1
|
Obdeijn IV, van Baarsen KM, Avula S, Toescu S, Lequin MH, Hoving EW, Partanen M. Neuroimaging of postoperative pediatric cerebellar mutism syndrome: a systematic review. Neurooncol Adv 2025; 7:vdae212. [PMID: 39777259 PMCID: PMC11705075 DOI: 10.1093/noajnl/vdae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Background Postoperative pediatric cerebellar mutism syndrome (ppCMS) poses serious morbidity after posterior fossa tumor surgery. Neuroimaging studies aim to understand its pathophysiology, yet these vary in methodology and outcome measures. Therefore, we systematically reviewed the current literature to evaluate the evidence for differences in neuroimaging features between children with and without ppCMS. Methods Following PRISMA guidelines, a systematic review was conducted by searching for original articles on neuroimaging in children undergoing posterior fossa tumor surgery, comparing patients with and without ppCMS. Articles were selected based on predefined eligibility criteria. Data were systematically extracted, and risk of bias was evaluated. Results From the 866 articles identified, 50 studies fulfilled the inclusion criteria. Studies were categorized into 3 imaging domains: structural, diffusion, and functional imaging. Risk of bias assessment revealed a medium risk in most articles, predominantly due to unclear ppCMS definition and qualitative image analysis without blinding for ppCMS diagnosis. Preoperative structural imaging showed the association of ppCMS with midline tumor localization and involvement of the brainstem, superior cerebellar peduncle (SCP), or middle cerebellar peduncle. Postoperative structural and diffusion imaging highlighted SCP injury with reduced white matter integrity, while functional imaging demonstrated hypoperfusion in frontal lobes. Late follow-up showed T2-weighted hyperintensities in the inferior olivary nuclei of ppCMS patients. Conclusion Neuroimaging features suggest that ppCMS is associated with efferent cerebellar pathway injury and hypoperfusion in frontal lobes, with level 2 a/b evidence. Large-scale prospective longitudinal neuroimaging studies comparing pre- and postoperative imaging are needed to further elucidate the pathophysiological mechanism of ppCMS.
Collapse
Affiliation(s)
- Iris V Obdeijn
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kirsten M van Baarsen
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, East Prescot Road, Liverpool L14 5AB, UK
| | - Sebastian Toescu
- Department of Neurosurgery, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK
| | - Maarten H Lequin
- Edward B Singleton, Department of Radiology, Texas Children’s Hospital, Austin, Texas, USA
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eelco W Hoving
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marita Partanen
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
2
|
Huang J, Chen Z, van Zijl PCM, Law LH, Pemmasani Prabakaran RS, Park SW, Xu J, Chan KWY. Effect of inhaled oxygen level on dynamic glucose-enhanced MRI in mouse brain. Magn Reson Med 2024; 92:57-68. [PMID: 38308151 PMCID: PMC11055662 DOI: 10.1002/mrm.30035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lok Hin Law
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Rohith Saai Pemmasani Prabakaran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Richerson WT, Meier TB, Cohen AD, Wang Y, Goodman MJ, Schmit BD, Wolfgram DF. Cerebrovascular Function is Altered in Hemodialysis Patients. KIDNEY360 2023; 4:1717-1725. [PMID: 37962988 PMCID: PMC10758518 DOI: 10.34067/kid.0000000000000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Key Points Hemodialysis patients have impaired cerebrovascular reactivity. Hemodialysis patients have cerebral structural deficits. Background Hemodialysis patients have declines in cerebral blood flow (CBF) and cerebral oxygenation during hemodialysis that may lead to ischemic brain injury. Cerebrovascular reactivity (CVR) may indicate which individuals are more susceptible to intradialytic hypoperfusion and ischemia. We hypothesized that hemodialysis patients would have decreased CVR and increased CBF relative to controls and deficits in CVR would be related to brain structural deficits. Methods We measured cortical thickness and white matter hyperintensity (WMH) volume from T1 and T2 fluid attenuation inversion recovery images, respectively; CVR from a breath hold blood oxygen level–dependent CVR functional magnetic resonance imaging (fMRI); and arterial transit time and CBF from arterial spin labeling. Cerebrovascular and structural deficits in gray matter and white matter (GM and WM) were tested by averaging across the tissue and with a pothole analysis. Finally, we correlated cortical thickness and WMH volume with GM and WM cerebrovascular variables to assess the relationship between brain structure and cerebrovascular health. Results In ten hemodialysis patients, cortical thickness was found to be decreased (P = 0.002), WMH volume increased (P = 0.004), and WM CBF increased (P = 0.02) relative to ten controls. Pothole analysis indicated a higher number of increased GM and WM CBF voxels (P = 0.03, P = 0.02) and a higher number of decreased GM and WM CVR voxels (P = 0.02, P = 0.01). Conclusions This pilot study demonstrates that hemodialysis patients have decreased CVR and increased CBF relative to controls, along with reduced brain integrity. Further investigation is required to fully understand whether these cerebrovascular deficits may lead to structural changes.
