1
|
Yoshimura Y, Mitani Y, Ikeda T, Tanaka S, Suda M, Yaoi K, Hasegawa C, An KM, Iwasaki S, Kumazaki H, Saito DN, Ohta H, Ando A, Cho K, Kikuchi M, Wada T. Language and sensory characteristics are reflected in voice-evoked responses in low birth weight children. Pediatr Res 2025; 97:120-127. [PMID: 38902452 PMCID: PMC11798859 DOI: 10.1038/s41390-024-03270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Children born with very low birth weight (VLBW) are at higher risk for cognitive impairment, including language deficits and sensorimotor difficulties. Voice-evoked response (P1m), which has been suggested as a language development biomarker in young children, remains unexplored for its efficacy in VLBW children. Furthermore, the relation between P1m and sensory difficulties in VLBW children remains unclear. METHODS 40 children with VLBW were recruited at 5-to-6 years old (26 male, 14 female, mean age of months ± SD, 80.0 ± 4.9). We measured their voice-evoked brain response using child-customized magnetoencephalography (MEG) and examined the relation between P1m and language conceptual inference ability and sensory characteristics. RESULTS The final sample comprised 36 children (23 boys, 13 girls; ages 61-86 months; gestational ages 24-36 weeks). As a result of multiple regression analysis, voice-evoked P1m in the left hemisphere was correlated significantly with language ability (β = 0.414 P = 0.015) and sensory hypersensitivity (β = 0.471 P = 0.005). CONCLUSION Our findings indicate that the relation between P1m and language conceptual inference ability observed in term children in earlier studies is replicated in VLBW children, and suggests P1m intensity as a biomarker of sensory sensitivity characteristics. IMPACT We investigated brain functions related to language development and sensory problems in very low birth-weight children. In very low birth weight children at early school age, brain responses to human voices are associated with language conceptual inference ability and sensory hypersensitivity. These findings promote a physiological understanding of both language development and sensory characteristics in very low birth weight children.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Institute of Human and Social Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Yusuke Mitani
- Department of Pediatrics, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Momoka Suda
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Department of Psychology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Kyung-Min An
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sumie Iwasaki
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Hirokazu Kumazaki
- Department of Future Psychiatric Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8521, Japan
| | - Daisuke N Saito
- Department of Psychology, Yasuda Women's University, 6-13-1 Kuyasu, Asaminami, Hiroshima, 731-0153, Japan
| | - Hidenobu Ohta
- Department of Occupational Therapy, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Akiko Ando
- Maternity and Perinatal Care Center, Hokkaido University Hospital, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Taizo Wada
- Department of Pediatrics, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
2
|
Weider S, Lærum AMW, Evensen KAI, Reitan SK, Lydersen S, Brubakk AM, Skranes J, Indredavik MS. Neurocognitive function and associations with mental health in adults born preterm with very low birthweight or small for gestational age at term. Front Psychol 2023; 13:1078232. [PMID: 36743594 PMCID: PMC9890170 DOI: 10.3389/fpsyg.2022.1078232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Objectives To assess neurocognitive function in adults born with low birthweight compared with controls and to explore associations between neurocognitive function and psychopathology in these groups. Methods In this prospective cohort study, one group born preterm with very low birthweight (VLBW: birthweight <1,500 g, n = 53), one group born small for gestational age at term (SGA: birthweight <10th percentile, n = 63) and one term-born control group (birthweight ≥10th percentile, n = 81) were assessed with neurocognitive tests, diagnostic interviews, and self-report questionnaires at 26 years of age. Results The VLBW group scored significantly below the control group on several neurocognitive measures, including IQ measures, psychomotor speed, verbal fluency, aspects of visual learning and memory, attention, social cognition, working memory and fine motor speed. The SGA group consistently scored at an intermediate level between the VLBW and the control group and had significantly lower scores than controls on Performance IQ and psychomotor speed, including switching. In the VLBW group, associations were found between lower spatial working memory and the presence of anxiety disorders, internalizing and attention problems, and autistic traits. Furthermore, lower Full scale IQ was associated with attention problems when adjusting for sex and parental socioeconomic status. Conclusion Adults born preterm with VLBW or born term SGA displayed neurocognitive difficulties. Spatial working memory was associated with difficulties with attention, anxiety, and social function of VLBW adults. The finding and its clinical applicability should be further explored.
