1
|
Neural Correlates of Sensory Eye Dominance in Human Visual White Matter Tracts. eNeuro 2022; 9:ENEURO.0232-22.2022. [PMID: 36347601 PMCID: PMC9698723 DOI: 10.1523/eneuro.0232-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
A significant proportion of the human neurotypical population exhibits some degree of sensory eye dominance (SED), referring to the brain's preferential processing of one eye's input versus another. The neural substrates underlying this functional imbalance are not well known. Here, we investigated the relationship between visual white matter tract properties and SED in the human neurotypical population. Observers' performance on two commonly used dichoptic tasks were used to index SED, along with performance on a third task to address a functional implication of binocular imbalance: stereovision. We show that diffusivity metrics of the optic radiations (ORs) well predict behavioral SED metrics. We found no relationship between SED and stereosensitivity. Our data suggest that SED is not simply reflected by gray matter structural and functional alterations, as often suggested, but relates, at least in part to the microstructural properties of thalamocortical white matter.
Collapse
|
2
|
Ding J, Qu X, Cui J, Dong J, Guo J, Xian J, Li D. Altered Spontaneous Brain Activity and Network Property in Patients With Congenital Monocular Blindness. Front Neurol 2022; 13:789655. [PMID: 35280267 PMCID: PMC8907119 DOI: 10.3389/fneur.2022.789655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals with congenital monocular blindness may have specific brain changes since the brain is prenatally deprived of half the normal visual input. To explore characteristic brain functional changes of congenital monocular blindness, we analyzed resting-state functional MRI (rs-fMRI) data of 16 patients with unilateral congenital microphthalmia and 16 healthy subjects with normal vision to compare intergroup differences of amplitude of low frequency fluctuations (ALFFs), functional connectivity (FC), and network topolgoical properties. Compared with controls, patients with microphthalmia exhibited significantly lower ALFF values in the left inferior occipital and temporal gyri, superior temporal gyrus, inferior parietal lobe and post-central gyrus, whereas higher ALFF in the right middle and inferior temporal gyri, middle and superior frontal gyri, left superior frontal, and temporal gyri, such as angular gyrus. Meanwhile, FC between left medial superior frontal gyrus and angular gyrus, FC between left superior temporal gyrus and inferior parietal lobe and post-central gyrus decreased in the patients with congenital microphthalmia. In addition, a graph theory-analysis revealed increased regional network metrics (degree centrality and nodal efficiency) in the middle and inferior temporal gyri and middle and superior frontal gyri, while decreased values in the inferior occipital and temporal gyri, inferior parietal lobule, post-central gyrus, and angular gyrus. Taken together, patients with congenital microphthalmia had widespread abnormal activities within neural networks involving the vision and language and language-related regions played dominant roles in their brain networks. These findings may provide clues for functional reorganization of vision and language networks induced by the congenital monocular blindness.
