1
|
Hazelton JL, Della Bella G, Barttfeld P, Dottori M, Gonzalez-Gomez R, Migeot J, Moguilner S, Legaz A, Hernandez H, Prado P, Cuadros J, Maito M, Fraile-Vazquez M, González Gadea ML, Çatal Y, Miller B, Piguet O, Northoff G, Ibáñez A. Altered spatiotemporal brain dynamics of interoception in behavioural-variant frontotemporal dementia. EBioMedicine 2025; 113:105614. [PMID: 39987747 PMCID: PMC11894334 DOI: 10.1016/j.ebiom.2025.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Dysfunctional allostatic-interoception, altered processing of bodily signals in response to environmental demands, occurs in behavioural-variant frontotemporal dementia (bvFTD) patients. Previous research has not investigated the dynamic nature of interoception using methods like intrinsic neural timescales. We hypothesised that longer intrinsic neural timescales of interoception would occur in bvFTD patients, evidencing dysfunctional allostatic-interoception. METHODS One-hundred and twelve participants (31 bvFTD patients, 35 Alzheimer's disease patients, AD and 46 healthy controls) completed a well-validated task measuring cardiac-interoception and exteroception. Simultaneous EEG and ECG were recorded. Intrinsic neural timescales were measured via the autocorrelation window (ACW) of broadband EEG signals from each heartbeat and a time-lagged version of itself. Spatiotemporal clustering analyses identified clusters with significant between-group differences in each condition. Voxel-based morphometry was used to target the allostatic-interoceptive network. Neuropsychological tests of cognition and social cognition were assessed. FINDINGS In bvFTD patients, longer interoceptive-ACWs than controls were observed in the bilateral fronto-temporal and parietal regions. In AD patients, longer interoceptive-ACWs than controls were observed in central and occipitoparietal brain regions. No differences were observed during exteroception. In bvFTD patients only, longer interoceptive-ACW was linked to worse sociocognitive performance. Structural neural correlates of interoceptive-ACW in bvFTD involved the anterior cingulate, insula, orbitofrontal cortex, hippocampus, and angular gyrus. INTERPRETATION Our findings suggest a core allostatic-interoceptive deficit occurs in people with bvFTD. Further, altered interoceptive intrinsic neural timescales may provide a neurobiological mechanism underpinning the complex behaviours observed in bvFTD patients. Our findings support synergistic models of brain disease and can inform clinical practice. FUNDING All funding sources are reported in the Acknowledgements.
Collapse
Affiliation(s)
- Jessica L Hazelton
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina; The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, Australia
| | - Gabriel Della Bella
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Matemática Astronomía y Física (FaMAF), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Barttfeld
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Martin Dottori
- Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Joaquín Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustina Legaz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Hernan Hernandez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago de Chile, Chile
| | - Jhosmary Cuadros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Advanced Centre for Electrical and Electronic Engineering (AC3E), Universidad Técnica Federico Santa María, Valparaíso, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal, 5001, Venezuela
| | - Marcelo Maito
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Matias Fraile-Vazquez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina; Life Span Institute, University of Kansas, Lawrence, KS, USA
| | - María Luz González Gadea
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Yasir Çatal
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Bruce Miller
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, Australia
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Agustin Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Trujillo-Llano C, Sainz-Ballesteros A, Suarez-Ardila F, Gonzalez-Gadea ML, Ibáñez A, Herrera E, Baez S. Neuroanatomical markers of social cognition in neglected adolescents. Neurobiol Stress 2024; 31:100642. [PMID: 38800539 PMCID: PMC11127280 DOI: 10.1016/j.ynstr.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Growing up in neglectful households can impact multiple aspects of social cognition. However, research on neglect's effects on social cognition processes and their neuroanatomical correlates during adolescence is scarce. Here, we aimed to comprehensively assess social cognition processes (recognition of basic and contextual emotions, theory of mind, the experience of envy and Schadenfreude and empathy for pain) and their structural brain correlates in adolescents with legal neglect records within family-based care. First, we compared neglected adolescents (n = 27) with control participants (n = 25) on context-sensitive social cognition tasks while controlling for physical and emotional abuse and executive and intellectual functioning. Additionally, we explored the grey matter correlates of these domains through voxel-based morphometry. Compared to controls, neglected adolescents exhibited lower performance in contextual emotional recognition and theory of mind, higher levels of envy and Schadenfreude and diminished empathy. Physical and emotional abuse and executive or intellectual functioning did not explain these effects. Moreover, social cognition scores correlated with brain volumes in regions subserving social cognition and emotional processing. Our results underscore the potential impact of neglect on different aspects of social cognition during adolescence, emphasizing the necessity for preventive and intervention strategies to address these deficits in this population.
Collapse
Affiliation(s)
- Catalina Trujillo-Llano
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- Facultad de Psicología, Universidad Del Valle, Cali, Colombia
| | - Agustín Sainz-Ballesteros
- Department of Psychology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, Tübingen, Germany
- Department for High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | - María Luz Gonzalez-Gadea
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
| | - Eduar Herrera
- Universidad Icesi, Departamento de Estudios Psicológicos, Cali, Colombia
| | - Sandra Baez
- Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
- Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
Prado P, Medel V, Gonzalez-Gomez R, Sainz-Ballesteros A, Vidal V, Santamaría-García H, Moguilner S, Mejia J, Slachevsky A, Behrens MI, Aguillon D, Lopera F, Parra MA, Matallana D, Maito MA, Garcia AM, Custodio N, Funes AÁ, Piña-Escudero S, Birba A, Fittipaldi S, Legaz A, Ibañez A. The BrainLat project, a multimodal neuroimaging dataset of neurodegeneration from underrepresented backgrounds. Sci Data 2023; 10:889. [PMID: 38071313 PMCID: PMC10710425 DOI: 10.1038/s41597-023-02806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The Latin American Brain Health Institute (BrainLat) has released a unique multimodal neuroimaging dataset of 780 participants from Latin American. The dataset includes 530 patients with neurodegenerative diseases such as Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), multiple sclerosis (MS), Parkinson's disease (PD), and 250 healthy controls (HCs). This dataset (62.7 ± 9.5 years, age range 21-89 years) was collected through a multicentric effort across five Latin American countries to address the need for affordable, scalable, and available biomarkers in regions with larger inequities. The BrainLat is the first regional collection of clinical and cognitive assessments, anatomical magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), diffusion-weighted MRI (DWI), and high density resting-state electroencephalography (EEG) in dementia patients. In addition, it includes demographic information about harmonized recruitment and assessment protocols. The dataset is publicly available to encourage further research and development of tools and health applications for neurodegeneration based on multimodal neuroimaging, promoting the assessment of regional variability and inclusion of underrepresented participants in research.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Vicente Medel
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Victor Vidal
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Hernando Santamaría-García
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia
- Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Global Brain Health Institute, University of California San Francisco, San Francisco, USA
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jhony Mejia
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Departamento de Ingeniería Biomédica, Universidad de Los Andes, Bogotá, Colombia
- Memory and Aging Clinic, University of California San Francisco, San Francisco, USA
| | - Andrea Slachevsky
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neurocience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
- Geroscience Center for Brain Health and Metabolism, (GERO), Santiago de Chile, Chile
- Memory and Neuropsychiatric Center (CMYN), Memory Unit - Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago de Chile, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago de Chile, Chile
| | - Maria Isabel Behrens
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Independencia, Santiago, 8380453, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Independencia, Santiago, 8380430, Chile
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, 8380453, Chile
- Departamento de Neurología y Psiquiatría, Clínica Alemana-Universidad del Desarrollo, Santiago, 8370065, Chile
| | - David Aguillon
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellín, Colombia
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Diana Matallana
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia
- Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Mental Health Department, Hospital Universitario Fundación Santa Fe de Bogotá, Memory Clinic, Bogotá, Colombia
| | - Marcelo Adrián Maito
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Adolfo M Garcia
- Global Brain Health Institute, University of California San Francisco, San Francisco, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Nilton Custodio
- Unit Cognitive Impairment and Dementia Prevention, Peruvian Institute of Neurosciences, Lima, Peru
| | - Alberto Ávila Funes
- Geriatrics Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Stefanie Piña-Escudero
- Global Brain Health Institute, University of California San Francisco, San Francisco, USA
- Memory and Aging Clinic, University of California San Francisco, San Francisco, USA
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
- Instituto Universitario de Neurociencia, Universidad de La Laguna, Tenerife, Spain
- Facultad de Psicología, Universidad de La Laguna, Tenerife, Spain
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Agustina Legaz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
- Global Brain Health Institute, University of California San Francisco, San Francisco, USA.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Legaz A, Prado P, Moguilner S, Báez S, Santamaría-García H, Birba A, Barttfeld P, García AM, Fittipaldi S, Ibañez A. Social and non-social working memory in neurodegeneration. Neurobiol Dis 2023; 183:106171. [PMID: 37257663 PMCID: PMC11177282 DOI: 10.1016/j.nbd.2023.106171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Although social functioning relies on working memory, whether a social-specific mechanism exists remains unclear. This undermines the characterization of neurodegenerative conditions with both working memory and social deficits. We assessed working memory domain-specificity across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A novel working memory task involving social and non-social stimuli with three load levels was assessed across controls and different neurodegenerative conditions with recognized impairments in: working memory and social cognition (behavioral-variant frontotemporal dementia); general cognition (Alzheimer's disease); and unspecific patterns (Parkinson's disease). We also examined resting-state theta oscillations and functional connectivity correlates of working memory domain-specificity. Results in controls and all groups together evidenced increased working memory demands for social stimuli associated with frontocinguloparietal theta oscillations and salience network connectivity. Canonical frontal theta oscillations and executive-default mode network anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented generalized working memory deficits related to posterior theta oscillations, with social stimuli linked to salience network connectivity. In Alzheimer's disease, generalized working memory impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to the executive network. Parkinson's disease showed spared working memory performance and canonical brain correlates. Findings support a social-specific working memory and related disease-selective pathophysiological mechanisms.
Collapse
Affiliation(s)
- Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad Nacional de Córdoba, Facultad de Psicología, Córdoba, Argentina
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Sebastián Moguilner
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland
| | | | - Hernando Santamaría-García
- Pontificia Universidad Javeriana, Medical School, Physiology and Psychiatry Departments, Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Facultad de Psicología, Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencia, Universidad de La Laguna, Tenerife, Spain
| | - Pablo Barttfeld
- Cognitive Science Group. Instituto de Investigaciones Psicológicas (IIPsi), CONICET UNC, Facultad de Psicología, Universidad Nacional de Córdoba, Boulevard de la Reforma esquina Enfermera Gordillo, CP 5000. Córdoba, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; Trinity College Dublin (TCD), Dublin, Ireland
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland.