Collapse
Affiliation(s)
- Siri Weider
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, Trondheim, Norway,*Correspondence: Siri Weider, ✉
| | - Astrid M. W. Lærum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway,Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Anne I. Evensen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway,Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway,Unit for Physiotherapy Services, Trondheim Municipality, Trondheim, Norway,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Solveig Klæbo Reitan
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway,Department of Psychiatry, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Stian Lydersen
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann Mari Brubakk
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jon Skranes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway,Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Marit S. Indredavik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Cioffredi LA, Anderson H, Loso H, East J, Nguyen P, Garavan H, Potter A. Prenatal cannabis exposure predicts attention problems, without changes on fMRI in adolescents. Neurotoxicol Teratol 2022; 91:107089. [PMID: 35314358 PMCID: PMC9136933 DOI: 10.1016/j.ntt.2022.107089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We hypothesized that prenatal cannabis exposure (PCE) would be associated with increased attention problems and altered neurocognition in young adolescents. METHODS Data were obtained from the Adolescent Brain Cognitive Development (ABCD study®), a cohort of approximately 12,000 children. Presence or absence of PCE after knowledge of pregnancy was measured by caregiver report. All participants with PCE (N = 224) were included and compared to two control groups; those matched on tobacco and alcohol exposure and those without prenatal tobacco or alcohol exposures. Outcomes were measured with the ABCD baseline assessment when participants were 9-10 years old and included attention, internalizing, externalizing and total problems scales on the Child Behavior Checklist (CBCL). Teacher reports were used when available. Mixed effects modeling assessed the association between PCE and outcomes controlling for parental psychopathology, prematurity and socioeconomic status. For participants with available data, patterns of brain activity during three fMRI tasks (the Stop Signal Task measuring response inhibition, the Monetary Incentive Delay (MID) task measuring reward processing and the EN-Back task measuring working memory) were analyzed using Permutation Analyses of the Linear Model. RESULTS Compared to both control groups, participants with PCE had significantly higher attention problems, externalizing, and total problem scores. PCE did not impact cognitive performance or patterns of brain activation during fMRI tasks. CONCLUSIONS There are long-term associations between PCE and early adolescent attention and behavioral problems. These are not reflected in cognitive performance or task fMRI measures, a finding that is consistent with reports that fewer than half of children with ADHD have any specific cognitive deficit (Nigg et al., 2005; Willcutt et al., 2005). The young age of the sample may also relate to this finding and future investigation of neurodevelopmental trajectories of youth with PCE is warranted.
Collapse
Affiliation(s)
- Leigh-Anne Cioffredi
- Larner College of Medicine at the University of Vermont, Department of Pediatrics, USA.
| | - Hillary Anderson
- Larner College of Medicine at the University of Vermont, Department of Pediatrics, USA
| | - Hannah Loso
- Larner College of Medicine at the University of Vermont, Department of Psychiatry, USA
| | - James East
- Larner College of Medicine at the University of Vermont, Department of Radiology, USA
| | - Philip Nguyen
- Larner College of Medicine at the University of Vermont, Department of Psychiatry, USA
| | - Hugh Garavan
- Larner College of Medicine at the University of Vermont, Department of Psychiatry, USA
| | - Alexandra Potter
- Larner College of Medicine at the University of Vermont, Department of Psychiatry, USA
| |
Collapse
|
4
|
Retzler J, Johnson S, Groom MJ, Cragg L. A comparison of simultaneous and sequential visuo-spatial memory in children born very preterm. Child Neuropsychol 2021; 28:496-509. [PMID: 34720055 DOI: 10.1080/09297049.2021.1993808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Research suggests that children born very preterm (≤32 weeks' gestation) are at greater risk of impairments in information processing (particularly when information is presented simultaneously rather than sequentially) and visuo-spatial short-term and working memory relative to children born at term. This study compared the performance of children born very preterm with their term-born peers to elucidate the nature of group differences in these areas. 113 children (65 very preterm; 48 term-born) aged 8-to-11 years completed four visuo-spatial recall tasks. Tasks varied by presentation type (simultaneous or sequential) and memory type (short-term or working memory). Both groups recalled more locations in simultaneous than sequential tasks, and in short-term than working memory tasks. In short-term memory tasks, children born at term recalled more locations than children born very preterm for the sequential task, but groups did not differ on the simultaneous task. The opposite pattern was observed in the working memory tasks, with no group differences on the sequential task, but better performance on the simultaneous task for children born at term. Our findings indicate that simultaneous processing may not be impaired in children born very preterm per se, with poorer performance observed only under high cognitive demand. This interaction suggests very preterm birth may affect the level of cognitive resources available during feature integration, the consequences of which become apparent when resources are already stretched. The impact of interactions with cognitive demand in this population should be an important consideration for educational support strategies, and for assessment in research and clinic.