Collapse
Affiliation(s)
- Jingwen Ding
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Cui
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Dong
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian Guo
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Junfang Xian
| | - Dongmei Li
- Beijing Ophthalmology & Visual Science Key Lab, Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Dongmei Li
| |
Collapse
|
3
|
Qu 曲晓霞 X, Ding 丁静文 J, Wang 王倩 Q, Cui 崔靖 J, Dong J, Guo 郭健 J, Li 李婷 T, Xie 解立志 L, Li 李冬梅 D, Xian 鲜军舫 J. Effect of the long-term lack of half visual inputs on the white matter microstructure in congenital monocular blindness. Brain Res 2022; 1781:147832. [DOI: 10.1016/j.brainres.2022.147832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/31/2023]
|
4
|
Lipin M, Bennett J, Ying GS, Yu Y, Ashtari M. Improving the Quantification of the Lateral Geniculate Nucleus in Magnetic Resonance Imaging Using a Novel 3D-Edge Enhancement Technique. Front Comput Neurosci 2021; 15:708866. [PMID: 34924983 PMCID: PMC8677828 DOI: 10.3389/fncom.2021.708866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is a small, inhomogeneous structure that relays major sensory inputs from the retina to the visual cortex. LGN morphology has been intensively studied due to various retinal diseases, as well as in the context of normal brain development. However, many of the methods used for LGN structural evaluations have not adequately addressed the challenges presented by the suboptimal routine MRI imaging of this structure. Here, we propose a novel method of edge enhancement that allows for high reliability and accuracy with regard to LGN morphometry, using routine 3D-MRI imaging protocols. This new algorithm is based on modeling a small brain structure as a polyhedron with its faces, edges, and vertices fitted with one plane, the intersection of two planes, and the intersection of three planes, respectively. This algorithm dramatically increases the contrast-to-noise ratio between the LGN and its surrounding structures as well as doubling the original spatial resolution. To show the algorithm efficacy, two raters (MA and ML) measured LGN volumes bilaterally in 19 subjects using the edge-enhanced LGN extracted areas from the 3D-T1 weighted images. The averages of the left and right LGN volumes from the two raters were 175 ± 8 and 174 ± 9 mm3, respectively. The intra-class correlations between raters were 0.74 for the left and 0.81 for the right LGN volumes. The high contrast edge-enhanced LGN images presented here, from a 7-min routine 3T-MRI acquisition, is qualitatively comparable to previously reported LGN images that were acquired using a proton density sequence with 30–40 averages and 1.5-h of acquisition time. The proposed edge-enhancement algorithm is not limited only to the LGN, but can significantly improve the contrast-to-noise ratio of any small deep-seated gray matter brain structure that is prone to high-levels of noise and partial volume effects, and can also increase their morphometric accuracy and reliability. An immensely useful feature of the proposed algorithm is that it can be used retrospectively on noisy and low contrast 3D brain images previously acquired as part of any routine clinical MRI visit.
Collapse
Affiliation(s)
- Mikhail Lipin
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jean Bennett
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gui-Shuang Ying
- Center for Preventative Ophthalmology and Biostatistics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yinxi Yu
- Center for Preventative Ophthalmology and Biostatistics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Manzar Ashtari
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Matyi MA, Spielberg JM. Differential spatial patterns of structural connectivity of amygdala nuclei with orbitofrontal cortex. Hum Brain Mapp 2020; 42:1391-1405. [PMID: 33270320 PMCID: PMC7927308 DOI: 10.1002/hbm.25300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The orbitofrontal cortex (OFC)‐amygdala circuit is critical to goal‐directed behavior, learning, and valuation. However, our understanding of the OFC‐amygdala connections that support these emergent processes is hampered by our reliance on the primate literature and insufficient knowledge regarding the connectivity patterns between regions of OFC and amygdala nuclei, each of which is differentially involved in these processes in humans. Thus, we examined structural connectivity between different OFC regions and four amygdala nuclei in healthy adults (n = 1,053) using diffusion‐based anatomical networks and probabilistic tractography in four conceptually distinct ways. First, we identified the OFC regions that connect with each nucleus. Second, we identified the OFC regions that were more likely to connect with a given nucleus than the others. Finally, we developed probabilistic and rank‐order maps of OFC (one for each nucleus) based upon the likelihood of each OFC voxel exhibiting preferential connectivity with each nucleus and the relative density of connectivity between each OFC voxel and each nucleus, respectively. The first analyses revealed that the connections of each nucleus spanned all of OFC, reflecting widespread overall amygdala linkage with OFC. Analysis of preferential connectivity and probabilistic and rank‐order maps of OFC converged to reveal differential patterns of connectivity between OFC and each nucleus. Present findings illustrate the importance of accounting for spatial specificity when examining links between OFC and amygdala. This fine‐grained examination of OFC‐amygdala connectivity can be applied to understand how such connectivity patterns support a range of emergent functions including affective and motivational processes.