| | - Agustín Ibañez
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, United States; Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
5
|
Perl YS, Zamora-Lopez G, Montbrió E, Monge-Asensio M, Vohryzek J, Fittipaldi S, Campo CG, Moguilner S, Ibañez A, Tagliazucchi E, Yeo BTT, Kringelbach ML, Deco G. The impact of regional heterogeneity in whole-brain dynamics in the presence of oscillations. Netw Neurosci 2023; 7:632-660. [PMID: 37397876 PMCID: PMC10312285 DOI: 10.1162/netn_a_00299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2023] Open
Abstract
Large variability exists across brain regions in health and disease, considering their cellular and molecular composition, connectivity, and function. Large-scale whole-brain models comprising coupled brain regions provide insights into the underlying dynamics that shape complex patterns of spontaneous brain activity. In particular, biophysically grounded mean-field whole-brain models in the asynchronous regime were used to demonstrate the dynamical consequences of including regional variability. Nevertheless, the role of heterogeneities when brain dynamics are supported by synchronous oscillating state, which is a ubiquitous phenomenon in brain, remains poorly understood. Here, we implemented two models capable of presenting oscillatory behavior with different levels of abstraction: a phenomenological Stuart-Landau model and an exact mean-field model. The fit of these models informed by structural- to functional-weighted MRI signal (T1w/T2w) allowed us to explore the implication of the inclusion of heterogeneities for modeling resting-state fMRI recordings from healthy participants. We found that disease-specific regional functional heterogeneity imposed dynamical consequences within the oscillatory regime in fMRI recordings from neurodegeneration with specific impacts on brain atrophy/structure (Alzheimer's patients). Overall, we found that models with oscillations perform better when structural and functional regional heterogeneities are considered, showing that phenomenological and biophysical models behave similarly at the brink of the Hopf bifurcation.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gorka Zamora-Lopez
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ernest Montbrió
- Neuronal Dynamics Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Martí Monge-Asensio
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jakub Vohryzek
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Sol Fittipaldi
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA, USA; and Trinity College Dublin, Dublin, Ireland
| | - Cecilia González Campo
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California, San Francisco, CA, USA; and Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustín Ibañez
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA, USA; and Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition, Centre for Translational MR Research, Department of Electrical and Computer Engineering, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore
| | - Morten L. Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Moguilner S, Whelan R, Adams H, Valcour V, Tagliazucchi E, Ibáñez A. Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples. EBioMedicine 2023; 90:104540. [PMID: 36972630 PMCID: PMC10066533 DOI: 10.1016/j.ebiom.2023.104540] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Dementia's diagnostic protocols are mostly based on standardised neuroimaging data collected in the Global North from homogeneous samples. In other non-stereotypical samples (participants with diverse admixture, genetics, demographics, MRI signals, or cultural origins), classifications of disease are difficult due to demographic and region-specific sample heterogeneities, lower quality scanners, and non-harmonised pipelines. METHODS We implemented a fully automatic computer-vision classifier using deep learning neural networks. A DenseNet was applied on raw (unpreprocessed) data from 3000 participants (behavioural variant frontotemporal dementia-bvFTD, Alzheimer's disease-AD, and healthy controls; both male and female as self-reported by participants). We tested our results in demographically matched and unmatched samples to discard possible biases and performed multiple out-of-sample validations. FINDINGS Robust classification results across all groups were achieved from standardised 3T neuroimaging data from the Global North, which also generalised to standardised 3T neuroimaging data from Latin America. Moreover, DenseNet also generalised to non-standardised, routine 1.5T clinical images from Latin America. These generalisations were robust in samples with heterogenous MRI recordings and were not confounded by demographics (i.e., were robust in both matched and unmatched samples, and when incorporating demographic variables in a multifeatured model). Model interpretability analysis using occlusion sensitivity evidenced core pathophysiological regions for each disease (mainly the hippocampus in AD, and the insula in bvFTD) demonstrating biological specificity and plausibility. INTERPRETATION The generalisable approach outlined here could be used in the future to aid clinician decision-making in diverse samples. FUNDING The specific funding of this article is provided in the acknowledgements section.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Hieab Adams
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Victor Valcour
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Caba, Argentina
| | - Agustín Ibáñez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Chu M, Jiang D, Liu L, Nie B, Rosa-Neto P, Chen K, Wu L. Clinical relevance of disrupted topological organization of anatomical connectivity in behavioral variant frontotemporal dementia. Neurobiol Aging 2023; 124:29-38. [PMID: 36724600 PMCID: PMC11102657 DOI: 10.1016/j.neurobiolaging.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Graph theory is a novel approach used to examine the balance of brain connectomes. However, the clinical relevance of white matter (WM) connectome changes in the behavioral variant frontotemporal dementia (bvFTD) is not well understood. We aimed to investigate the clinical relevance of WM topological alterations in bvFTD. Thirty patients with probable bvFTD and 30 healthy controls underwent diffusion tensor imaging, structural MRI, and neuropsychological assessment. WM connectivity between 90 brain regions was calculated and the graph approach was applied to capture the individual characteristics of the anatomical network. Voxel-based morphometry and tract-based spatial statistics were used to present the gray matter atrophy and disrupted WM integrity. The topological organization was disrupted in patients with bvFTD both globally and locally. Compared to controls, bvFTD data showed a different pattern of hub region distributions. Notably, the nodal efficiency of the right superior orbital frontal gyrus was associated with apathy and disinhibition. Topological measures may be potential image markers for early diagnosis and disease severity monitoring of bvFTD.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Montreal, Canada
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA; College of Medicine-Phoenix, University of Arizona, Tucson, AZ, USA; School of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Sanz Perl Y, Fittipaldi S, Gonzalez Campo C, Moguilner S, Cruzat J, Fraile-Vazquez ME, Herzog R, Kringelbach ML, Deco G, Prado P, Ibanez A, Tagliazucchi E. Model-based whole-brain perturbational landscape of neurodegenerative diseases. eLife 2023; 12:e83970. [PMID: 36995213 PMCID: PMC10063230 DOI: 10.7554/elife.83970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
| | - Sol Fittipaldi
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Cecilia Gonzalez Campo
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | | | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| | - Morten L Kringelbach
- Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus UniversityÅrhusDenmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
- Centre for Eudaimonia and Human Flourishing, University of OxfordOxfordUnited Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
- Department of Information and Communication Technologies, Universitat Pompeu FabraBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA)BarcelonaSpain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- School of Psychological Sciences, Monash UniversityClaytonAustralia
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Global Brain Health Institute, University of California, San FranciscoSan FranciscoUnited States
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
- Trinity College Institute of Neuroscience (TCIN), Trinity College DublinDublinIreland
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET), CABABuenos AiresArgentina
- Cognitive Neuroscience Center (CNC), Universidad de San AndrésBuenos AiresArgentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo IbáñezSantiagoChile
| |
Collapse
|
9
|
Cruzat J, Herzog R, Prado P, Sanz-Perl Y, Gonzalez-Gomez R, Moguilner S, Kringelbach ML, Deco G, Tagliazucchi E, Ibañez A. Temporal Irreversibility of Large-Scale Brain Dynamics in Alzheimer's Disease. J Neurosci 2023; 43:1643-1656. [PMID: 36732071 PMCID: PMC10008060 DOI: 10.1523/jneurosci.1312-22.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dynamics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer's disease (AD). We hypothesized that the level of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equilibrium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dynamics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, temporoparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation of AD, opening new avenues for dementia characterization at different levels.SIGNIFICANCE STATEMENT By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of distinguishing Alzheimer's disease (AD) at the global, local, and network levels and different oscillatory regimes. Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared with more sensory-motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atrophy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance. Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegeneration in terms of the temporal asymmetry of brain dynamics.
Collapse
Affiliation(s)
- Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Ruben Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Yonatan Sanz-Perl
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Global Brain Health Institute, Trinity College, Dublin 2, Ireland
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Århus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04303 Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne 3168, Australia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Baez S, Trujillo-Llano C, de Souza LC, Lillo P, Forno G, Santamaría-García H, Okuma C, Alegria P, Huepe D, Ibáñez A, Decety J, Slachevsky A. Moral Emotions and Their Brain Structural Correlates Across Neurodegenerative Disorders. J Alzheimers Dis 2023; 92:153-169. [PMID: 36710684 PMCID: PMC11181819 DOI: 10.3233/jad-221131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Although social cognition is compromised in patients with neurodegenerative disorders such as behavioral variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD), research on moral emotions and their neural correlates in these populations is scarce. No previous study has explored the utility of moral emotions, compared to and in combination with classical general cognitive state tools, to discriminate bvFTD from AD patients. OBJECTIVE To examine self-conscious (guilt and embarrassment) and other-oriented (pity and indignation) moral emotions, their subjective experience, and their structural brain underpinnings in bvFTD (n = 31) and AD (n = 30) patients, compared to healthy controls (n = 37). We also explored the potential utility of moral emotions measures to discriminate bvFTD from AD. METHODS We used a modified version of the Moral Sentiment Task measuring the participants' accuracy scores and their emotional subjective experiences. RESULTS bvFTD patients exhibited greater impairments in self-conscious and other-oriented moral emotions as compared with AD patients and healthy controls. Moral emotions combined with general cognitive state tools emerged as useful measures to discriminate bvFTD from AD patients. In bvFTD patients, lower moral emotions scores were associated with lower gray matter volumes in caudate nucleus and inferior and middle temporal gyri. In AD, these scores were associated with lower gray matter volumes in superior and middle frontal gyri, middle temporal gyrus, inferior parietal lobule and supramarginal gyrus. CONCLUSION These findings contribute to a better understanding of moral emotion deficits across neurodegenerative disorders, highlighting the potential benefits of integrating this domain into the clinical assessment.
Collapse
Affiliation(s)
| | - Catalina Trujillo-Llano
- Facultad de Psicología, Universidad del Valle, Cali, Colombia
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Leonardo Cruz de Souza
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patricia Lillo
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Departamento de Neurologia Sur, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Forno
- Universidad de los Andes, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department - ICBM, Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hernando Santamaría-García
- Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Global Brain Health Institute, University of California, San Francisco, CA, USA
- Universidad Javeriana, PhD Program of Neuroscience, Bogotá, Colombia
| | - Cecilia Okuma
- Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurorradiología, Instituto de Neurocirugía Dr. Asenjo, Servicio de Salud Metropolitano Oriente, Santiago, Chile
| | - Patricio Alegria
- Servicio de Radiología, Hospital Barros Luco Trudeau, San Miguel, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustín Ibáñez
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | | | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department - ICBM, Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Center, Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
11
|
Gonzalez-Gomez R, Ibañez A, Moguilner S. Multiclass characterization of frontotemporal dementia variants via multimodal brain network computational inference. Netw Neurosci 2023; 7:322-350. [PMID: 37333999 PMCID: PMC10270711 DOI: 10.1162/netn_a_00285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/03/2022] [Indexed: 04/03/2024] Open
Abstract
Characterizing a particular neurodegenerative condition against others possible diseases remains a challenge along clinical, biomarker, and neuroscientific levels. This is the particular case of frontotemporal dementia (FTD) variants, where their specific characterization requires high levels of expertise and multidisciplinary teams to subtly distinguish among similar physiopathological processes. Here, we used a computational approach of multimodal brain networks to address simultaneous multiclass classification of 298 subjects (one group against all others), including five FTD variants: behavioral variant FTD, corticobasal syndrome, nonfluent variant primary progressive aphasia, progressive supranuclear palsy, and semantic variant primary progressive aphasia, with healthy controls. Fourteen machine learning classifiers were trained with functional and structural connectivity metrics calculated through different methods. Due to the large number of variables, dimensionality was reduced, employing statistical comparisons and progressive elimination to assess feature stability under nested cross-validation. The machine learning performance was measured through the area under the receiver operating characteristic curves, reaching 0.81 on average, with a standard deviation of 0.09. Furthermore, the contributions of demographic and cognitive data were also assessed via multifeatured classifiers. An accurate simultaneous multiclass classification of each FTD variant against other variants and controls was obtained based on the selection of an optimum set of features. The classifiers incorporating the brain's network and cognitive assessment increased performance metrics. Multimodal classifiers evidenced specific variants' compromise, across modalities and methods through feature importance analysis. If replicated and validated, this approach may help to support clinical decision tools aimed to detect specific affectations in the context of overlapping diseases.
Collapse
Affiliation(s)
- Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Trinity College Dublin, Dublin, Ireland
| | - Sebastian Moguilner
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Díaz-Rivera MN, Birba A, Fittipaldi S, Mola D, Morera Y, de Vega M, Moguilner S, Lillo P, Slachevsky A, González Campo C, Ibáñez A, García AM. Multidimensional inhibitory signatures of sentential negation in behavioral variant frontotemporal dementia. Cereb Cortex 2022; 33:403-420. [PMID: 35253864 PMCID: PMC9837611 DOI: 10.1093/cercor/bhac074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Mariano N Díaz-Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), C1425FQD, Godoy Cruz 2370, Buenos Aires, Argentina
| | - Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Débora Mola
- Instituto de Investigaciones Psicológicas, CONICET, 5000, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yurena Morera
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel de Vega
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Patricia Lillo
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, 8380000, Santiago, Chile.,Unidad de Neurología, Hospital San José, 8380000, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, Neuroscience and East Neuroscience Departments, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, 8380000, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, 7500000, Santiago, Chile.,Departamento de Medicina, Servicio de Neurología, Clínica Alemana-Universidad del Desarrollo, 7550000, Santiago, Chile
| | - Cecilia González Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 7550000, Santiago, Chile
| |
Collapse
|
13
|
Ferreira LK, Lindberg O, Santillo AF, Wahlund LO. Functional connectivity in behavioral variant frontotemporal dementia. Brain Behav 2022; 12:e2790. [PMID: 36306386 PMCID: PMC9759144 DOI: 10.1002/brb3.2790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Functional connectivity (FC)-which reflects relationships between neural activity in different brain regions-has been used to explore the functional architecture of the brain in neurodegenerative disorders. Although an increasing number of studies have explored FC changes in behavioral variant frontotemporal dementia (bvFTD), there is no focused, in-depth review about FC in bvFTD. METHODS Comprehensive literature search and narrative review to summarize the current field of FC in bvFTD. RESULTS (1) Decreased FC within the salience network (SN) is the most consistent finding in bvFTD; (2) FC changes extend beyond the SN and affect the interplay between networks; (3) results within the Default Mode Network are mixed; (4) the brain as a network is less interconnected and less efficient in bvFTD; (5) symptoms, functional impairment, and cognition are associated with FC; and (6) the functional architecture resembles patterns of neuropathological spread. CONCLUSIONS FC has potential as a biomarker, and future studies are expected to advance the field with multicentric initiatives, longitudinal designs, and methodological advances.