Collapse
Affiliation(s)
- Wesley T. Richerson
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander D. Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dawn F. Wolfgram
- Department of Medicine, Medical College of Wisconsin, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
4
|
Xu F, Liu D, Zhu D, Hillis AE, Bakker A, Soldan A, Albert MS, Lin DDM, Qin Q. Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow. Neuroimage 2023; 271:120039. [PMID: 36931331 PMCID: PMC10150252 DOI: 10.1016/j.neuroimage.2023.120039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility.
Collapse
Affiliation(s)
- Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Dan Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Doris D M Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Sjuls GS, Specht K. Variability in Resting-State Functional Magnetic Resonance Imaging: The Effect of Body Mass, Blood Pressure, Hematocrit, and Glycated Hemoglobin on Hemodynamic and Neuronal Parameters. Brain Connect 2022; 12:870-882. [PMID: 35473334 PMCID: PMC9807254 DOI: 10.1089/brain.2021.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Replicability has become an increasing focus within the scientific communities with the ongoing "replication crisis." One area that appears to struggle with unreliable results is resting-state functional magnetic resonance imaging (rs-fMRI). Therefore, the current study aimed at improving the knowledge of endogenous factors that contribute to inter-individual variability. Methods: Arterial blood pressure (BP), body mass, hematocrit, and glycated hemoglobin were investigated as potential sources of between-subject variability in rs-fMRI, in healthy individuals. Whether changes in resting-state networks (rs-networks) could be attributed to variability in the blood-oxygen-level-dependent (BOLD)-signal, changes in neuronal activity, or both was of special interest. Within-subject parameters were estimated by utilizing dynamic-causal modeling, as it allows to make inferences on the estimated hemodynamic (BOLD-signal dynamics) and neuronal parameters (effective connectivity) separately. Results: The results of the analyses imply that BP and body mass can cause between-subject and between-group variability in the BOLD-signal and that all the included factors can affect the underlying connectivity. Discussion: Given the results of the current and previous studies, rs-fMRI results appear to be susceptible to a range of factors, which is likely to contribute to the low degree of replicability of these studies. Interestingly, the highest degree of variability seems to appear within the much-studied default mode network and its connections to other networks. Impact statement We believe that thanks to the evidence that we have collected by analyzing the well-controlled data of the Human Connectome Project with dynamic-causal modeling (DCM) and by focusing not only on the effective connectivity, which is the typical way of using DCM, but also by analyzing the underlying hemodynamic parameters, we were able to explore the underlying vascular dependencies in a much broader perspective. Our results challenge the premise for studying changes in the default mode network as a clinical marker of disease, and we add to the growing list of factors that contribute to resting-state network variability.
Collapse
Affiliation(s)
- Guro Stensby Sjuls
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim, Norway.,Address correspondence to: Guro Stensby Sjuls, Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Hernandez‐Garcia L, Aramendía‐Vidaurreta V, Bolar DS, Dai W, Fernández‐Seara MA, Guo J, Madhuranthakam AJ, Mutsaerts H, Petr J, Qin Q, Schollenberger J, Suzuki Y, Taso M, Thomas DL, van Osch MJP, Woods J, Zhao MY, Yan L, Wang Z, Zhao L, Okell TW. Recent Technical Developments in ASL: A Review of the State of the Art. Magn Reson Med 2022; 88:2021-2042. [PMID: 35983963 PMCID: PMC9420802 DOI: 10.1002/mrm.29381] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.
