of Skövde, Högskolevägen, Box 408, 541 28, Skövde, Sweden.,Department of Educational Sciences, School of Education, Health and Social studies, Dalarna University, 791 88, Falun, Sweden
| | - Jonas Persson
- Aging Research Center (ARC), Karolinska Institute and Stockholm University, Tomtebodavägen 18A, 171 65, Solna, Sweden.
| |
Collapse
|
11
|
Kuehn E, Chen X, Geise P, Oltmer J, Wolbers T. Social targets improve body-based and environment-based strategies during spatial navigation. Exp Brain Res 2018; 236:755-764. [PMID: 29327266 DOI: 10.1007/s00221-018-5169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/05/2018] [Indexed: 12/24/2022]
Abstract
Encoding the position of another person in space is vital for everyday life. Nevertheless, little is known about the specific navigational strategies associated with encoding the position of another person in the wider spatial environment. We asked two groups of participants to learn the location of a target (person or object) during active navigation, while optic flow information, a landmark, or both optic flow information and a landmark were available in a virtual environment. Whereas optic flow information is used for body-based encoding, such as the simulation of motor movements, landmarks are used to form an abstract, disembodied representation of the environment. During testing, we passively moved participants through virtual space, and compared their abilities to correctly decide whether the non-visible target was before or behind them. Using psychometric functions and the Bayes Theorem, we show that both groups assigned similar weights to body-based and environment-based cues in the condition, where both cue types were available. However, the group who was provided with a person as target showed generally reduced position errors compared to the group who was provided with an object as target. We replicated this effect in a second study with novel participants. This indicates a social advantage in spatial encoding, with facilitated processing of both body-based and environment-based cues during spatial navigation when the position of a person is encoded. This may underlie our critical ability to make accurate distance judgments during social interactions, for example, during fight or flight responses.
Collapse
Affiliation(s)
- Esther Kuehn
- Aging and Cognition Research Group, DZNE, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences Magdeburg, 39106, Magdeburg, Germany. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
| | - Xiaoli Chen
- Aging and Cognition Research Group, DZNE, 39120, Magdeburg, Germany
| | - Pia Geise
- Aging and Cognition Research Group, DZNE, 39120, Magdeburg, Germany
| | - Jan Oltmer
- Aging and Cognition Research Group, DZNE, 39120, Magdeburg, Germany
| | - Thomas Wolbers
- Aging and Cognition Research Group, DZNE, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences Magdeburg, 39106, Magdeburg, Germany
| |
Collapse
|
12
|
Yan C, Liu F, Li Y, Zhang Q, Cui L. Mutual Influence of Reward Anticipation and Emotion on Brain Activity during Memory Retrieval. Front Psychol 2017; 8:1873. [PMID: 29118728 PMCID: PMC5661006 DOI: 10.3389/fpsyg.2017.01873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
Previous studies on the joint effect of reward motivation and emotion on memory retrieval have obtained inconsistent results. Furthermore, whether and how any such joint effect might vary over time remains unclear too. Accordingly, using the event-related potential (ERP) measurement of high temporal resolution, our study investigates the cognitive and brain mechanisms of monetary reward and emotion affecting the retrieval processes of episodic memory. Twenty undergraduate and graduate students participated in the research, and our study’s behavioral results indicated that reward (relative to no reward) and negative emotion (relative to positive and neutral emotion) significantly improved recognition performance. The ERP results showed that there were significant interactions between monetary reward and emotion on memory retrieval, and the reward effects of positive, neutral, and negative memory occurred at varied intervals in mean amplitude. The reward effect of positive memory appeared relatively early, at 260–330 ms after the stimulus onset in the frontal-frontocentral area, at 260–500 ms in the centroparietal-parietal area and at 500–700 ms in the frontocentral area. However, the reward effects of neutral and negative memory occurred relatively later, and that of negative memory appeared at 500–700 ms in the frontocentral and centroparietal area and that of neutral memory was at 500–700 ms in the frontocentral and centroparietal-parietal area. Meanwhile, significant FN400 old/new effects were observed in the negative and rewarded positive items, and the old/new effects of negative items appeared earlier at FN400 than positive items. Also, significant late positive component (LPC) old/new effects were found in the positive, negative, and rewarded neutral items. These results suggest that, monetary reward and negative emotion significantly improved recognition performance, and there was a mutual influence between reward and emotion on brain activity during memory retrieval.