Collapse
Affiliation(s)
- Luiz Kobuti Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit and Psychiatry, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Cobbinah BM, Sorg C, Yang Q, Ternblom A, Zheng C, Han W, Che L, Shao J. Reducing variations in multi-center Alzheimer's disease classification with convolutional adversarial autoencoder. Med Image Anal 2022; 82:102585. [PMID: 36057187 DOI: 10.1016/j.media.2022.102585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer's disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer's disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer's disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual's structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies.
Collapse
Affiliation(s)
- Bernard M Cobbinah
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Christian Sorg
- Department of Neuroradiology, TUM-NIC Neuroimaging Center of Technical University Munich, Germany
| | - Qinli Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Arvid Ternblom
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Changgang Zheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Wei Han
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Liwei Che
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Junming Shao
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China; Center for Information in BioMedicine, University of Electronic Science and Technology of China, 611731 Chengdu, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| |
Collapse
|
15
|
Birba A, Fittipaldi S, Cediel Escobar JC, Gonzalez Campo C, Legaz A, Galiani A, Díaz Rivera MN, Martorell Caro M, Alifano F, Piña-Escudero SD, Cardona JF, Neely A, Forno G, Carpinella M, Slachevsky A, Serrano C, Sedeño L, Ibáñez A, García AM. Multimodal Neurocognitive Markers of Naturalistic Discourse Typify Diverse Neurodegenerative Diseases. Cereb Cortex 2022; 32:3377-3391. [PMID: 34875690 PMCID: PMC9376869 DOI: 10.1093/cercor/bhab421] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration has multiscalar impacts, including behavioral, neuroanatomical, and neurofunctional disruptions. Can disease-differential alterations be captured across such dimensions using naturalistic stimuli? To address this question, we assessed comprehension of four naturalistic stories, highlighting action, nonaction, social, and nonsocial events, in Parkinson's disease (PD) and behavioral variant frontotemporal dementia (bvFTD) relative to Alzheimer's disease patients and healthy controls. Text-specific correlates were evaluated via voxel-based morphometry, spatial (fMRI), and temporal (hd-EEG) functional connectivity. PD patients presented action-text deficits related to the volume of action-observation regions, connectivity across motor-related and multimodal-semantic hubs, and frontal hd-EEG hypoconnectivity. BvFTD patients exhibited social-text deficits, associated with atrophy and spatial connectivity patterns along social-network hubs, alongside right frontotemporal hd-EEG hypoconnectivity. Alzheimer's disease patients showed impairments in all stories, widespread atrophy and spatial connectivity patterns, and heightened occipitotemporal hd-EEG connectivity. Our framework revealed disease-specific signatures across behavioral, neuroanatomical, and neurofunctional dimensions, highlighting the sensitivity and specificity of a single naturalistic task. This investigation opens a translational agenda combining ecological approaches and multimodal cognitive neuroscience for the study of neurodegeneration.
Collapse
Affiliation(s)
- Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Judith C Cediel Escobar
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia
- Departamento de Estudios Psicológicos, Facultad de Derecho y Ciencias Sociales, Universidad Icesi, Cali 1234567, Colombia
| | - Cecilia Gonzalez Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agustina Legaz
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agostina Galiani
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET, C1060AAF Buenos Aires, Argentina
| | - Mariano N Díaz Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Agency of Scientific and Technological Promotion, C1425FQD Buenos Aires, Argentina
| | - Miquel Martorell Caro
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Florencia Alifano
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | | | - Juan Felipe Cardona
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia
| | - Alejandra Neely
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000 Santiago, Chile
| | - Gonzalo Forno
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, 8380000 Santiago, Chile
- School of Psychology, Universidad de los Andes, 7620001 Santiago, Chile
- Alzheimer's and other cognitive disorders group, Institute of Neurosciences, University of Barcelona, 8007 Barcelona, Spain
| | - Mariela Carpinella
- Unidad de Neurociencias, Instituto Conci Carpinella, 5000 Córdoba, Argentina
- Facultad de Medicina, Universidad Católica de Cuyo Sede San Luis, 5700 San Luis, Argentina
| | - Andrea Slachevsky
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, 8380000 Santiago, Chile
- Gerosciences Center for Brain Health and Metabolism, 7800003 Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador & University of Chile, 7500000 Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, 7690000 Santiago, Chile
| | - Cecilia Serrano
- Unidad de Neurología Cognitiva, Hospital César Milstein, C1221AC Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000 Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, CA 94158, US; and Trinity College, Dublin D02 DP21, Ireland
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, B1644BID Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQD Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA 94158, US; and Trinity College, Dublin D02 DP21, Ireland
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 8431166 Santiago, Chile
| |
Collapse
|
16
|
Nigro S, Filardi M, Tafuri B, De Blasi R, Cedola A, Gigli G, Logroscino G. The Role of Graph Theory in Evaluating Brain Network Alterations in Frontotemporal Dementia. Front Neurol 2022; 13:910054. [PMID: 35837233 PMCID: PMC9275562 DOI: 10.3389/fneur.2022.910054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Frontotemporal dementia (FTD) is a spectrum of clinical syndromes that affects personality, behavior, language, and cognition. The current diagnostic criteria recognize three main clinical subtypes: the behavioral variant of FTD (bvFTD), the semantic variant of primary progressive aphasia (svPPA), and the non-fluent/agrammatic variant of PPA (nfvPPA). Patients with FTD display heterogeneous clinical and neuropsychological features that highly overlap with those presented by psychiatric syndromes and other types of dementia. Moreover, up to now there are no reliable disease biomarkers, which makes the diagnosis of FTD particularly challenging. To overcome this issue, different studies have adopted metrics derived from magnetic resonance imaging (MRI) to characterize structural and functional brain abnormalities. Within this field, a growing body of scientific literature has shown that graph theory analysis applied to MRI data displays unique potentialities in unveiling brain network abnormalities of FTD subtypes. Here, we provide a critical overview of studies that adopted graph theory to examine the topological changes of large-scale brain networks in FTD. Moreover, we also discuss the possible role of information arising from brain network organization in the diagnostic algorithm of FTD-spectrum disorders and in investigating the neural correlates of clinical symptoms and cognitive deficits experienced by patients.
Collapse
Affiliation(s)
- Salvatore Nigro
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Italy
- Salvatore Nigro
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Roberto De Blasi
- Department of Radiology, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce, Italy
| | - Alessia Cedola
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Giancarlo Logroscino
| |
Collapse
|
17
|
Prado P, Birba A, Cruzat J, Santamaría-García H, Parra M, Moguilner S, Tagliazucchi E, Ibáñez A. Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration. Int J Psychophysiol 2022; 172:24-38. [PMID: 34968581 PMCID: PMC9887537 DOI: 10.1016/j.ijpsycho.2021.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 02/02/2023]
Abstract
The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic "ConnEEGtome" in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. "Ground truths" for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Josefina Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Hernando Santamaría-García
- Pontificia Universidad Javeriana, Medical School, Physiology and Psychiatry Departments, Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mario Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA,Trinity College Dublin (TCD), Dublin, Ireland
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Departamento de Física, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires (IFIBA -CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA,Trinity College Dublin (TCD), Dublin, Ireland,Corresponding author at: Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile., (A. Ibáñez)
| |
Collapse
|
18
|
Abrevaya S, Fittipaldi S, García AM, Dottori M, Santamaria-Garcia H, Birba A, Yoris A, Hildebrandt MK, Salamone P, De la Fuente A, Alarco-Martí S, García-Cordero I, Matorrel-Caro M, Pautassi RM, Serrano C, Sedeño L, Ibáñez A. At the Heart of Neurological Dimensionality: Cross-Nosological and Multimodal Cardiac Interoceptive Deficits. Psychosom Med 2021; 82:850-861. [PMID: 33003072 PMCID: PMC7647435 DOI: 10.1097/psy.0000000000000868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/10/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Neurological nosology, based on categorical systems, has largely ignored dimensional aspects of neurocognitive impairments. Transdiagnostic dimensional approaches of interoception (the sensing of visceral signals) may improve the descriptions of cross-pathological symptoms at behavioral, electrophysiological, and anatomical levels. Alterations of cardiac interoception (encompassing multidimensional variables such as accuracy, learning, sensibility, and awareness) and its neural correlates (electrophysiological markers, imaging-based anatomical and functional connectivity) have been proposed as critical across disparate neurological disorders. However, no study has examined the specific impact of neural (relative to autonomic) disturbances of cardiac interoception or their differential manifestations across neurological conditions. METHODS Here, we used a computational approach to classify and evaluate which markers of cardiac interoception (behavioral, metacognitive, electrophysiological, volumetric, or functional) offer the best discrimination between neurological conditions and cardiac (hypertensive) disease (model 1), and among neurological conditions (Alzheimer's disease, frontotemporal dementia, multiple sclerosis, and brain stroke; model 2). In total, the study comprised 52 neurological patients (mean [standard deviation] age = 55.1 [17.3] years; 37 women), 25 cardiac patients (age = 66.2 [9.1] years; 13 women), and 72 healthy controls (age = 52.65 [17.1] years; 50 women). RESULTS Cardiac interoceptive outcomes successfully classified between neurological and cardiac conditions (model 1: >80% accuracy) but not among neurological conditions (model 2: 53% accuracy). Behavioral cardiac interoceptive alterations, although present in all conditions, were powerful in differentiating between neurological and cardiac diseases. However, among neurological conditions, cardiac interoceptive deficits presented more undifferentiated and unspecific disturbances across dimensions. CONCLUSIONS Our result suggests a diffuse pattern of interoceptive alterations across neurological conditions, highlighting their potential role as dimensional, transdiagnostic markers.
Collapse
|
19
|
Legaz A, Abrevaya S, Dottori M, Campo CG, Birba A, Caro MM, Aguirre J, Slachevsky A, Aranguiz R, Serrano C, Gillan CM, Leroi I, García AM, Fittipaldi S, Ibañez A. Multimodal mechanisms of human socially reinforced learning across neurodegenerative diseases. Brain 2021; 145:1052-1068. [PMID: 34529034 PMCID: PMC9128375 DOI: 10.1093/brain/awab345] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Social feedback can selectively enhance learning in diverse domains. Relevant
neurocognitive mechanisms have been studied mainly in healthy persons, yielding
correlational findings. Neurodegenerative lesion models, coupled with multimodal
brain measures, can complement standard approaches by revealing direct
multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning
in 40 healthy participants as well as persons with behavioural variant
frontotemporal dementia (n = 21), Parkinson’s
disease (n = 31) and Alzheimer’s disease
(n = 20). These conditions are typified by
predominant deficits in social cognition, feedback-based learning and
associative learning, respectively, although all three domains may be partly
compromised in the other conditions. We combined a validated behavioural task
with ongoing EEG signatures of implicit learning (medial frontal negativity) and
offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to
non-social feedback. In comparison with controls, this effect was specifically
impaired in behavioural variant frontotemporal dementia and Parkinson’s
disease, while unspecific learning deficits (across social and non-social
conditions) were observed in Alzheimer’s disease. EEG results showed
increased medial frontal negativity in healthy controls during social feedback
and learning. Such a modulation was selectively disrupted in behavioural variant
frontotemporal dementia. Neuroanatomical results revealed extended
temporo-parietal and fronto-limbic correlates of socially reinforced learning,
with specific temporo-parietal associations in behavioural variant
frontotemporal dementia and predominantly fronto-limbic regions in
Alzheimer’s disease. In contrast, non-socially reinforced learning was
consistently linked to medial temporal/hippocampal regions. No associations with
cortical volume were found in Parkinson’s disease. Results are consistent
with core social deficits in behavioural variant frontotemporal dementia, subtle
disruptions in ongoing feedback-mechanisms and social processes in
Parkinson’s disease and generalized learning alterations in
Alzheimer’s disease. This multimodal approach highlights the impact of
different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of
social learning, socially reinforced learning and neurodegeneration.