Collapse
Affiliation(s)
| | | | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Weiying Dai
- Department of Computer ScienceState University of New York at BinghamtonBinghamtonNYUSA
| | | | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | | - Henk Mutsaerts
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Center, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Manuel Taso
- Division of MRI research, RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseph Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of RadiologyUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Lirong Yan
- Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityZhejiangPeople's Republic of China
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
7
|
Chen JJ, Uthayakumar B, Hyder F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J Cereb Blood Flow Metab 2022; 42:1139-1162. [PMID: 35296177 PMCID: PMC9207484 DOI: 10.1177/0271678x221077338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional functional MRI (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping human brain activity non-invasively. Recent interest in quantitative fMRI has renewed the importance of oxidative neuroenergetics as reflected by cerebral metabolic rate of oxygen consumption (CMRO2) to support brain function. Dynamic CMRO2 mapping by calibrated fMRI require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and/or volume (CBV). In human subjects this "calibration" is typically performed using a gas mixture containing small amounts of carbon dioxide and/or oxygen-enriched medical air, which are thought to produce changes in CBF (and CBV) and BOLD signal with minimal or no CMRO2 changes. However non-human studies have demonstrated that the "calibration" can also be achieved without gases, revealing good agreement between CMRO2 changes and underlying neuronal activity (e.g., multi-unit activity and local field potential). Given the simpler set-up of gas-free calibrated fMRI, there is evidence of recent clinical applications for this less intrusive direction. This up-to-date review emphasizes technological advances for such translational gas-free calibrated fMRI experiments, also covering historical progression of the calibrated fMRI field that is impacting neurological and neurodegenerative investigations of the human brain.
Collapse
Affiliation(s)
- J Jean Chen
- Medical Biophysics, University of Toronto, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Biranavan Uthayakumar
- Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Department of Radiology, Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Li W, Xu F, Zhu D, van Zijl PCM, Qin Q. T 2 -oximetry-based cerebral venous oxygenation mapping using Fourier-transform-based velocity-selective pulse trains. Magn Reson Med 2022; 88:1292-1302. [PMID: 35608208 PMCID: PMC9247032 DOI: 10.1002/mrm.29300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Purpose To develop a T2‐oximetry method for quantitative mapping of cerebral venous oxygenation fraction (Yv) using Fourier‐transform–based velocity‐selective (FT‐VS) pulse trains. Methods The venous isolation preparation was achieved by using an FT‐VS inversion plus a nonselective inversion (NSI) pulse to null the arterial blood signal while minimally affected capillary blood flows out into the venular vasculature during the outflow time (TO), and then applying an Fourier transform based velocity selective saturation (FT‐VSS) pulse to suppress the tissue signal. A multi‐echo readout was employed to obtain venous T2 (T2,v) efficiently with the last echo used to detect the residual CSF signal and correct its contamination in the fitting. Here we compared the performance of this FT‐VS–based venous isolation preparations with a traditional velocity‐selective saturation (VSS)–based approach (quantitative imaging of extraction of oxygen and tissue consumption [QUIXOTIC]) with different cutoff velocities for Yv mapping on 6 healthy volunteers at 3 Tesla. Results The FT‐VS–based methods yielded higher venous blood signal and temporal SNR with less CSF contamination than the velocity‐selective saturation–based results. The averaged Yv values across the whole slice measured in different experiments were close to the global Yv measured from the individual internal jugular vein. Conclusion The feasibility of the FT‐VS–based Yv estimation was demonstrated on healthy volunteers. The obtained high venous signal as well as the mitigation of CSF contamination led to a good agreement between the T2,v and Yv measured in the proposed method with the values in the literature. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol 2022; 32:2976-2987. [DOI: 10.1007/s00330-021-08406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
|
11
|
Ibaraki M, Nakamura K, Matsubara K, Shinohara Y, Kinoshita T. Effect of hematocrit on cerebral blood flow measured by pseudo-continuous arterial spin labeling MRI: A comparative study with 15O-water positron emission tomography. Magn Reson Imaging 2021; 84:58-68. [PMID: 34562565 DOI: 10.1016/j.mri.2021.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In cerebral blood flow (CBF) quantification with pseudo-continuous arterial spin labeling (pCASL) MRI, arterial blood T1 (T1a) is usually fixed to a typical value (e.g., 1650 ms). However, individual T1a depends strongly on hematocrit (Hct) level. To investigate the utility of Hct-based T1a as an alternative to the fixed T1a method, we performed a comparative study with 15O-water positron emission tomography (PET). METHODS For patients with unilateral occlusion or stenosis of major arteries, hemispheric CBF on the healthy side was measured using pCASL and 15O-water PET. The pCASL CBFs were calculated with both (a) fixed T1a (1650 ms) and (b) individual T1a estimated from blood-sampled Hct (Hct-based T1a). Correlation coefficients of Hct-CBF were calculated and compared between pCASL and PET. RESULTS In pCASL, CBF with fixed T1a showed a strong negative correlation with Hct (r = -0.568), which was reduced with individual Hct-based T1a (r = -0.341 to -0.190), consistent with the Hct-CBF relation measured with PET (r = -0.349). DISCUSSION AND CONCLUSION We demonstrated that Hct-based T1a resulted in smaller inter-individual variations in pCASL CBF and an inverse Hct-CBF relationship more similar to that of PET. Care must be taken in the interpretation of pCASL CBF imaging in relation to Hct level even in subjects without anemia. Further comparative studies are needed to investigate whether advanced techniques improve pCASL CBF quantification at the individual level.