Collapse
Affiliation(s)
- Jenny Retzler
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK.,School of Psychology, University of Nottingham, Nottingham, UK
| | - Samantha Johnson
- Department of Health Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Madeleine J Groom
- Division of Psychiatry & Applied Psychology, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Lucy Cragg
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Siegwart V, Steiner L, Pastore-Wapp M, Benzing V, Spitzhuttl J, Schmidt M, Kiefer C, Slavova N, Grotzer M, Roebers C, Steinlin M, Leibundgut K, Everts R. The Working Memory Network and Its Association with Working Memory Performance in Survivors of non-CNS Childhood Cancer. Dev Neuropsychol 2021; 46:249-264. [PMID: 33969767 DOI: 10.1080/87565641.2021.1922410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Childhood cancer and its treatment puts survivors at risk of low working memory capacity. Working memory represents a core cognitive function, which is crucial in daily life and academic tasks. The aim of this functional MRI (fMRI) study was to examine the working memory network of survivors of childhood cancer without central nervous system (CNS) involvement and its relation to cognitive performance. Thirty survivors (aged 7-16 years, ≥ 1 year after cancer treatment) and 30 healthy controls performed a visuospatial working memory task during MRI, including a low- and a high-demand condition. Working memory performance was assessed using standardized tests outside the scanner. When cognitive demands increased, survivors performed worse than controls and showed evidence for slightly atypical working memory-related activation. The survivor group exhibited hyperactivation in the right-hemispheric superior parietal lobe (SPL) in the high- compared to the low-demand working memory condition, while maintaining their performance levels. Hyperactivation in the right SPL coincided with poorer working memory performance outside the scanner in survivors. Even in survivors of childhood cancer without CNS involvement, we find neural markers pointing toward late effects in the cerebral working memory network.AbbreviationsfMRI: Functional magnetic resonance imaging; CNS: Central nervous system; MNI: Montreal Neurological Institute; SES: Socioeconomic status; SPL: Superior parietal lobe.
Collapse
Affiliation(s)
- Valerie Siegwart
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Leonie Steiner
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Manuela Pastore-Wapp
- Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valentin Benzing
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Janine Spitzhuttl
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Psychology, University of Bern, Bern, Switzerland
| | - Mirko Schmidt
- Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Claus Kiefer
- Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nedelina Slavova
- Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Grotzer
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudia Roebers
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Maja Steinlin
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Kurt Leibundgut
- Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Regula Everts
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
6
|
Environmental Exposures and Adverse Pregnancy-Related Outcomes. HEALTH IMPACTS OF DEVELOPMENTAL EXPOSURE TO ENVIRONMENTAL CHEMICALS 2020. [DOI: 10.1007/978-981-15-0520-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Sato J, Mossad SI, Wong SM, Hunt BAE, Dunkley BT, Urbain C, Taylor MJ. Spectral slowing is associated with working memory performance in children born very preterm. Sci Rep 2019; 9:15757. [PMID: 31673006 PMCID: PMC6823447 DOI: 10.1038/s41598-019-52219-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/13/2019] [Indexed: 11/20/2022] Open
Abstract
Children born very preterm (VPT) often demonstrate selective difficulties in working memory (WM), which may underlie academic difficulties observed in this population. Despite this, few studies have investigated the functional networks underlying WM in young children born VPT, a period when cognitive deficits become apparent. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old VPT (n = 15) and full-term (FT; n = 20) children. Although task performance was similar, VPT children engaged different oscillatory mechanisms during WM maintenance. Within the FT group, we observed higher mean whole-brain connectivity in the alpha-band during the retention (i.e. maintenance) interval associated with correct compared to incorrect responses. VPT children showed reduced whole-brain alpha synchrony, and a different network organization with fewer connections. In the theta-band, VPT children demonstrated a slight increase in whole-brain connectivity during WM maintenance, and engaged similar network hubs as FT children in the alpha-band, including the left dorsolateral prefrontal cortex and superior temporal gyrus. These findings suggest that VPT children rely on the theta-band to support similar task performance. Altered oscillatory mechanisms may reflect a less mature pattern of functional recruitment underlying WM in VPT children, which may affect the processing in complex ecological situations.