Collapse
Affiliation(s)
- Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Universidad Nacional de Córdoba. Facultad de Psicología, Córdoba, CU320, Argentina
| | - Sofía Abrevaya
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, C1021, Argentina
| | - Martín Dottori
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina
| | - Cecilia González Campo
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina
| | - Miguel Martorell Caro
- National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, CONICET, Buenos Aires, C1021, Argentina
| | - Julieta Aguirre
- Instituto de Investigaciones Psicológicas (IIPsi), CONICET, Universidad Nacional de Córdoba, Córdoba, CB5000, Argentina
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital delSalvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile.,Gerosciences Center for Brain Health and Metabolism, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Chile.,Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Chile
| | | | - Cecilia Serrano
- Neurología Cognitiva, Hospital Cesar Milstein, Buenos Aires, C1221, Argentina
| | - Claire M Gillan
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Department of Psychology, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Iracema Leroi
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Dublin 2, Ireland.,Faculty of Education, National University of Cuyo, Mendoza, M5502JMA, Argentina.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Universidad Nacional de Córdoba. Facultad de Psicología, Córdoba, CU320, Argentina
| | - Agustín Ibañez
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, C1011ACC, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94158, USA.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
20
|
Llibre-Guerra JJ, Behrens MI, Hosogi ML, Montero L, Torralva T, Custodio N, Longoria-Ibarrola EM, Giraldo-Chica M, Aguillón D, Hardi A, Maestre GE, Contreras V, Doldan C, Duque-Peñailillo L, Hesse H, Roman N, Santana-Trinidad DA, Schenk C, Ocampo-Barba N, López-Contreras R, Nitrini R. Frontotemporal Dementias in Latin America: History, Epidemiology, Genetics, and Clinical Research. Front Neurol 2021; 12:710332. [PMID: 34552552 PMCID: PMC8450529 DOI: 10.3389/fneur.2021.710332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: The historical development, frequency, and impact of frontotemporal dementia (FTD) are less clear in Latin America than in high-income countries. Although there is a growing number of dementia studies in Latin America, little is known collectively about FTD prevalence studies by country, clinical heterogeneity, risk factors, and genetics in Latin American countries. Methods: A systematic review was completed, aimed at identifying the frequency, clinical heterogeneity, and genetics studies of FTD in Latin American populations. The search strategies used a combination of standardized terms for FTD and related disorders. In addition, at least one author per Latin American country summarized the available literature. Collaborative or regional studies were reviewed during consensus meetings. Results: The first FTD reports published in Latin America were mostly case reports. The last two decades marked a substantial increase in the number of FTD research in Latin American countries. Brazil (165), Argentina (84), Colombia (26), and Chile (23) are the countries with the larger numbers of FTD published studies. Most of the research has focused on clinical and neuropsychological features (n = 247), including the local adaptation of neuropsychological and behavioral assessment batteries. However, there are little to no large studies on prevalence (n = 4), biomarkers (n = 9), or neuropathology (n = 3) of FTD. Conclusions: Future FTD studies will be required in Latin America, albeit with a greater emphasis on clinical diagnosis, genetics, biomarkers, and neuropathological studies. Regional and country-level efforts should seek better estimations of the prevalence, incidence, and economic impact of FTD syndromes.
Collapse
Affiliation(s)
- Jorge J. Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Isabel Behrens
- Departamento de Neurología y Neurocirugía Hospital Clínico Universidad de Chile, Departamento de Neurociencia, Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- Departamento de Psiquiatría y Neurología, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Mirna Lie Hosogi
- Departmento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucia Montero
- Laboratory of Neuropsychology (LNPS), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Teresa Torralva
- Laboratory of Neuropsychology (LNPS), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Nilton Custodio
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
| | | | - Margarita Giraldo-Chica
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - David Aguillón
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Angela Hardi
- Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Gladys E. Maestre
- Departament of Neurosciences and Alzheimer's Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Valeria Contreras
- Departamento de Neuropsicología, Hospital de Clínicas Dr Manuel Quintela, Universidad de la República, Montevideo, Uruguay
| | - Celeste Doldan
- Departamento de Neuropsicología Cognitiva, Clínica Especializada en Neurociencias Física y Cognitiva CEFYC, Asunción, Paraguay
| | | | - Heike Hesse
- Observatorio COVID-19, Universidad Tecnológica Centroamericana, Tegucigalpa, Honduras
| | - Norbel Roman
- Hospital Social Security of Costa Rica, Universidad de Costa Rica, San Jose, Costa Rica
| | | | - Christian Schenk
- Sección de Neurología, Dept. de Medicina. Recinto de Ciencias Médicas- Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Ninoska Ocampo-Barba
- Instituto Boliviano de Neurociencia Cognitiva, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Ricardo López-Contreras
- Clínica de Memoria, Servicio de Neurología, Instituto Salvadoreño del Seguro Social, San Salvador, El Salvador
| | - Ricardo Nitrini
- Departmento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Empathy deficits and their behavioral, neuroanatomical, and functional connectivity correlates in smoked cocaine users. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110328. [PMID: 33865925 DOI: 10.1016/j.pnpbp.2021.110328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
Reduced empathic abilities are frequently observed in drug abusers. These deficits may compromise interpersonal interactions and contribute to diminished social functioning. However, previous evidence regarding empathy and addiction is behaviorally unspecific and virtually null in terms of their brain structural or functional correlates. Moreover, no previous study has investigated how empathy is affected by drugs whose consumption is particularly characterized by counter-empathic behaviors. Here, we conducted the first assessment of neurocognitive correlates of empathy for pain in dependent users (predominantly men) of smoked cocaine (SC, coca paste, n = 37). We compared their performance in the empathy task with that of two groups matched in relevant demographic variables: 24 dependent users of insufflated cocaine hydrochloride (CC) and 21 healthy controls. In addition, we explored the structural anatomy and functional connectivity (FC) correlates of empathic impairments across groups. Our results showed that, compared to CC and controls, SC users exhibited a selective reduction of empathic concern for intentional harms. These impairments were associated with lower gray matter volumes in regions subserving social cognition (i.e., right inferior parietal lobule, supramarginal and angular gyri). Furthermore, reduced empathic concern correlated with FC within affective empathy and social cognition networks, which are also linked to cognitive changes reported in addiction (i.e., inferior frontal and orbital gyri, posterior insula, supplementary motor area, cingulate cortex). Our findings suggest that chronic consumption of SC may involve reduced empathic concern and relevant neuroanatomical and FC abnormalities, which, in turn, may result in social interaction dysfunction. These results can inform theoretical and applied developments in neuropsychopharmacology.
Collapse
|
22
|
Ibanez A, Parra MA, Butler C. The Latin America and the Caribbean Consortium on Dementia (LAC-CD): From Networking to Research to Implementation Science. J Alzheimers Dis 2021; 82:S379-S394. [PMID: 33492297 PMCID: PMC8293660 DOI: 10.3233/jad-201384] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In comparison with other regions, dementia prevalence in Latin America is growing rapidly, along with the consequent clinical, social, and economic burden upon patients and their families. The combination of fragile health care systems, large social inequalities, and isolated clinical and research initiatives makes the coordination of efforts imperative. The Latin America and the Caribbean Consortium on Dementia (LAC-CD) is a regional organization overseeing and promoting clinical and research activities on dementia. Here, we first provide an overview of the consortium, highlighting the antecedents and current mission. Then, we present the consortium’s regional research, including the multi-partner consortium to expand dementia research in Latin America (ReDLat), which aims to identify the unique genetic, social, and economic factors that drive Alzheimer’s and frontotemporal dementia presentation in LAC relative to the US. We describe an extension of ReDLat which aims to develop affordable markers of disease subtype and severity using high density EEG. We introduce current initiatives promoting regional diagnosis, visibility, and capacity, including the forthcoming launch of the Latin American Brain Health Institute (BrainLat). We discuss LAC-CD-led advances in brain health diplomacy, including an assessment of responses to the impact of COVID-19 on people with dementia and examining the knowledge of public policies among experts in the region. Finally, we present the current knowledge-to-action framework, which paves the way for a future regional action plan. Coordinated actions are crucial to forging strong regional bonds, supporting the implementation of regional dementia plans, improving health systems, and expanding research collaborations across Latin America.
Collapse
Affiliation(s)
- Agustin Ibanez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA.,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Barranquilla, Colombia.,Latin American Institute for Brain Health (BrainLat), Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago de Chile, Chile
| | - Mario A Parra
- Universidad Autónoma del Caribe, Barranquilla, Barranquilla, Colombia.,School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Christopher Butler
- Department of Brain Sciences, Imperial College London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Instituto de Neurología Cognitiva, Buenos Aires, Argentina.,Departamento de Neurología, Pontificia Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
23
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
24
|
Salamone PC, Legaz A, Sedeño L, Moguilner S, Fraile-Vazquez M, Campo CG, Fittipaldi S, Yoris A, Miranda M, Birba A, Galiani A, Abrevaya S, Neely A, Caro MM, Alifano F, Villagra R, Anunziata F, Okada de Oliveira M, Pautassi RM, Slachevsky A, Serrano C, García AM, Ibañez A. Interoception Primes Emotional Processing: Multimodal Evidence from Neurodegeneration. J Neurosci 2021; 41:4276-4292. [PMID: 33827935 PMCID: PMC8143206 DOI: 10.1523/jneurosci.2578-20.2021] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease (PD), and Alzheimer's disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of nteroception, emotion, allostasis, and neurodegeneration.SIGNIFICANCE STATEMENT We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson's disease), whereas persons with Alzheimer's disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Paula C Salamone
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustina Legaz
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Nuclear Medicine School Foundation, National Commission of Atomic Energy, Mendoza, Argentina
| | | | - Cecilia Gonzalez Campo
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sol Fittipaldi
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adrián Yoris
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Magdalena Miranda
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Agustina Birba
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agostina Galiani
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Sofía Abrevaya
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Alejandra Neely
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Miguel Martorell Caro
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Florencia Alifano
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Roque Villagra
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Florencia Anunziata
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Maira Okada de Oliveira
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
- Department of Neurology, Hospital Santa Marcelina, Sao Paulo, SP Brazil
| | - Ricardo M Pautassi
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
- Gerosciences Center for Brain Health and Metabolism, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Serrano
- Neurología Cognitiva, Hospital Cesar Milstein, Buenos Aires, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Faculty of Education, National University of Cuyo, Mendoza, M5502JMA, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibañez
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
25
|
Neuroanatomy of complex social emotion dysregulation in adolescent offenders. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:1083-1100. [PMID: 33973160 DOI: 10.3758/s13415-021-00903-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Social emotions require the correct integration of emotional, cognitive, and social processes and are critical for complex social interactions. Adolescent criminal offenders (AOs) show abnormalities in the experience of basic emotions. However, most research has focused solely on basic emotions, neglecting complex social emotions that could be critical for social reintegration. The purpose of this study was to investigate the behavioral and neural correlates of social emotions (envy and Schadenfreude) in AOs. We explored the experience of complex social emotions, as well as their anatomical correlates, in AOs (n = 19) and a nonoffenders control group (NOs, n = 20). Additionally, we assessed the relationship between social emotions, executive functions (EFs), and fluid intelligence (FI). Structural brain imaging was obtained in all participants. The results showed that AOs had significantly lower envy and Schadenfreude ratings and exhibited lower performance in EFs compared with NOs. The measurement of EFs relied on the INECO frontal screening (IFS). Experiencing fewer social emotions was associated with diminished EFs but not with FI. Moreover, in AOs, reduced levels of envy and Schadenfreude were linked with reduced gray matter volumes in regions subserving mentalizing abilities (inferior parietal lobe and precuneus) and socioemotional processing (inferior and middle temporal regions), as well as key hubs of the executive frontoparietal network (inferior parietal lobule, orbital and rectus gyri). Additional analysis on the AOs revealed no associations between the type of crime and our variables of interest (EFs, FI and social emotions). Our findings are the first to provide evidence on abnormalities in the experience of social emotions in AOs that are associated with neurocognitive markers of social cognition and EFs. Understanding social emotions and their abnormalities (under-experience) as complex intertwined processes may have important future translational implications, including risk prediction for social adaptation/reintegration, sociocognitive targeted interventions, and skill training for social emotions in vulnerable populations.
Collapse
|
26
|
Ibanez A, Yokoyama JS, Possin KL, Matallana D, Lopera F, Nitrini R, Takada LT, Custodio N, Sosa Ortiz AL, Avila-Funes JA, Behrens MI, Slachevsky A, Myers RM, Cochran JN, Brusco LI, Bruno MA, Brucki SMD, Pina-Escudero SD, Okada de Oliveira M, Donnelly Kehoe P, Garcia AM, Cardona JF, Santamaria-Garcia H, Moguilner S, Duran-Aniotz C, Tagliazucchi E, Maito M, Longoria Ibarrola EM, Pintado-Caipa M, Godoy ME, Bakman V, Javandel S, Kosik KS, Valcour V, Miller BL. The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat): Driving Multicentric Research and Implementation Science. Front Neurol 2021; 12:631722. [PMID: 33776890 PMCID: PMC7992978 DOI: 10.3389/fneur.2021.631722] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Dementia is becoming increasingly prevalent in Latin America, contrasting with stable or declining rates in North America and Europe. This scenario places unprecedented clinical, social, and economic burden upon patients, families, and health systems. The challenges prove particularly pressing for conditions with highly specific diagnostic and management demands, such as frontotemporal dementia. Here we introduce a research and networking initiative designed to tackle these ensuing hurdles, the Multi-partner consortium to expand dementia research in Latin America (ReDLat). First, we present ReDLat's regional research framework, aimed at identifying the unique genetic, social, and economic factors driving the presentation of frontotemporal dementia and Alzheimer's disease in Latin America relative to the US. We describe ongoing ReDLat studies in various fields and ongoing research extensions. Then, we introduce actions coordinated by ReDLat and the Latin America and Caribbean Consortium on Dementia (LAC-CD) to develop culturally appropriate diagnostic tools, regional visibility and capacity building, diplomatic coordination in local priority areas, and a knowledge-to-action framework toward a regional action plan. Together, these research and networking initiatives will help to establish strong cross-national bonds, support the implementation of regional dementia plans, enhance health systems' infrastructure, and increase translational research collaborations across the continent.