Collapse
Affiliation(s)
- Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Kazuhiro Nakamura
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Yuki Shinohara
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan.
| |
Collapse
|
12
|
Vu C, Bush A, Choi S, Borzage M, Miao X, Nederveen AJ, Coates TD, Wood JC. Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias. Am J Hematol 2021; 96:901-913. [PMID: 33891719 PMCID: PMC8273150 DOI: 10.1002/ajh.26203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Anemia is the most common blood disorder in the world. In patients with chronic anemia, such as sickle cell disease or major thalassemia, cerebral blood flow increases to compensate for decreased oxygen content. However, the effects of chronic anemia on oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) are less well understood. In this study, we examined 47 sickle-cell anemia subjects (age 21.7 ± 7.1, female 45%), 27 non-sickle anemic subjects (age 25.0 ± 10.4, female 52%) and 44 healthy controls (age 26.4 ± 10.6, female 71%) using MRI metrics of brain oxygenation and flow. Phase contrast MRI was used to measure resting cerebral blood flow, while T2 -relaxation-under-spin-tagging (TRUST) MRI with disease appropriate calibrations were used to measure OEF and CMRO2 . We observed that patients with sickle cell disease and other chronic anemias have decreased OEF and CMRO2 (respectively 27.4 ± 4.1% and 3.39 ± 0.71 ml O2 /100 g/min in sickle cell disease, 30.8 ± 5.2% and 3.53 ± 0.64 ml O2 /100 g/min in other anemias) compared to controls (36.7 ± 6.0% and 4.00 ± 0.65 ml O2 /100 g/min). Impaired CMRO2 was proportional to the degree of anemia severity. We further demonstrate striking concordance of the present work with pooled historical data from patients having broad etiologies for their anemia. The reduced cerebral oxygen extraction and metabolism are consistent with emerging data demonstrating increased non-nutritive flow, or physiological shunting, in sickle cell disease patients.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Adam Bush
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Department of Radiology, Stanford University, Stanford, CA
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xin Miao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Aart J. Nederveen
- University of Amsterdam, Amsterdam UMC, Radiology and Nuclear Medicine, the Netherlands
| | - Thomas D. Coates
- Division of Hematology-Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John C. Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Division of Cardiology, Departments of Pediatrics and Radiology, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
13
|
Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021; 58:e13796. [PMID: 33728712 PMCID: PMC8244108 DOI: 10.1111/psyp.13796] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The process of aging includes changes in cellular biology that affect local interactions between cells and their environments and eventually propagate to systemic levels. In the brain, where neurons critically depend on an efficient and dynamic supply of oxygen and glucose, age-related changes in the complex interaction between the brain parenchyma and the cerebrovasculature have effects on health and functioning that negatively impact cognition and play a role in pathology. Thus, cerebrovascular health is considered one of the main mechanisms by which a healthy lifestyle, such as habitual cardiorespiratory exercise and a healthful diet, could lead to improved cognitive outcomes with aging. This review aims at detailing how the physiology of the cerebral vascular system changes with age and how these changes lead to differential trajectories of cognitive maintenance or decline. This provides a framework for generating specific mechanistic hypotheses about the efficacy of proposed interventions and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we discuss the methodological implications of age-related changes in the cerebral vasculature for human cognitive neuroscience research and propose directions for future experiments aimed at investigating age-related changes in the relationship between physiology and cognitive mechanisms.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