Collapse
Affiliation(s)
- Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Hirst RJ, McGovern DP, Setti A, Shams L, Newell FN. What you see is what you hear: Twenty years of research using the Sound-Induced Flash Illusion. Neurosci Biobehav Rev 2020; 118:759-774. [DOI: 10.1016/j.neubiorev.2020.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 01/17/2023]
|
7
|
Gravelle MNK, Vandewouw MM, Young JM, Dunkley BT, Shroff MM, Taylor MJ. More than meets the eye: Longitudinal visual system neurodevelopment in very preterm children and anophthalmia. NEUROIMAGE-CLINICAL 2020; 28:102373. [PMID: 32798909 PMCID: PMC7451448 DOI: 10.1016/j.nicl.2020.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 10/25/2022]
Abstract
Anophthalmia, characterized by the absence of an eye(s), is a rare major birth defect with a relatively unexplored neuroanatomy. Longitudinal comparison of white matter development in an anophthalmic (AC) very preterm (VPT) child with both binocular VPT and full-term (FT) children provides unique insights into early neurodevelopment of the visual system. VPT-born neonates (<32wks gestational age), including the infant with unilateral anophthalmia, underwent neuroimaging every two years from birth until 8 years. DTI images (N = 168) of the optic radiation (OR) and a control track, the posterior limb of the internal capsule (PLIC), were analysed. The diameter of the optic nerves (ON) were analysed using T1-weighted images. Significant group differences in FA and AD were found bilaterally in the OR and PLIC. This extends the literature on altered white matter development in VPT children, being the first longitudinal study showing stable group differences across the 4, 6 and 8 year timepoints. AC showed greater deficits in FA and AD bilaterally, but recovered towards VPT group means from 4 to 8 years-of-age. Complete lack of binocular input would be responsible for these early deficits; compensatory mechanisms may facilitate structural improvement over time. AC's ON exhibited significant atrophy ipsilateral to the anophthalmic eye. Functionally, AC displayed normal visual acuity and form perception, but naso-temporal bias in motion perception. Following these groups and AC longitudinally enabled novel understanding of the joint influence of monocular vision and VPT birth on neurodevelopment.
Collapse
Affiliation(s)
- Madelaine N K Gravelle
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia M Young
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Manohar M Shroff
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Moro SS, Gorbet DJ, Steeves JKE. Brain Activation for Audiovisual Information in People With One Eye Compared to Binocular and Eye-Patched Viewing Controls. Front Neurosci 2020; 14:529. [PMID: 32508588 PMCID: PMC7253581 DOI: 10.3389/fnins.2020.00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
Blindness caused by early vision loss results in complete visual deprivation and subsequent changes in the use of the remaining intact senses. We have also observed adaptive plasticity in the case of partial visual deprivation. The removal of one eye, through unilateral eye enucleation, results in partial visual deprivation and is a unique model for examining the consequences of the loss of binocularity. Partial deprivation of the visual system from the loss of one eye early in life results in behavioral and structural changes in the remaining senses, namely auditory and audiovisual systems. In the current study we use functional neuroimaging data to relate function and behavior of the audiovisual system in this rare patient group compared to controls viewing binocularly or with one eye patched. In Experiment 1, a whole brain analysis compared common regions of cortical activation between groups, for auditory, visual and audiovisual stimuli. People with one eye demonstrated a trend for increased activation for low-level audiovisual stimuli compared to patched viewing controls but did not differ from binocular viewing controls. In Experiment 2, a region of interest (ROI) analysis for auditory, visual, audiovisual and illusory McGurk stimuli revealed that people with one eye had an increased trend for left hemisphere audiovisual activation for McGurk stimuli compared to binocular viewing controls. This aligns with current behavioral analysis and previous research showing reduced McGurk Effect in people with one eye. Furthermore, there is no evidence of a correlation between behavioral performance on the McGurk Effect task and functional activation. Together with previous behavioral work, these functional data contribute to the broader understanding of cross-sensory effects of early sensory deprivation from eye enucleation. Overall, these results contribute to a better understanding of the sensory deficits experienced by people with one eye, as well as, the relationship between behavior, structure and function in order to better predict the outcome of early partial visual deafferentation.