Collapse
Affiliation(s)
- Agustin Ibanez
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Jennifer S. Yokoyama
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Katherine L. Possin
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Diana Matallana
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Mental Health Unit, Hospital Universitario Santa Fe de Bogotá, Bogotá, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Nilton Custodio
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Ana Luisa Sosa Ortiz
- Instituto Nacional de Neurologia y Neurocirugia MVS, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - José Alberto Avila-Funes
- Department of Geriatrics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Maria Isabel Behrens
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurociencia, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Slachevsky
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, Institute of Biomedical Sciences, Neuroscience and East Neuroscience, Santiago, Chile
- Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Faculty of Medicine, Hospital del Salvador, University of Chile, Santiago, Chile
| | - Richard M. Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Luis Ignacio Brusco
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- ALZAR – Alzheimer, Buenos Aires, Argentina
| | - Martin A. Bruno
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad Ciencias Médicas, Instituto Ciencias Biomédicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Sonia M. D. Brucki
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Stefanie Danielle Pina-Escudero
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Maira Okada de Oliveira
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Patricio Donnelly Kehoe
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences, Rosario, Argentina
| | - Adolfo M. Garcia
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Education, National University of Cuyo, Mendoza, Argentina
| | | | - Hernando Santamaria-Garcia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Ph.D. Program in Neuroscience, Department of Psychiatry, Physiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sebastian Moguilner
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Claudia Duran-Aniotz
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Enzo Tagliazucchi
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Maito
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | | | - Maritza Pintado-Caipa
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Maria Eugenia Godoy
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Vera Bakman
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Shireen Javandel
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kenneth S. Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Victor Valcour
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
27
|
Garcia-Cordero I, Migeot J, Fittipaldi S, Aquino A, Campo CG, García A, Ibáñez A. Metacognition of emotion recognition across neurodegenerative diseases. Cortex 2021; 137:93-107. [PMID: 33609899 DOI: 10.1016/j.cortex.2020.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Metacognition (monitoring) of emotion recognition is fundamental for social interactions. Correct recognition of and confidence in the emotional meaning inferred from others' faces are fundamental for guiding and adjusting interpersonal behavior. Yet, although emotion recognition impairments are well documented across neurodegenerative diseases, the role of metacognition in this domain remains poorly understood. Here, we evaluate multimodal neurocognitive markers of metacognition in 83 subjects, encompassing patients with behavioral variant frontotemporal dementia [bvFTD, n = 18], Alzheimer's disease [AD, n = 27], and demographically-matched controls (n = 38). Participants performed a classical facial emotion recognition task and, after each trial, they rated their confidence in their performance. We examined two measures of metacognition: (i) calibration: how well confidence tracks accuracy; and (ii) a metacognitive index (MI) capturing the magnitude of the difference between confidence and accuracy. Then, whole-brain grey matter volume and fMRI-derived resting-state functional connectivity were analyzed to track associations with metacognition. Results showed that metacognition deficits were linked to basic emotion recognition. Metacognition of negative emotions was compromised in patients, especially disgust in bvFTD as well as sadness in AD. Metacognition impairments were associated with reduced volume of fronto-temporo-insular and subcortical areas in bvFTD and fronto-parietal regions in AD. Metacognition deficits were associated with disconnection of large-scale fronto-posterior networks for both groups. This study reveals a link between emotion recognition and metacognition in neurodegenerative diseases. The characterization of metacognitive impairments in bvFTD and AD would be relevant for understanding patients' daily life changes in social behavior.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Joaquín Migeot
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Sol Fittipaldi
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | | | - Cecilia Gonzalez Campo
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo García
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo, Mendoza, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; Global Brain Health Institute, University of California, San Francisco, USA
| | - Agustín Ibáñez
- Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile; Global Brain Health Institute, University of California, San Francisco, USA.
| |
Collapse
|
28
|
Moguilner S, García AM, Perl YS, Tagliazucchi E, Piguet O, Kumfor F, Reyes P, Matallana D, Sedeño L, Ibáñez A. Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study. Neuroimage 2021; 225:117522. [PMID: 33144220 PMCID: PMC7832160 DOI: 10.1016/j.neuroimage.2020.117522] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of neurodegeneration. Yet, traditional fMRI research on resting-state networks (RSNs) has favored static and average connectivity methods, which by overlooking the fluctuation dynamics triggered by neurodegeneration, have yielded inconsistent results. The present multicenter study introduces a data-driven machine learning pipeline based on dynamic connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participants belonging to three groups: behavioral variant frontotemporal dementia (bvFTD) patients, Alzheimer's disease (AD) patients, and healthy controls. We considered non-linear oscillatory patterns across combined and individual resting-state networks (RSNs), namely: the salience network (SN), mostly affected in bvFTD; the default mode network (DMN), mostly affected in AD; the executive network (EN), partially compromised in both conditions; the motor network (MN); and the visual network (VN). These RSNs were entered as features for dementia classification using a recent robust machine learning approach (a Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), across four independent datasets with different MR scanners and recording parameters. The machine learning classification accuracy analysis revealed a systematic and unique tailored architecture of RSN disruption. The classification accuracy ranking showed that the most affected networks for bvFTD were the SN + EN network pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity = 87.54%); for AD, the DMN + EN network pair (mean accuracy = 86.63%, AUC = 0.89, sensitivity = 88.37%, specificity = 84.62%); and for the bvFTD vs. AD classification, the DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitivity = 81.27%, specificity = 83.01%). Moreover, the DFCA classification systematically outperformed canonical connectivity approaches (including both static and linear dynamic connectivity). Our findings suggest that non-linear dynamical fluctuations surpass two traditional seed-based functional connectivity approaches and provide a pathophysiological characterization of global brain networks in neurodegenerative conditions (AD and bvFTD) across multicenter data.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Yonatan Sanz Perl
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Argentina
| | - Olivier Piguet
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Fiona Kumfor
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Pablo Reyes
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana; Mental Health Unit, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia, Hospital Universitario San Ignacio. Bogotá, Colombia
| | - Diana Matallana
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana; Mental Health Unit, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia, Hospital Universitario San Ignacio. Bogotá, Colombia
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| | - Agustín Ibáñez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Universidad Autónoma del Caribe, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.
| |
Collapse
|
29
|
Ibañez A, Fittipaldi S, Trujillo C, Jaramillo T, Torres A, Cardona JF, Rivera R, Slachevsky A, García A, Bertoux M, Baez S. Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes. J Alzheimers Dis 2021; 83:227-248. [PMID: 34275897 PMCID: PMC8461708 DOI: 10.3233/jad-210163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes. OBJECTIVE We performed a diagnostic classification analysis using social cognition, cognitive screening (CS), and executive function (EF) measures, and explored which anatomical and functional networks were associated with main predictors. METHODS Multiple group discriminant function analyses (MDAs) and ROC analyses of social cognition (facial emotional recognition, theory of mind), CS, and EF were implemented in 223 participants (bvFTD, AD, PD, controls). Gray matter volume and functional connectivity correlates of top discriminant scores were investigated. RESULTS Although all patient groups revealed deficits in social cognition, CS, and EF, our classification approach provided robust discriminatory characterizations. Regarding controls, probabilistic social cognition outcomes provided the best characterization for bvFTD (together with CS) and PD, but not AD (for which CS alone was the best predictor). Within patient groups, the best MDA probabilities scores yielded high classification rates for bvFTD versus PD (98.3%, social cognition), AD versus PD (98.6%, social cognition + CS), and bvFTD versus AD (71.7%, social cognition + CS). Top MDA scores were associated with specific patterns of atrophy and functional networks across neurodegenerative conditions. CONCLUSION Standardized validated measures of social cognition, in combination with CS, can provide a dimensional classification with specific pathophysiological markers of neurodegeneration diagnoses.
Collapse
Affiliation(s)
- Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA, USA
- Global Brain Health Institute, Trinity College Dublin (TCD), Dublin, Ireland
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Tania Jaramillo
- Instituto de Psicología, Universidad del Valle, Cali, Colombia
| | | | - Juan F. Cardona
- Instituto de Psicología, Universidad del Valle, Cali, Colombia
| | - Rodrigo Rivera
- Neuroradiology Department, Instituto de Neurocirugia, Universidad de Chile, Santiago, Chile
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - ICBM, Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Adolfo García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, CA, USA
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Maxime Bertoux
- Lille Center of Excellence for Neurodegenerative Disorders (LICEND), CHU Lille, U1172 - Lille Neurosciences & Cognition, Université de Lille, Inserm, Lille, France
| | | |
Collapse
|
30
|
Arias JA, Williams C, Raghvani R, Aghajani M, Baez S, Belzung C, Booij L, Busatto G, Chiarella J, Fu CH, Ibanez A, Liddell BJ, Lowe L, Penninx BWJH, Rosa P, Kemp AH. The neuroscience of sadness: A multidisciplinary synthesis and collaborative review. Neurosci Biobehav Rev 2020; 111:199-228. [PMID: 32001274 DOI: 10.1016/j.neubiorev.2020.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Sadness is typically characterized by raised inner eyebrows, lowered corners of the mouth, reduced walking speed, and slumped posture. Ancient subcortical circuitry provides a neuroanatomical foundation, extending from dorsal periaqueductal grey to subgenual anterior cingulate, the latter of which is now a treatment target in disorders of sadness. Electrophysiological studies further emphasize a role for reduced left relative to right frontal asymmetry in sadness, underpinning interest in the transcranial stimulation of left dorsolateral prefrontal cortex as an antidepressant target. Neuroimaging studies - including meta-analyses - indicate that sadness is associated with reduced cortical activation, which may contribute to reduced parasympathetic inhibitory control over medullary cardioacceleratory circuits. Reduced cardiac control may - in part - contribute to epidemiological reports of reduced life expectancy in affective disorders, effects equivalent to heavy smoking. We suggest that the field may be moving toward a theoretical consensus, in which different models relating to basic emotion theory and psychological constructionism may be considered as complementary, working at different levels of the phylogenetic hierarchy.
Collapse
Affiliation(s)
- Juan A Arias
- Department of Psychology, Swansea University, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain
| | - Claire Williams
- Department of Psychology, Swansea University, United Kingdom
| | - Rashmi Raghvani
- Department of Psychology, Swansea University, United Kingdom
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | | | - Linda Booij
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | | | - Julian Chiarella
- Department of Psychology, Concordia University Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Cynthia Hy Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Agustin Ibanez
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Universidad Autonoma del Caribe, Barranquilla, Colombia; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), New South Wales, Australia
| | | | - Leroy Lowe
- Neuroqualia (NGO), Turo, Nova Scotia, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Pedro Rosa
- Department of Psychiatry, University of Sao Paulo, Brazil
| | - Andrew H Kemp
- Department of Psychology, Swansea University, United Kingdom; Department of Psychiatry, University of Sao Paulo, Brazil; Discipline of Psychiatry, and School of Psychology, University of Sydney, Sydney, Australia.
| |
Collapse
|
31
|
Fittipaldi S, Abrevaya S, Fuente ADL, Pascariello GO, Hesse E, Birba A, Salamone P, Hildebrandt M, Martí SA, Pautassi RM, Huepe D, Martorell MM, Yoris A, Roca M, García AM, Sedeño L, Ibáñez A. A multidimensional and multi-feature framework for cardiac interoception. Neuroimage 2020; 212:116677. [PMID: 32101777 DOI: 10.1016/j.neuroimage.2020.116677] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/04/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022] Open
Abstract
Interoception (the sensing of inner-body signals) is a multi-faceted construct with major relevance for basic and clinical neuroscience research. However, the neurocognitive signatures of this domain (cutting across behavioral, electrophysiological, and fMRI connectivity levels) are rarely reported in convergent or systematic fashion. Additionally, various controversies in the field might reflect the caveats of standard interoceptive accuracy (IA) indexes, mainly based on heartbeat detection (HBD) tasks. Here we profit from a novel IA index (md) to provide a convergent multidimensional and multi-feature approach to cardiac interoception. We found that outcomes from our IA-md index are associated with -and predicted by- canonical markers of interoception, including the hd-EEG-derived heart-evoked potential (HEP), fMRI functional connectivity within interoceptive hubs (insular, somatosensory, and frontal networks), and socio-emotional skills. Importantly, these associations proved more robust than those involving current IA indexes. Furthermore, this pattern of results persisted when taking into consideration confounding variables (gender, age, years of education, and executive functioning). This work has relevant theoretical and clinical implications concerning the characterization of cardiac interoception and its assessment in heterogeneous samples, such as those composed of neuropsychiatric patients.