14
|
Liu D, Jiang D, Tekes A, Kulikowicz E, Martin LJ, Lee JK, Liu P, Qin Q. Multi-Parametric Evaluation of Cerebral Hemodynamics in Neonatal Piglets Using Non-Contrast-Enhanced Magnetic Resonance Imaging Methods. J Magn Reson Imaging 2021; 54:1053-1065. [PMID: 33955613 DOI: 10.1002/jmri.27638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Disruption of brain oxygen delivery and consumption after hypoxic-ischemic injury contributes to neonatal mortality and neurological impairment. Measuring cerebral hemodynamic parameters, including cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ), is clinically important. PURPOSE Phase-contrast (PC), velocity-selective arterial spin labeling (VSASL), and T2 -relaxation-under-phase-contrast (TRUPC) are magnetic resonance imaging (MRI) techniques that have shown promising results in assessing cerebral hemodynamics in humans. We aimed to test their feasibility in quantifying CBF, OEF, and CMRO2 in piglets. STUDY TYPE Prospective. ANIMAL MODEL Ten neonatal piglets subacutely recovered from global hypoxia-ischemia (N = 2), excitotoxic brain injury (N = 6), or sham procedure (N = 2). FIELD STRENGTH/SEQUENCE VSASL, TRUPC, and PC MRI acquired at 3.0 T. ASSESSMENT Regional CBF was measured by VSASL. Global CBF was quantified by both PC and VSASL. TRUPC assessed OEF at the superior sagittal sinus (SSS) and internal cerebral veins (ICVs). CMRO2 was calculated from global CBF and SSS-derived OEF. End-tidal carbon dioxide (EtCO2 ) levels of the piglets were also measured. Brain damage was assessed in tissue sections postmortem by counting damaged neurons. STATISTICAL TESTS Spearman correlations were performed to evaluate associations among CBF (by PC or VSASL), OEF, CMRO2 , EtCO2 , and the pathological neuron counts. Paired t-test was used to compare OEF at SSS with OEF at ICV. RESULTS Global CBF was 32.1 ± 14.9 mL/100 g/minute and 30.9 ± 8.3 mL/100 g/minute for PC and VSASL, respectively, showing a significant correlation (r = 0.82, P < 0.05). OEF was 54.9 ± 8.8% at SSS and 46.1 ± 5.6% at ICV, showing a significant difference (P < 0.05). Global CMRO2 was 79.1 ± 26.2 μmol/100 g/minute and 77.2 ± 12.2 μmol/100 g/minute using PC and VSASL-derived CBF, respectively. EtCO2 correlated positively with PC-based CBF (r = 0.81, P < 0.05) but negatively with OEF at SSS (r = -0.84, P < 0.05). Relative CBF of subcortical brain regions and OEF at ICV did not significantly correlate, respectively, with the ratios of degenerating-to-total neurons (P = 0.30, P = 0.10). DATA CONCLUSION Non-contrast MRI can quantify cerebral hemodynamic parameters in normal and brain-injured neonatal piglets. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Burley CV, Francis ST, Thomas KN, Whittaker AC, Lucas SJE, Mullinger KJ. Contrasting Measures of Cerebrovascular Reactivity Between MRI and Doppler: A Cross-Sectional Study of Younger and Older Healthy Individuals. Front Physiol 2021; 12:656746. [PMID: 33912073 PMCID: PMC8072486 DOI: 10.3389/fphys.2021.656746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is used as an outcome measure of brain health. Traditionally, lower CVR is associated with ageing, poor fitness and brain-related conditions (e.g. stroke, dementia). Indeed, CVR is suggested as a biomarker for disease risk. However, recent findings report conflicting associations between ageing or fitness and CVR measures. Inconsistent findings may relate to different neuroimaging modalities used, which include transcranial Doppler (TCD) and blood-oxygen-level-dependant (BOLD) contrast magnetic resonance imaging (MRI). We assessed the relationship between CVR metrics derived from two common imaging modalities, TCD and BOLD MRI, within the same individuals and with