Collapse
Affiliation(s)
- Stefania S Moro
- Department of Psychology, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| | - Diana J Gorbet
- Centre for Vision Research, York University, Toronto, ON, Canada.,School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Jennifer K E Steeves
- Department of Psychology, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
9
|
Bathelt J, Dale NJ, de Haan M, Clark CA. Brain structure in children with congenital visual disorders and visual impairment. Dev Med Child Neurol 2020; 62:125-131. [PMID: 31393613 PMCID: PMC6916268 DOI: 10.1111/dmcn.14322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
AIM To examine if congenital visual impairment is associated with differences in brain anatomy in children. METHOD Ten children (8-12y) with congenital disorders of the peripheral visual system with severe visual impairment (SVI; >0.8 logMAR) or mild-to-moderate visual impairment (MVI; 0.6-0.8 logMAR) were compared to 21 typically sighted comparison (TSC) children. Thalamus volume, grey matter density, white matter microstructure, and integrity of visual tracts were investigated in SVI, MVI, and TSC groups with anatomical and diffusion-weighted magnetic resonance imaging. RESULTS Compared to the TSC group, the SVI group had lower white matter integrity in tracts of the visual system (optic radiations: SVI 0.35±0.015, TSC 0.39±0.007 [p=0.022]; posterior corpus callosum: SVI 0.37±0.019; TSC 0.42±0.009 [p=0.033]) and lower left thalamus volume (SVI 4.37±0.087; TSC 4.99±0.339 [p=0.015]). Neuroanatomical differences were greater in the SVI group, while no consistent differences between the MVI and TSC group were observed. INTERPRETATION Posterior tracts of the visual system are compromised in children with congenital visual impairment versus those who are typically sighted. The severity of visual input appears to have affected neuroanatomical development as significant reductions were only found in the SVI group. WHAT THIS PAPER ADDS Severe visual impairment in mid-childhood is associated with reduced integrity of visual pathways and reduced thalamus volume.
Collapse
Affiliation(s)
- Joe Bathelt
- Department of PsychologyUniversity of AmsterdamAmsterdamthe Netherlands
| | - Naomi J Dale
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK,Great Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - Michelle de Haan
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK
| | - Chris A Clark
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
10
|
Hanson RLW, Gale RP, Gouws AD, Airody A, Scott MTW, Akthar F, Waterson S, Wells MT, Wright AJ, Bell K, Silson E, Baseler HA, Morland AB. Following the Status of Visual Cortex Over Time in Patients With Macular Degeneration Reveals Atrophy of Visually Deprived Brain Regions. ACTA ACUST UNITED AC 2019; 60:5045-5051. [DOI: 10.1167/iovs.18-25823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Rachel L. W. Hanson
- Department of Psychology, University of York, York, United Kingdom
- York Neuroimaging Centre, University of York, York, United Kingdom
| | - Richard P. Gale
- Department of Health Sciences, University of York, York, United Kingdom
- Academic Unit of Ophthalmology, York Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | - André D. Gouws
- York Neuroimaging Centre, University of York, York, United Kingdom
| | - Archana Airody
- Academic Unit of Ophthalmology, York Teaching Hospitals NHS Foundation Trust, York, United Kingdom
| | | | - Farah Akthar
- Department of Psychology, University of York, York, United Kingdom
| | - Sophie Waterson
- Department of Psychology, University of York, York, United Kingdom
| | - Mason T. Wells
- Department of Psychology, University of York, York, United Kingdom
| | - Aaron J. Wright
- Department of Psychology, University of York, York, United Kingdom
| | - Kerry Bell
- Department of Psychology, University of York, York, United Kingdom
| | - Edward Silson
- Department of Psychology, University of York, York, United Kingdom
| | - Heidi A. Baseler
- Department of Psychology, University of York, York, United Kingdom
- York Neuroimaging Centre, University of York, York, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Antony B. Morland
- Department of Psychology, University of York, York, United Kingdom
- York Neuroimaging Centre, University of York, York, United Kingdom
| |
Collapse
|
11
|
Wong NA, Rafique SA, Moro SS, Kelly KR, Steeves JKE. Altered white matter structure in auditory tracts following early monocular enucleation. NEUROIMAGE-CLINICAL 2019; 24:102006. [PMID: 31622842 PMCID: PMC6812283 DOI: 10.1016/j.nicl.2019.102006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 01/29/2023]
Abstract