Collapse
Affiliation(s)
- Sol Fittipaldi
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Sofía Abrevaya
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Alethia de la Fuente
- National Scientific and Technical Research Council (CONICET), Argentina; Buenos Aires Physics Institute (IFIBA) and Physics Department, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Neuropsychology (LNPS), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Guido Orlando Pascariello
- National Scientific and Technical Research Council (CONICET), Argentina; Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences (CIFASIS), National Scientific and Technical Research Council (CONICET), Argentina; Laboratory of Neuroimaging and Neuroscience (LANEN), INECO Foundation Rosario, Argentina
| | - Eugenia Hesse
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina; Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
| | - Agustina Birba
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Paula Salamone
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Malin Hildebrandt
- Chair for Addiction Research, Institute for Clinical Psychology and Psychotherapy, Dresden, Germany
| | - Sofía Alarco Martí
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Ricardo Marcos Pautassi
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Miquel Martorell Martorell
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Adrián Yoris
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - María Roca
- National Scientific and Technical Research Council (CONICET), Argentina; Laboratory of Neuropsychology (LNPS), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Universidad Autónoma Del Caribe, Barranquilla, Colombia; ARC Excellence Center of Cognition and its Disorders, Sydney, Australia.
| |
Collapse
|
32
|
Bachli MB, Sedeño L, Ochab JK, Piguet O, Kumfor F, Reyes P, Torralva T, Roca M, Cardona JF, Campo CG, Herrera E, Slachevsky A, Matallana D, Manes F, García AM, Ibáñez A, Chialvo DR. Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach. Neuroimage 2019; 208:116456. [PMID: 31841681 PMCID: PMC7008715 DOI: 10.1016/j.neuroimage.2019.116456] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/29/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Accurate early diagnosis of neurodegenerative diseases represents a growing challenge for current clinical practice. Promisingly, current tools can be complemented by computational decision-support methods to objectively analyze multidimensional measures and increase diagnostic confidence. Yet, widespread application of these tools cannot be recommended unless they are proven to perform consistently and reproducibly across samples from different countries. We implemented machine-learning algorithms to evaluate the prediction power of neurocognitive biomarkers (behavioral and imaging measures) for classifying two neurodegenerative conditions –Alzheimer Disease (AD) and behavioral variant frontotemporal dementia (bvFTD)– across three different countries (>200 participants). We use machine-learning tools integrating multimodal measures such as cognitive scores (executive functions and cognitive screening) and brain atrophy volume (voxel based morphometry from fronto-temporo-insular regions in bvFTD, and temporo-parietal regions in AD) to identify the most relevant features in predicting the incidence of the diseases. In the Country-1 cohort, predictions of AD and bvFTD became maximally improved upon inclusion of cognitive screenings outcomes combined with atrophy levels. Multimodal training data from this cohort allowed predicting both AD and bvFTD in the other two novel datasets from other countries with high accuracy (>90%), demonstrating the robustness of the approach as well as the differential specificity and reliability of behavioral and neural markers for each condition. In sum, this is the first study, across centers and countries, to validate the predictive power of cognitive signatures combined with atrophy levels for contrastive neurodegenerative conditions, validating a benchmark for future assessments of reliability and reproducibility.
Collapse
Affiliation(s)
- M Belen Bachli
- Center for Complex Systems & Brain Sciences (CEMSC(3)), Escuela de Ciencia y Tecnologia (ECyT), Universidad Nacional de San Martín, 25 de Mayo 1169, San Martín, (1650), Buenos Aires, Argentina
| | - Lucas Sedeño
- Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina.
| | - Jeremi K Ochab
- Marian Smoluchowski Institute of Physics, Mark Kac Complex Systems Research Center Jagiellonian University, Ul. Łojasiewicza 11, PL30-348, Kraków, Poland
| | - Olivier Piguet
- ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
| | - Fiona Kumfor
- ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
| | - Pablo Reyes
- Radiology, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia; Medical School, Physiology Sciences, Psychiatry and Mental Health Pontificia Universidad Javeriana (PUJ) - Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia
| | - Teresa Torralva
- Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - María Roca
- Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | | | - Cecilia Gonzalez Campo
- Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | - Andrea Slachevsky
- Gerosciences Center for Brain Health and Metabolism, Santiago, Chile; Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, Neurosciences Department, East Neuroscience Department, Faculty of Medicine, University of Chile, Avenida Salvador 486, Providencia, Santiago, Chile; Memory and Neuropsychiatric Clinic (CMYN) Neurology Department- Hospital del Salvador & University of Chile, Av. Salvador 364, Providencia, Santiago, Chile; Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Chile
| | - Diana Matallana
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana (PUJ) - Centro de Memoria y Cognición Intellectus. Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia
| | - Facundo Manes
- Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia
| | - Adolfo M García
- Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Sobremonte 74, C5500, Mendoza, Argentina
| | - Agustín Ibáñez
- Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; Universidad Autónoma del Caribe, Calle 90, No 46-112, C2754, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640, Santiago, Chile
| | - Dante R Chialvo
- Center for Complex Systems & Brain Sciences (CEMSC(3)), Escuela de Ciencia y Tecnologia (ECyT), Universidad Nacional de San Martín, 25 de Mayo 1169, San Martín, (1650), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina
| |
Collapse
|
33
|
Donnelly-Kehoe PA, Pascariello GO, García AM, Hodges JR, Miller B, Rosen H, Manes F, Landin-Romero R, Matallana D, Serrano C, Herrera E, Reyes P, Santamaria-Garcia H, Kumfor F, Piguet O, Ibanez A, Sedeño L. Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:588-598. [PMID: 31497638 PMCID: PMC6719282 DOI: 10.1016/j.dadm.2019.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. METHODS We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. RESULTS Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). DISCUSSION This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis.
Collapse
Affiliation(s)
- Patricio Andres Donnelly-Kehoe
- Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences (CIFASIS) - National Scientific and Technical Research Council (CONICET), Rosario, Argentina
- Laboratory of Neuroimaging and Neuroscience (LANEN), INECO Foundation Rosario, Rosario, Argentina
| | - Guido Orlando Pascariello
- Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences (CIFASIS) - National Scientific and Technical Research Council (CONICET), Rosario, Argentina
- Laboratory of Neuroimaging and Neuroscience (LANEN), INECO Foundation Rosario, Rosario, Argentina
| | - Adolfo M. García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - John R. Hodges
- Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, Australia
- The University of Sydney, Brain and Mind Centre and Clinical Medical School, Sydney, Australia
| | - Bruce Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Howie Rosen
- Department of Neurology, Memory Aging Center, University of California, San Francisco, CA, USA
| | - Facundo Manes
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, Australia
| | - Ramon Landin-Romero
- Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, Australia
- The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
| | - Diana Matallana
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana (PUJ), Bogotá, Colombia
| | - Cecilia Serrano
- Memory and Balance Clinic, Buenos Aires, Argentina
- Department of Neurology, Dr Cesar Milstein Hospital, Buenos Aires, Argentina
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia (eduar)
| | - Pablo Reyes
- Radiology, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia
- Pontificia Universidad Javeriana, Departments of Physiology and Psychiatry – Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Hernando Santamaria-Garcia
- Radiology, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia
- Pontificia Universidad Javeriana, Departments of Physiology and Psychiatry – Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Fiona Kumfor
- Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, Australia
- The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
| | - Olivier Piguet
- Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, Australia
- The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
| | - Agustin Ibanez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, Australia
- Universidad Autónoma del Caribe, Barranquilla, Colombia
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
34
|
Explicit and implicit monitoring in neurodegeneration and stroke. Sci Rep 2019; 9:14032. [PMID: 31575976 PMCID: PMC6773765 DOI: 10.1038/s41598-019-50599-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Monitoring is a complex multidimensional neurocognitive phenomenon. Patients with fronto-insular stroke (FIS), behavioural variant frontotemporal dementia (bvFTD) and Alzheimer’s disease (AD) show a lack of self-awareness, insight, and self-monitoring, which translate into anosognosia and daily behavioural impairments. Notably, they also present damage in key monitoring areas. While neuroscientific research on this domain has accrued in recent years, no previous study has compared monitoring performance across these brain diseases and none has applied a multiple lesion model approach combined with neuroimaging analysis. Here, we evaluated explicit and implicit monitoring in patients with focal stoke (FIS) and two types of dementia (bvFTD and AD) presenting damage in key monitoring areas. Participants performed a visual perception task and provided two types of report: confidence (explicit judgment of trust about their performance) and wagering (implicit reports which consisted in betting on their accuracy in the perceptual task). Then, damaged areas were analyzed via structural MRI to identify associations with potential behavioral deficits. In AD, inadequate confidence judgments were accompanied by poor wagering performance, demonstrating explicit and implicit monitoring impairments. By contrast, disorders of implicit monitoring in FIS and bvFTD patients occurred in the context of accurate confidence reports, suggesting a reduced ability to turn self-knowledge into appropriate wagering conducts. MRI analysis showed that ventromedial compromise was related to overconfidence, whereas fronto-temporo-insular damage was associated with excessive wagering. Therefore, joint assessment of explicit and implicit monitoring could favor a better differentiation of neurological profiles (frontal damage vs AD) and eventually contribute to delineating clinical interventions.
Collapse
|
35
|
Santacruz Escudero JM, Beltrán J, Palacios Á, Chimbí CM, Matallana D, Reyes P, Perez-Sola V, Santamaría-García H. Neuropsychiatric Symptoms as Predictors of Clinical Course in Neurodegeneration. A Longitudinal Study. Front Aging Neurosci 2019; 11:176. [PMID: 31396074 PMCID: PMC6668630 DOI: 10.3389/fnagi.2019.00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
Background: To study the extent to which neuropsychiatric symptoms (NPS) influence the cognitive and functional decline in frontotemporal degeneration (FTD) and Alzheimer’s disease (AD). Methods: We assessed the progression of NPS and their influence on cognitive and functional progression in a group of FTD (n = 36) and AD patients (n = 47) at two different stages of the disease (2.5 years). A standardized scale was used to assess NPS—the Columbia University Scale for Psychopathology in Alzheimer’s Disease (CUSPAD)—which tracks different symptoms including depression, psychotic symptoms, as well as sleep and conduct problems. In addition, in a subsample of patients (AD n = 14 and FTD n = 14), we analyzed another group of NPS by using the Neuropsychiatric Inventory (NPI). Cognitive declines were tracked by using the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE), while functionality was tracked by using the Lawton scale and the Barthel Index. Results: The presence of NPS impacts cognitive and functional decline in both groups of patients 2.5 years after disease onset. However, we observed a dissociable profile of the affectation of NPS in each group. In the AD group, results indicate that the progression of depressive symptoms and sleep problems predict cognitive and functional decline. In contrast, the progression of a mixed group of NPS, including conduct problems and delusions, predicts cognitive and functional decline in FTD. Conclusion: The presence of NPS has a critical impact on the prediction of cognitive decline in FTD and AD patients after 2.5 years of disease progression. Our results demonstrate the importance of assessing different types of NPS in neurodegenerative disorders which, in turn, predict disease progression. Future studies should assess the role of NPS in predicting different neurocognitive pathways and in neurodegeneration.