expected significant differences (i.e., younger vs. older) to maximise the expected spread in measures. We conducted two serial studies using TCD- and MRI-derived measures of CVR (via inspired 5% CO2 in air). Study 1 compared 20 younger (24 ± 7 years) with 15 older (66 ± 7 years) participants, Study 2 compared 10 younger (22 ± 2 years) with 10 older (72 ± 4 years) participants. Combining the main measures across studies, no significant correlation (r = 0.15, p = 0.36) was observed between individual participant TCD- and BOLD-CVR measures. Further, these measures showed differential effects between age groups; with TCD-CVR higher in the older compared to younger group (4 ± 1 vs. 3 ± 1 %MCAv/mmHg P ET CO2; p < 0.05, Hedges' g = 0.75), whereas BOLD-CVR showed no difference (p = 0.104, Hedges' g = 0.38). In Study 2 additional measures were obtained to understand the origin of the discrepancy: phase contrast angiography (PCA) MRI of the middle cerebral artery, showed a significantly lower blood flow (but not velocity) CVR response in older compared with younger participants (p > 0.05, Hedges' g = 1.08). The PCA CVR metrics did not significantly correlate with the BOLD- or TCD-CVR measures. The differing CVR observations between imaging modalities were despite expected, correlated (r = 0.62-0.82), age-related differences in resting CBF measures across modalities. Taken together, findings across both studies show no clear relationship between TCD- and BOLD-CVR measures. We hypothesize that CVR differences between imaging modalities are in part due to the aspects of the vascular tree that are assessed (TCD:arteries; BOLD:venules/veins). Further work is needed to understand the between-modality CVR response differences, but caution is needed when comparing CVR metrics derived from different imaging modalities.
Collapse
Affiliation(s)
- Claire V. Burley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Susan T. Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Kate N. Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna C. Whittaker
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Karen J. Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Orchard ER, Ward PGD, Chopra S, Storey E, Egan GF, Jamadar SD. Neuroprotective Effects of Motherhood on Brain Function in Late Life: A Resting-State fMRI Study. Cereb Cortex 2021; 31:1270-1283. [PMID: 33067999 PMCID: PMC7906778 DOI: 10.1093/cercor/bhaa293] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
The maternal brain undergoes structural and functional plasticity during pregnancy and the postpartum period. Little is known about functional plasticity outside caregiving-specific contexts and whether changes persist across the lifespan. Structural neuroimaging studies suggest that parenthood may confer a protective effect against the aging process; however, it is unknown whether parenthood is associated with functional brain differences in late life. We examined the relationship between resting-state functional connectivity and number of children parented in 220 healthy older females (73.82 ± 3.53 years) and 252 healthy older males (73.95 ± 3.50 years). We compared the patterns of resting-state functional connectivity with 3 different models of age-related functional change to assess whether these effects may be functionally neuroprotective for the aging human parental brain. No relationship between functional connectivity and number of children was obtained for males. For females, we found widespread decreasing functional connectivity with increasing number of children parented, with increased segregation between networks, decreased connectivity between hemispheres, and decreased connectivity between anterior and posterior regions. The patterns of functional connectivity related to the number of children an older woman has parented were in the opposite direction to those usually associated with age-related cognitive decline, suggesting that motherhood may be beneficial for brain function in late life.