Collapse
Affiliation(s)
- Chunping Yan
- Learning and Cognition Key Laboratory of Beijing, College of Psychology, Capital Normal University, Beijing, China.,College of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Fang Liu
- Learning and Cognition Key Laboratory of Beijing, College of Psychology, Capital Normal University, Beijing, China
| | - Yunyun Li
- Learning and Cognition Key Laboratory of Beijing, College of Psychology, Capital Normal University, Beijing, China
| | - Qin Zhang
- Learning and Cognition Key Laboratory of Beijing, College of Psychology, Capital Normal University, Beijing, China
| | - Lixia Cui
- Learning and Cognition Key Laboratory of Beijing, College of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
13
|
Abstract
Emotion has a substantial influence on the cognitive processes in humans, including perception, attention, learning, memory, reasoning, and problem solving. Emotion has a particularly strong influence on attention, especially modulating the selectivity of attention as well as motivating action and behavior. This attentional and executive control is intimately linked to learning processes, as intrinsically limited attentional capacities are better focused on relevant information. Emotion also facilitates encoding and helps retrieval of information efficiently. However, the effects of emotion on learning and memory are not always univalent, as studies have reported that emotion either enhances or impairs learning and long-term memory (LTM) retention, depending on a range of factors. Recent neuroimaging findings have indicated that the amygdala and prefrontal cortex cooperate with the medial temporal lobe in an integrated manner that affords (i) the amygdala modulating memory consolidation; (ii) the prefrontal cortex mediating memory encoding and formation; and (iii) the hippocampus for successful learning and LTM retention. We also review the nested hierarchies of circular emotional control and cognitive regulation (bottom-up and top-down influences) within the brain to achieve optimal integration of emotional and cognitive processing. This review highlights a basic evolutionary approach to emotion to understand the effects of emotion on learning and memory and the functional roles played by various brain regions and their mutual interactions in relation to emotional processing. We also summarize the current state of knowledge on the impact of emotion on memory and map implications for educational settings. In addition to elucidating the memory-enhancing effects of emotion, neuroimaging findings extend our understanding of emotional influences on learning and memory processes; this knowledge may be useful for the design of effective educational curricula to provide a conducive learning environment for both traditional "live" learning in classrooms and "virtual" learning through online-based educational technologies.
Collapse
Affiliation(s)
- Chai M Tyng
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PetronasSeri Iskandar, Malaysia
| | - Hafeez U Amin
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PetronasSeri Iskandar, Malaysia
| | - Mohamad N M Saad
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PetronasSeri Iskandar, Malaysia
| | - Aamir S Malik
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PetronasSeri Iskandar, Malaysia
| |
Collapse
|
14
|
Tyng CM, Amin HU, Saad MNM, Malik AS. The Influences of Emotion on Learning and Memory. Front Psychol 2017; 8:1454. [PMID: 28883804 PMCID: PMC5573739 DOI: 10.3389/fpsyg.2017.01454] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Emotion has a substantial influence on the cognitive processes in humans, including perception, attention, learning, memory, reasoning, and problem solving. Emotion has a particularly strong influence on attention, especially modulating the selectivity of attention as well as motivating action and behavior. This attentional and executive control is intimately linked to learning processes, as intrinsically limited attentional capacities are better focused on relevant information. Emotion also facilitates encoding and helps retrieval of information efficiently. However, the effects of emotion on learning and memory are not always univalent, as studies have reported that emotion either enhances or impairs learning and long-term memory (LTM) retention, depending on a range of factors. Recent neuroimaging findings have indicated that the amygdala and prefrontal cortex cooperate with the medial temporal lobe in an integrated manner that affords (i) the amygdala modulating memory consolidation; (ii) the prefrontal cortex mediating memory encoding and formation; and (iii) the hippocampus for successful learning and LTM retention. We also review the nested hierarchies of circular emotional control and cognitive regulation (bottom-up and top-down influences) within the brain to achieve optimal integration of emotional and cognitive processing. This review highlights a basic evolutionary approach to emotion to understand the effects of emotion on learning and memory and the functional roles played by various brain regions and their mutual interactions in relation to emotional processing. We also summarize the current state of knowledge on the impact of emotion on memory and map implications for educational settings. In addition to elucidating the memory-enhancing effects of emotion, neuroimaging findings extend our understanding of emotional influences on learning and memory processes; this knowledge may be useful for the design of effective educational curricula to provide a conducive learning environment for both traditional "live" learning in classrooms and "virtual" learning through online-based educational technologies.
Collapse
Affiliation(s)
| | | | | | - Aamir S. Malik
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PetronasSeri Iskandar, Malaysia
| |
Collapse
|