Purpose: Similar to early blindness, monocular enucleation (the removal of one eye) early in life results in crossmodal behavioral and morphological adaptations. Previously it has been shown that partial visual deprivation from early monocular enucleation results in structural white matter changes throughout the visual system (Wong et al., 2018). The current study investigated structural white matter of the auditory system in adults who have undergone early monocular enucleation compared to binocular control participants. Methods: We reconstructed four auditory and audiovisual tracts of interest using probabilistic tractography and compared microstructural properties of these tracts to binocularly intact controls using standard diffusion indices. Results: Although both groups demonstrated asymmetries in indices in intrahemispheric tracts, monocular enucleation participants showed asymmetries opposite to control participants in the auditory and A1-V1 tracts. Monocular enucleation participants also demonstrated significantly lower fractional anisotropy in the audiovisual projections contralateral to the enucleated eye relative to control participants. Conclusions: Partial vision loss from early monocular enucleation results in altered structural connectivity that extends into the auditory system, beyond tracts primarily dedicated to vision. Does losing one eye during postnatal maturation affect auditory white matter? Performed DTI of auditory and audiovisual tracts using probabilistic tractography. Patients differed in diffusion indices for auditory and audiovisual tracts. Early eye removal alters auditory white matter in addition to visual tracts.
Collapse
Affiliation(s)
- Nikita A Wong
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada
| | - Sara A Rafique
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada
| | - Stefania S Moro
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada; Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jennifer K E Steeves
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada; Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
12
|
Lateral geniculate nucleus volumetry at 3T and 7T: Four different optimized magnetic-resonance-imaging sequences evaluated against a 7T reference acquisition. Neuroimage 2018; 186:399-409. [PMID: 30342237 DOI: 10.1016/j.neuroimage.2018.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/24/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The lateral geniculate nucleus (LGN) is an essential nucleus of the visual pathway, occupying a small volume (60-160 mm3) among the other thalamic nuclei. The reported LGN volumes vary greatly across studies due to technical limitations and due to methodological differences of volume assessment. Yet, structural and anatomical alterations in ophthalmologic and neurodegenerative pathologies can only be revealed by a precise and reliable LGN representation. To improve LGN volume assessment, we first implemented a reference acquisition for LGN volume determination with optimized Contrast to Noise Ratio (CNR) and high spatial resolution. Next, we compared CNR efficiency and rating reliability of 3D Magnetization Prepared Rapid Gradient Echo (MPRAGE) images using white matter nulled (WMn) and grey matter nulled (GMn) sequences and its subtraction (WMn-GMn) relative to the clinical standard Proton Density Turbo Spin Echo (PD 2D TSE) and the reference acquisition. We hypothesized that 3D MPRAGE should provide a higher CNR and volume determination accuracy than the currently used 2D sequences. MATERIALS AND METHODS In 31 healthy subjects, we obtained at 3 and 7 T the following MR sequences: PD-TSE, MPRAGE with white/grey matter signal nulled (WMn/GMn), and a motion-corrected segmented MPRAGE sequence with a resolution of 0.4 × 0.4 × 0.4 mm3 (reference acquisition). To increase CNR, GMn were subtracted from WMn (WMn-GMn). Four investigators manually segmented the LGN independently. RESULTS The reference acquisition provided a very sharp depiction of the LGN and an estimated mean LGN volume of 124 ± 3.3 mm3. WMn-GMn had the highest CNR and gave the most reproducible LGN volume estimations between field strengths. Even with the highest CNR efficiency, PD-TSE gave inconsistent LGN volumes with the weakest reference acquisition correlation. The LGN WM rim induced a significant difference between LGN volumes estimated from WMn and GMn. WMn and GMn LGN volume estimations explained most of the reference acquisition volumes' variance. For all sequences, the volume rating reliability were good. On the other hand, the best CNR rating reliability, LGN volume and CNR correlations with the reference acquisition were obtained with GMn at 7 T. CONCLUSION WMn and GMn MPRAGE allow reliable LGN volume determination at both field strengths. The precise location and identification of the LGN (volume) can help to optimize neuroanatomical and neurophysiological studies, which involve the LGN structure. Our optimized imaging protocol may be used for clinical applications aiming at small nuclei volumetric and CNR quantification.