Collapse
Affiliation(s)
- José Manuel Santacruz Escudero
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia.,Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia.,Department of Psychiatry and Forensic Medicine, Univesitat Autonòma de Bercelona, Barcelona, Spain
| | - Jonathan Beltrán
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Álvaro Palacios
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Marcela Chimbí
- Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Diana Matallana
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pablo Reyes
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia.,Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Victor Perez-Sola
- Department of Psychiatry and Forensic Medicine, Univesitat Autonòma de Bercelona, Barcelona, Spain
| | - Hernando Santamaría-García
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia.,Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
36
|
de la Fuente A, Sedeño L, Vignaga SS, Ellmann C, Sonzogni S, Belluscio L, García-Cordero I, Castagnaro E, Boano M, Cetkovich M, Torralva T, Cánepa ET, Tagliazucchi E, Garcia AM, Ibañez A. Multimodal neurocognitive markers of interoceptive tuning in smoked cocaine. Neuropsychopharmacology 2019; 44:1425-1434. [PMID: 30867552 PMCID: PMC6784987 DOI: 10.1038/s41386-019-0370-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 12/21/2022]
Abstract
Contemporary neurocognitive models of drug addiction have associated this condition with changes in interoception -namely, the sensing and processing of body signals that fulfill homeostatic functions relevant for the onset and maintenance of addictive behavior. However, most previous evidence is inconsistent, behaviorally unspecific, and virtually null in terms of direct electrophysiological and multimodal markers. To circumvent these limitations, we conducted the first assessment of the relation between cardiac interoception and smoked cocaine dependence (SCD) in a sample of (a) 25 participants who fulfilled criteria for dependence on such a drug, (b) 22 participants addicted to insufflated clorhidrate cocaine (only for behavioral assessment), and (c) 25 healthy controls matched by age, gender, education, and socioeconomic status. We use a validated heartbeat-detection (HBD) task and measured modulations of the heart-evoked potential (HEP) during interoceptive accuracy and interoceptive learning conditions. We complemented this behavioral and electrophysiological data with offline structural (MRI) and functional connectivity (fMRI) analysis of the main interoceptive hubs. HBD and HEP results convergently showed that SCD subjects presented ongoing psychophysiological measures of enhanced interoceptive accuracy. This pattern was associated with a structural and functional tuning of interoceptive networks (reduced volume and specialized network segregation). Taken together, our findings provide the first evidence of an association between cardiac interoception and smoked cocaine, partially supporting models that propose hyper-interoception as a key aspect of addiction. More generally, our study shows that multimodal assessments of interoception could substantially inform the clinical and neurocognitive characterization of psychophysiological and neurocognitive adaptations triggered by addiction.
Collapse
Affiliation(s)
- Alethia de la Fuente
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina ,0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Lucas Sedeño
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina ,0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sofia Schurmann Vignaga
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Camila Ellmann
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Silvina Sonzogni
- 0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina ,0000 0001 1945 2152grid.423606.5Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Laura Belluscio
- 0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina ,0000 0001 1945 2152grid.423606.5Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Indira García-Cordero
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina ,0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Eugenia Castagnaro
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Magdalena Boano
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Marcelo Cetkovich
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Teresa Torralva
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Eduardo T. Cánepa
- 0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina ,0000 0001 1945 2152grid.423606.5Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- 0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina ,0000 0001 0056 1981grid.7345.5Buenos Aires Physics Institute (IFIBA) and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Adolfo M. Garcia
- 0000 0004 0608 3193grid.411168.bInstitute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina ,0000 0001 1945 2152grid.423606.5National Scientific and Technical Research Council, Buenos Aires, Argentina ,0000 0001 2185 5065grid.412108.eFaculty of Education, National University of Cuyo (UNCuyo), Mendoza, M5502JMA Argentina
| | - Agustín Ibañez
- Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina. .,National Scientific and Technical Research Council, Buenos Aires, Argentina. .,Universidad Autónoma del Caribe, Barranquilla, Colombia. .,Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile. .,Australian Research Council, Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts. Neuroscience 2019; 403:35-53. [DOI: 10.1016/j.neuroscience.2017.10.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
|
38
|
Mandelli ML, Welch AE, Vilaplana E, Watson C, Battistella G, Brown JA, Possin KL, Hubbard HI, Miller ZA, Henry ML, Marx GA, Santos-Santos MA, Bajorek LP, Fortea J, Boxer A, Rabinovici G, Lee S, Deleon J, Rosen HJ, Miller BL, Seeley WW, Gorno-Tempini ML. Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex 2018; 108:252-264. [PMID: 30292076 DOI: 10.1016/j.cortex.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neurodegeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neurodegeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention.
Collapse
Affiliation(s)
- Maria Luisa Mandelli
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA.
| | - Ariane E Welch
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Eduard Vilaplana
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autonoma de Barcelona, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas - CIBERNED, Spain
| | - Christa Watson
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Giovanni Battistella
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Katherine L Possin
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Honey I Hubbard
- Department of Communication Science and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Zachary A Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Maya L Henry
- Department of Communication Sciences and Disorders, University of Texas, Austin, USA
| | - Gabe A Marx
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Miguel A Santos-Santos
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain; Fundació ACE Memory Clinic and Research Center, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Lynn P Bajorek
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autonoma de Barcelona, Spain
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Gil Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Suzee Lee
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Jessica Deleon
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA; Department of Pathology, University of California San Francisco, CA, USA
| | | |
Collapse
|
39
|
Steeb B, García-Cordero I, Huizing MC, Collazo L, Borovinsky G, Ferrari J, Cuitiño MM, Ibáñez A, Sedeño L, García AM. Progressive Compromise of Nouns and Action Verbs in Posterior Cortical Atrophy. Front Psychol 2018; 9:1345. [PMID: 30123155 PMCID: PMC6085559 DOI: 10.3389/fpsyg.2018.01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Processing of nouns and action verbs can be differentially compromised following lesions to posterior and anterior/motor brain regions, respectively. However, little is known about how these deficits progress in the course of neurodegeneration. To address this issue, we assessed productive lexical skills in a patient with posterior cortical atrophy (PCA) at two different stages of his pathology. On both occasions, he underwent a structural brain imaging protocol and completed semantic fluency tasks requiring retrieval of animals (nouns) and actions (verbs). Imaging results were compared with those of controls via voxel-based morphometry (VBM), whereas fluency performance was compared to age-matched norms through Crawford's t-tests. In the first assessment, the patient exhibited atrophy of more posterior regions supporting multimodal semantics (medial temporal and lingual gyri), together with a selective deficit in noun fluency. Then, by the second assessment, the patient's atrophy had progressed mainly toward fronto-motor regions (rolandic operculum, inferior and superior frontal gyri) and subcortical motor hubs (cerebellum, thalamus), and his fluency impairments had extended to action verbs. These results offer unprecedented evidence of the specificity of the pathways related to noun and action-verb impairments in the course of neurodegeneration, highlighting the latter's critical dependence on damage to regions supporting motor functions, as opposed to multimodal semantic processes.
Collapse
Affiliation(s)
- Brenda Steeb
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Indira García-Cordero
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Marjolein C Huizing
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucas Collazo
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Geraldine Borovinsky
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Jesica Ferrari
- Department of Language Speech, Institute of Cognitive Neurology, Buenos Aires, Argentina
| | - Macarena M Cuitiño
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Psychology, Favaloro University, Buenos Aires, Argentina.,Faculty of Psychology, University of Buenos Aires, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
40
|
Weighted Symbolic Dependence Metric (wSDM) for fMRI resting-state connectivity: A multicentric validation for frontotemporal dementia. Sci Rep 2018; 8:11181. [PMID: 30046142 PMCID: PMC6060104 DOI: 10.1038/s41598-018-29538-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/13/2018] [Indexed: 11/27/2022] Open
Abstract
The search for biomarkers of neurodegenerative diseases via fMRI functional connectivity (FC) research has yielded inconsistent results. Yet, most FC studies are blind to non-linear brain dynamics. To circumvent this limitation, we developed a “weighted Symbolic Dependence Metric” (wSDM) measure. Using symbolic transforms, we factor in local and global temporal features of the BOLD signal to weigh a robust copula-based dependence measure by symbolic similarity, capturing both linear and non-linear associations. We compared this measure with a linear connectivity metric (Pearson’s R) in its capacity to identify patients with behavioral variant frontotemporal dementia (bvFTD) and controls based on resting-state data. We recruited participants from two international centers with different MRI recordings to assess the consistency of our measure across heterogeneous conditions. First, a seed-analysis comparison of the salience network (a specific target of bvFTD) and the default-mode network (as a complementary control) between patients and controls showed that wSDM yields better identification of resting-state networks. Moreover, machine learning analysis revealed that wSDM yielded higher classification accuracy. These results were consistent across centers, highlighting their robustness despite heterogeneous conditions. Our findings underscore the potential of wSDM to assess fMRI-derived FC data, and to identify sensitive biomarkers in bvFTD.
Collapse
|
41
|
Ibáñez A, Sedeño L, García AM, Deacon RMJ, Cogram P. Editorial: Human and Animal Models for Translational Research on Neurodegeneration: Challenges and Opportunities From South America. Front Aging Neurosci 2018; 10:95. [PMID: 29681845 PMCID: PMC5897422 DOI: 10.3389/fnagi.2018.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney, NSW, Australia
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Robert M J Deacon
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Faculty of Science, Institute of Ecology and Biodiversity, University of Chile, Santiago, Chile
| | - Patricia Cogram
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Faculty of Science, Institute of Ecology and Biodiversity, University of Chile, Santiago, Chile
| |
Collapse
|
42
|
Yoris A, Abrevaya S, Esteves S, Salamone P, Lori N, Martorell M, Legaz A, Alifano F, Petroni A, Sánchez R, Sedeño L, García AM, Ibáñez A. Multilevel convergence of interoceptive impairments in hypertension: New evidence of disrupted body-brain interactions. Hum Brain Mapp 2018; 39:1563-1581. [PMID: 29271093 PMCID: PMC6866355 DOI: 10.1002/hbm.23933] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Interoception, the sensing of visceral body signals, involves an interplay between neural and autonomic mechanisms. Clinical studies into this domain have focused on patients with neurological and psychiatric disorders, showing that damage to relevant brain mechanisms can variously alter interoceptive functions. However, the association between peripheral cardiac-system alterations and neurocognitive markers of interoception remains poorly understood. To bridge this gap, we examined multidimensional neural markers of interoception in patients with early stage of hypertensive disease (HTD) and healthy controls. Strategically, we recruited only HTD patients without cognitive impairment (as shown by neuropsychological tests), brain atrophy (as assessed with voxel-based morphometry), or white matter abnormalities (as evidenced by diffusion tensor imaging analysis). Interoceptive domains were assessed through (a) a behavioral heartbeat detection task; (b) measures of the heart-evoked potential (HEP), an electrophysiological cortical signature of attention to cardiac signals; and (c) neuroimaging recordings (MRI and fMRI) to evaluate anatomical and functional connectivity properties of key interoceptive regions (namely, the insula and the anterior cingulate cortex). Relative to controls, patients exhibited poorer interoceptive performance and reduced HEP modulations, alongside an abnormal association between interoceptive performance and both the volume and functional connectivity of the above regions. Such results suggest that peripheral cardiac-system impairments can be associated with abnormal behavioral and neurocognitive signatures of interoception. More generally, our findings indicate that interoceptive processes entail bidirectional influences between the cardiovascular and the central nervous systems.
Collapse
Affiliation(s)
- Adrián Yoris
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Sofía Abrevaya
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Sol Esteves
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
| | - Paula Salamone
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Nicolás Lori
- Laboratory of Neuroimaging and Neuroscience (LANEN)INECO Neurosciences Oroño, Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityRosarioArgentina
- Diagnóstico Médico Oroño, Grupo OroñoRosarioArgentina
- ICVS/3Bs & Centre AlgoritmiUniversity of MinhoBragaPortugal
| | - Miguel Martorell
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
| | - Agustina Legaz
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
| | - Florencia Alifano
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
| | - Agustín Petroni
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Instituto de Ingeniería BiomédicaFacultad de Ingeniería, Universidad de Buenos AiresArgentina
- Deptartamento de ComputaciónUniversidad de Buenos AiresArgentina
| | - Ramiro Sánchez
- Metabolic and Arterial Hypertension UnitFavaloro Foundation HospitalBuenos AiresArgentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Adolfo M. García
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Faculty of EducationNational University of Cuyo (UNCuyo)MendozaArgentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN)Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro UniversityBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Universidad Autónoma del CaribeBarranquillaColombia
- Center for Social and Cognitive Neuroscience (CSCN), School of PsychologyUniversidad Adolfo IbañezSantiagoChile
- Centre of Excellence in Cognition and its DisordersAustralian Research Council (ACR)SydneyAustralia
| |
Collapse
|
43
|
Functional Connectivity Changes in Behavioral, Semantic, and Nonfluent Variants of Frontotemporal Dementia. Behav Neurol 2018; 2018:9684129. [PMID: 29808100 PMCID: PMC5902123 DOI: 10.1155/2018/9684129] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/02/2018] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
Abstract
Frontotemporal dementia (FTD) affects behavior, language, and personality. This study aims to explore functional connectivity changes in three FTD variants: behavioral (bvFTD), semantic (svPPA), and nonfluent variant (nfvPPA). Seventy-six patients diagnosed with FTD by international criteria and thirty-two controls were investigated. Functional connectivity from resting functional magnetic resonance imaging (fMRI) was estimated for the whole brain. Two types of analysis were done: network basic statistic and topological measures by graph theory. Several hubs in the limbic system and basal ganglia were compromised in the behavioral variant apart from frontal networks. Nonfluent variants showed a major disconnection with respect to the behavioral variant in operculum and parietal inferior. The global efficiency had lower coefficients in nonfluent variants than behavioral variants and controls. Our results support an extensive disconnection among frontal, limbic, basal ganglia, and parietal hubs.