Collapse
Affiliation(s)
- Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
| | - Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Charline Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Tokariev M, Vuontela V, Lönnberg P, Lano A, Perkola J, Wolford E, Andersson S, Metsäranta M, Carlson S. Altered working memory-related brain responses and white matter microstructure in extremely preterm-born children at school age. Brain Cogn 2019; 136:103615. [PMID: 31563082 DOI: 10.1016/j.bandc.2019.103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/28/2022]
Abstract
Preterm birth poses a risk for neurocognitive and behavioral development. Preterm children, who have not been diagnosed with neurological or cognitive deficits, enter normal schools and are expected to succeed as their term-born peers. Here we tested the hypotheses that despite an uneventful development after preterm birth, these children might exhibit subtle abnormalities in brain function and white-matter microstructure at school-age. We recruited 7.5-year-old children born extremely prematurely (<28 weeks' gestation), and age- and gender-matched term-born controls (≥37 weeks' gestation). We applied fMRI during working-memory (WM) tasks, and investigated white-matter microstructure with diffusion tensor imaging. Compared with controls, preterm-born children performed WM tasks less accurately, had reduced activation in several right prefrontal areas, and weaker deactivation of right temporal lobe areas. The weaker prefrontal activation correlated with poorer WM performance. Preterm-born children had higher fractional anisotropy (FA) and lower diffusivity than controls in several white-matter areas, and in the posterior cerebellum, the higher FA associated with poorer visuospatial test scores. In controls, higher FA and lower diffusivity correlated with faster WM performance. Together these findings demonstrate weaker WM-related brain activations and altered white matter microstructure in children born extremely preterm, who had normal global cognitive ability.
Collapse
Affiliation(s)
- Maksym Tokariev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Virve Vuontela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Piia Lönnberg
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Perkola
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland.
| |
Collapse
|
9
|
Bailey LM, McMillan LE, Newman AJ. A sinister subject: Quantifying handedness-based recruitment biases in current neuroimaging research. Eur J Neurosci 2019; 51:1642-1656. [PMID: 31408571 DOI: 10.1111/ejn.14542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022]
Abstract
Approximately ten per cent of humans are left-handed or ambidextrous (adextral). It has been suggested that, despite their sizable representation at the whole-population level, this demographic is largely avoided by researchers within the neuroimaging community. To date, however, no formal effort has been made to quantify the extent to which adextrals are excluded from neuroimaging-based research. Here, we aimed to address this question in a review of over 1,000 recent articles published in high-impact, peer-reviewed, neuroimaging-focused journals. Specifically, we sought to ascertain whether, and the extent to which adextrals are underrepresented in neuroimaging study samples, and to delineate potential trends in this bias. Handedness data were available for over 30,000 research subjects; only around 3%-4% of these individuals were adextral-considerably less than the 10% benchmark one would expect if neuroimaging samples were truly representative of the general population. This observation was generally consistent across different areas of research, but was modulated by the demographic characteristics of neuroimaging participants. The epistemological and ethical implications of these findings are discussed.
Collapse
Affiliation(s)
- Lyam M Bailey
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Laura E McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Aaron J Newman
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Developmental Disorders Among Very Preterm Children. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2018. [DOI: 10.1007/s40474-018-0151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|