Collapse
|
13
|
Kelly KR, Gallie BL, Steeves JKE. Early monocular enucleation selectively disrupts neural development of face perception in the occipital face area. Exp Eye Res 2018; 183:57-61. [PMID: 30291860 DOI: 10.1016/j.exer.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023]
Abstract
Retinoblastoma generally occurs before 5 years of age and often requires enucleation (surgical removal of one eye) of the cancerous eye. We have previously shown using behavioural methods that this disruption in binocular vision during the critical period of visual development results in impaired face perception. In this case series study, we sought to determine the underlying neural correlates of this face perception deficit by examining brain activity in regions of cortex that preferentially respond to visual images of faces and places in 6 adults who had one eye enucleated early in life due to retinoblastoma. A group of 10 binocularly-intact adult controls were recruited for comparison. Functional magnetic resonance imaging (fMRI) was conducted over two separate runs for each participant in one scanning session. Each run consisted of 6 blocks each of face, place, and object images. Region-of-interest analyses were conducted to locate face-preferential [fusiform face area (FFA), occipital face area (OFA)] and place-preferential [parahippocampal place area (PPA), transverse occipital sulcus (TOS)] regions-of-interest. Descriptive statistics are reported. Results. Enucleated adults exhibited reduced functional activation in face-preferential regions (left FFA, right OFA, left OFA), but similar activation within the face-preferential right FFA and the place-preferential regions (bilateral PPA and TOS). Conclusions. These results indicate that early monocular enucleation prevents robust development of late-maturing face processing capabilities and that this disruption is specific to face networks and not to networks supporting other visual image categories.
Collapse
Affiliation(s)
| | - Brenda L Gallie
- Department of Ophthalmology and Visual Sciences, The Hospital for Sick Children, Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Jennifer K E Steeves
- Centre for Vision Research and Department of Psychology, York University, Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
14
|
Normal temporal binding window but no sound-induced flash illusion in people with one eye. Exp Brain Res 2018; 236:1825-1834. [DOI: 10.1007/s00221-018-5263-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
15
|
Moro SS, Steeves JKE. Intact Dynamic Visual Capture in People With One Eye. Multisens Res 2018; 31:675-688. [PMID: 31264607 DOI: 10.1163/22134808-20181311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022]
Abstract
Observing motion in one modality can influence the perceived direction of motion in a second modality (dynamic capture). For example observing a square moving in depth can influence the perception of a sound to increase in loudness. The current study investigates whether people who have lost one eye are susceptible to audiovisual dynamic capture in the depth plane similar to binocular and eye-patched viewing control participants. Partial deprivation of the visual system from the loss of one eye early in life results in changes in the remaining intact senses such as hearing. Linearly expanding or contracting discs were paired with increasing or decreasing tones and participants were asked to indicate the direction of the auditory stimulus. Magnitude of dynamic visual capture was measured in people with one eye compared to eye-patched and binocular viewing controls. People with one eye have the same susceptibility to dynamic visual capture as controls, where they perceived the direction of the auditory signal to be moving in the direction of the incongruent visual signal, despite previously showing a lack of visual dominance for audiovisual cues. This behaviour may be the result of directing attention to the visual modality, their partially deficient sense, in order to gain important information about approaching and receding stimuli which in the former case could be life-threatening. These results contribute to the growing body of research showing that people with one eye display unique accommodations with respect to audiovisual processing that are likely adaptive in each unique sensory situation.
Collapse
Affiliation(s)
- Stefania S Moro
- 1Department of Psychology and Centre for Vision Research, York University, Toronto, ON, Canada.,2The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer K E Steeves
- 1Department of Psychology and Centre for Vision Research, York University, Toronto, ON, Canada.,2The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|