Collapse
|
44
|
Ibáñez A, Zimerman M, Sedeño L, Lori N, Rapacioli M, Cardona JF, Suarez DMA, Herrera E, García AM, Manes F. Early bilateral and massive compromise of the frontal lobes. NEUROIMAGE-CLINICAL 2018; 18:543-552. [PMID: 29845003 PMCID: PMC5964834 DOI: 10.1016/j.nicl.2018.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
The frontal lobes are one of the most complex brain structures involved in both domain-general and specific functions. The goal of this work was to assess the anatomical and cognitive affectations from a unique case with massive bilateral frontal affectation. We report the case of GC, an eight-year old child with nearly complete affectation of bilateral frontal structures and spared temporal, parietal, occipital, and cerebellar regions. We performed behavioral, neuropsychological, and imaging (MRI, DTI, fMRI) evaluations. Neurological and neuropsychological examinations revealed a mixed pattern of affected (executive control/abstraction capacity) and considerably preserved (consciousness, language, memory, spatial orientation, and socio-emotional) functions. Both structural (DTI) and functional (fMRI) connectivity evidenced abnormal anterior connections of the amygdala and parietal networks. In addition, brain structural connectivity analysis revealed almost complete loss of frontal connections, with atypical temporo-posterior pathways. Similarly, functional connectivity showed an aberrant frontoparietal network and relative preservation of the posterior part of the default mode network and the visual network. We discuss this multilevel pattern of behavioral, structural, and functional connectivity results. With its unique pattern of compromised and preserved structures and functions, this exceptional case offers new constraints and challenges for neurocognitive theories.
Collapse
Affiliation(s)
- Agustín Ibáñez
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad Autónoma del Caribe, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney, Australia.
| | - Máximo Zimerman
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucas Sedeño
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Nicolas Lori
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Laboratory of Neuroimaging and Neuroscience (LANEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Rosario, Argentina
| | - Melina Rapacioli
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Juan F Cardona
- Instituto de Psicología, Universidad del Valle, Cali, Colombia
| | | | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Adolfo M García
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Facundo Manes
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| |
Collapse
|
45
|
Parra MA, Baez S, Allegri R, Nitrini R, Lopera F, Slachevsky A, Custodio N, Lira D, Piguet O, Kumfor F, Huepe D, Cogram P, Bak T, Manes F, Ibanez A. Dementia in Latin America: Assessing the present and envisioning the future. Neurology 2018; 90:222-231. [PMID: 29305437 PMCID: PMC5791795 DOI: 10.1212/wnl.0000000000004897] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/02/2017] [Indexed: 01/26/2023] Open
Abstract
The demographic structure of Latin American countries (LAC) is fast approaching that of developing countries, and the predicted prevalence of dementia in the former already exceeds the latter. Dementia has been declared a global challenge, yet regions around the world show differences in both the nature and magnitude of such a challenge. This article provides evidence and insights on barriers which, if overcome, would enable the harmonization of strategies to tackle the dementia challenge in LAC. First, we analyze the lack of available epidemiologic data, the need for standardizing clinical practice and improving physician training, and the existing barriers regarding resources, culture, and stigmas. We discuss how these are preventing timely care and research. Regarding specific health actions, most LAC have minimal mental health facilities and do not have specific mental health policies or budgets specific to dementia. In addition, local regulations may need to consider the regional context when developing treatment and prevention strategies. The support needed nationally and internationally to enable a smooth and timely transition of LAC to a position that integrates global strategies is highlighted. We focus on shared issues of poverty, cultural barriers, and socioeconomic vulnerability. We identify avenues for collaboration aimed to study unique populations, improve valid assessment methods, and generate opportunities for translational research, thus establishing a regional network. The issues identified here point to future specific actions aimed at tackling the dementia challenge in LAC.
Collapse
Affiliation(s)
- Mario A Parra
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Sandra Baez
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Ricardo Allegri
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Ricardo Nitrini
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Francisco Lopera
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Andrea Slachevsky
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nilton Custodio
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - David Lira
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Olivier Piguet
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Fiona Kumfor
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - David Huepe
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Patricia Cogram
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Thomas Bak
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Facundo Manes
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustin Ibanez
- From the School of Life Sciences (M.A.P.), Psychology, University Heriot-Watt; Human Cognitive Neuroscience (M.A.P.), Psychology, Edinburgh University; Alzheimer's Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network (M.A.P.), Edinburgh; Centre for Cognitive Ageing and Cognitive Epidemiology (M.A.P., T.B.) and Department of Psychology, School of Philosophy, Psychology and Language Sciences (P.C., T.B.), University of Edinburgh, UK; Universidad Autónoma del Caribe (M.A.P., A.I.), Barranquilla, Colombia; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (S.B., F.M., A.I.); Institute of Translational and Cognitive Neuroscience (INCYT) (S.B., F.M., A.I.), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Departamento de Psicología (S.B.) Universidad de los Andes, Bogotá, Colombia; Department of Cognitive Neurology and Neuropsychology (R.A.), Instituto de Investigaciones Neurológicas "Raúl Carrea" (FLENI) (R.A.), Buenos Aires, Argentina; Universidad de la Costa (CUC) (R.A.), Barranquilla, Colombia; Department of Neurology (R.N.), University of São Paulo Medical School, Brazil; Group of Neuroscience (F.L.), University of Antioquia, Medellín, Colombia; Geroscience Center for Brain Health and Metabolism (A.S.); Physiopathology Department, ICBM, and East Neuroscience Department, Faculty of Medicine (A.S.), and Center for Advanced Research in Education (CIAE) (A.S.), University of Chile; Cognitive Neurology and Dementia, Neurology Department (A.S.), Hospital del Salvador; Neurology Department, Clínica Alemana (A.S.), Santiago, Chile; Research Unit, Peruvian Institute of Neurosciences (N.C., D.L.) and Unit Cognitive Impairment and Dementia Prevention (N.C., D.L.), Lima, Peru; Brain and Mind Centre & School of Psychology (O.P., F.K.), Faculty of Science, University of Sydney; ARC Centre of Excellence in Cognition and its Disorders (O.P., F.K., F.M., A.I.), Sydney, Australia; Fraunhofer Chile (O.P., P.C.), Santiago; and Center for Social and Cognitive Neuroscience (CSCN), School of Psychology (D.H., A.I.), Universidad Adolfo Ibáñez, Santiago, Chile.
| |
Collapse
|
46
|
Borroni B, Benussi A, Premi E, Alberici A, Marcello E, Gardoni F, Di Luca M, Padovani A. Biological, Neuroimaging, and Neurophysiological Markers in Frontotemporal Dementia: Three Faces of the Same Coin. J Alzheimers Dis 2018; 62:1113-1123. [PMID: 29171998 PMCID: PMC5870000 DOI: 10.3233/jad-170584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical, genetic, and neuropathological disorder. Clinical diagnosis and prediction of neuropathological substrates are hampered by heterogeneous pictures. Diagnostic markers are key in clinical trials to differentiate FTD from other neurodegenerative dementias. In the same view, identifying the neuropathological hallmarks of the disease is key in light of future disease-modifying treatments. The aim of the present review is to unravel the progress in biomarker discovery, discussing the potential applications of available biological, imaging, and neurophysiological markers.
Collapse
Affiliation(s)
- Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Enrico Premi
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| |
Collapse
|
47
|
Santamaría-García H, Baez S, Reyes P, Santamaría-García JA, Santacruz-Escudero JM, Matallana D, Arévalo A, Sigman M, García AM, Ibáñez A. A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration. Brain 2017; 140:3357-3377. [PMID: 29112719 PMCID: PMC5841144 DOI: 10.1093/brain/awx269] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
The study of moral emotions (i.e. Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as unified and monolithic emotional domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested a group of patients with behavioural variant frontotemporal dementia (bvFTD), patients with Alzheimer’s disease, as a contrastive neurodegeneration model, and healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the Alzheimer’s disease and control groups, patients with bvFTD obtained significantly higher scores on all dimensions for both emotions. Correlational analyses revealed an association between envy and Schadenfreude scores and greater deficits in social cognition, inhibitory control, and behaviour disturbances in bvFTD patients. Brain anatomy findings (restricted to bvFTD and controls) confirmed the partially dissociable nature of the moral emotions’ experiences and highlighted the importance of socio-moral brain areas in processing those emotions. In all subjects, an association emerged between Schadenfreude and the ventral striatum, and between envy and the anterior cingulate cortex. In addition, the results supported an association between scores for moral and legal transgression and the morphology of areas implicated in emotional appraisal, including the amygdala and the parahippocampus. By contrast, bvFTD patients exhibited a negative association between increased Schadenfreude and envy across dimensions and critical regions supporting social-value rewards and social-moral processes (dorsolateral prefrontal cortex, angular gyrus and precuneus). Together, this study provides lesion-based evidence for the multidimensional nature of the emotional experiences of envy and Schadenfreude. Our results offer new insights into the mechanisms subsuming complex emotions and moral cognition in neurodegeneration. Moreover, this study presents the exacerbation of envy and Schadenfreude as a new potential hallmark of bvFTD that could impact in diagnosis and progression.
Collapse
Affiliation(s)
- Hernando Santamaría-García
- Centro de Memoria y Cognición. Intellectus-Hospital Universitario San Ignacio, Bogotá Colombia.,Pontificia Universidad Javeriana, Departments of Physiology, Psychiatry and Aging Institute Bogotá, Colombia.,Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Grupo de Investigación en Cerebro y Cognición Social, Bogotá, Colombia
| | - Sandra Baez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Grupo de Investigación en Cerebro y Cognición Social, Bogotá, Colombia.,Universidad de los Andes, Bogotá, Colombia
| | - Pablo Reyes
- Centro de Memoria y Cognición. Intellectus-Hospital Universitario San Ignacio, Bogotá Colombia.,Pontificia Universidad Javeriana, Departments of Physiology, Psychiatry and Aging Institute Bogotá, Colombia
| | | | - José M Santacruz-Escudero
- Centro de Memoria y Cognición. Intellectus-Hospital Universitario San Ignacio, Bogotá Colombia.,Pontificia Universidad Javeriana, Departments of Physiology, Psychiatry and Aging Institute Bogotá, Colombia.,Departament de Psiquiatria i Medicina Legal, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Diana Matallana
- Centro de Memoria y Cognición. Intellectus-Hospital Universitario San Ignacio, Bogotá Colombia.,Pontificia Universidad Javeriana, Departments of Physiology, Psychiatry and Aging Institute Bogotá, Colombia
| | - Analía Arévalo
- Departamento de Neurologia, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Mariano Sigman
- Universidad Torcuato di Tella, Laboratorio de Neurociencias, Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| |
Collapse
|
48
|
Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing. Sci Rep 2017. [PMID: 28630492 PMCID: PMC5476568 DOI: 10.1038/s41598-017-04204-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Developing effective and affordable biomarkers for dementias is critical given the difficulty to achieve early diagnosis. In this sense, electroencephalographic (EEG) methods offer promising alternatives due to their low cost, portability, and growing robustness. Here, we relied on EEG signals and a novel information-sharing method to study resting-state connectivity in patients with behavioral variant frontotemporal dementia (bvFTD) and controls. To evaluate the specificity of our results, we also tested Alzheimer’s disease (AD) patients. The classification power of the ensuing connectivity patterns was evaluated through a supervised classification algorithm (support vector machine). In addition, we compared the classification power yielded by (i) functional connectivity, (ii) relevant neuropsychological tests, and (iii) a combination of both. BvFTD patients exhibited a specific pattern of hypoconnectivity in mid-range frontotemporal links, which showed no alterations in AD patients. These functional connectivity alterations in bvFTD were replicated with a low-density EEG setting (20 electrodes). Moreover, while neuropsychological tests yielded acceptable discrimination between bvFTD and controls, the addition of connectivity results improved classification power. Finally, classification between bvFTD and AD patients was better when based on connectivity than on neuropsychological measures. Taken together, such findings underscore the relevance of EEG measures as potential biomarker signatures for clinical settings.
Collapse
|