Collapse
Affiliation(s)
- Edwina R Orchard
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC 3800, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| | - Phillip G D Ward
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC 3800, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Elsdon Storey
- Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, VIC 3800, Australia
- Department of Neuroscience (Medicine), Monash University, The Alfred Centre, Melbourne, VIC 3800, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC 3800, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| | - Sharna D Jamadar
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC 3800, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| |
Collapse
|
17
|
Ward PGD, Orchard ER, Oldham S, Arnatkevičiūtė A, Sforazzini F, Fornito A, Storey E, Egan GF, Jamadar SD. Individual differences in haemoglobin concentration influence bold fMRI functional connectivity and its correlation with cognition. Neuroimage 2020; 221:117196. [PMID: 32721510 PMCID: PMC7994014 DOI: 10.1016/j.neuroimage.2020.117196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Resting-state connectivity measures the temporal coherence of the spontaneous neural activity of spatially distinct regions, and is commonly measured using BOLD-fMRI. The BOLD response follows neuronal activity, when changes in the relative concentration of oxygenated and deoxygenated haemoglobin cause fluctuations in the MRI T2* signal. Since the BOLD signal detects changes in relative concentrations of oxy/deoxy-haemoglobin, individual differences in haemoglobin levels may influence the BOLD signal-to-noise ratio in a manner independent of the degree of neural activity. In this study, we examined whether group differences in haemoglobin may confound measures of functional connectivity. We investigated whether relationships between measures of functional connectivity and cognitive performance could be influenced by individual variability in haemoglobin. Finally, we mapped the neuroanatomical distribution of the influence of haemoglobin on functional connectivity to determine where group differences in functional connectivity are manifest. In a cohort of 518 healthy elderly subjects (259 men), each sex group was median-split into two groups with high and low haemoglobin concentration. Significant differences were obtained in functional connectivity between the high and low haemoglobin groups for both men and women (Cohen's d 0.17 and 0.03 for men and women respectively). The haemoglobin connectome in males showed a widespread systematic increase in functional connectivity correlation values, whilst the female connectome showed predominantly parietal and subcortical increases and temporo-parietal decreases. Despite the haemoglobin groups having no differences in cognitive measures, significant differences in the linear relationships between cognitive performance and functional connectivity were obtained for all 5 cognitive tests in males, and 4 out of 5 tests in females. Our findings confirm that individual variability in haemoglobin levels that give rise to group differences are an important confounding variable in BOLD-fMRI-based studies of functional connectivity. Controlling for haemoglobin variability as a potentially confounding variable is crucial to ensure the reproducibility of human brain connectome studies, especially in studies that compare groups of individuals, compare sexes, or examine connectivity-cognition relationships.
Collapse
Affiliation(s)
- Phillip G D Ward
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Victoria, Australia.
| | - Edwina R Orchard
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Victoria, Australia
| | - Stuart Oldham
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Francesco Sforazzini
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, Victoria 3800, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Elsdon Storey
- School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Victoria, Australia
| | - Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Furby HV, Warnert EAH, Marley CJ, Bailey DM, Wise RG. Cardiorespiratory fitness is associated with increased middle cerebral arterial compliance and decreased cerebral blood flow in young healthy adults: A pulsed ASL MRI study. J Cereb Blood Flow Metab 2020; 40:1879-1889. [PMID: 31564194 PMCID: PMC7446564 DOI: 10.1177/0271678x19865449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/11/2019] [Indexed: 01/11/2023]
Abstract
Cardiorespiratory fitness is thought to have beneficial effects on systemic vascular health, in part, by decreasing arterial stiffness. However, in the absence of non-invasive methods, it remains unknown whether this effect extends to the cerebrovasculature. The present study uses a novel pulsed arterial spin labelling (pASL) technique to explore the relationship between cardiorespiratory fitness and arterial compliance of the middle cerebral arteries (MCAC). Other markers of cerebrovascular health, including resting cerebral blood flow (CBF) and cerebrovascular reactivity to CO2 (CVRCO2) were also investigated. Eleven healthy males aged 21 ± 2 years with varying levels of cardiorespiratory fitness (maximal oxygen uptake (V · O2MAX) 38-76 ml/min/kg) underwent MRI scanning at 3 Tesla. Higher V · O2MAX was associated with greater MCAC (R2 = 0.64, p < 0.01) and lower resting grey matter CBF (R2 = 0.75, p < 0.01). However, V · O2MAX was not predictive of global grey matter BOLD-based CVR (R2 = 0.47, p = 0.17) or CBF-based CVR (R2 = 0.19, p = 0.21). The current experiment builds upon the established benefits of exercise on arterial compliance in the systemic vasculature, by showing that increased cardiorespiratory fitness is associated with greater cerebral arterial compliance in early adulthood.
Collapse
Affiliation(s)
- Hannah V Furby
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Esther AH Warnert
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Vu C, Chai Y, Coloigner J, Nederveen AJ, Borzage M, Bush A, Wood JC. Quantitative perfusion mapping with induced transient hypoxia using BOLD MRI. Magn Reson Med 2020; 85:168-181. [PMID: 32767413 DOI: 10.1002/mrm.28422] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Gadolinium-based dynamic susceptibility contrast (DSC) is commonly used to characterize blood flow in patients with stroke and brain tumors. Unfortunately, gadolinium contrast administration has been associated with adverse reactions and long-term accumulation in tissues. In this work, we propose an alternative deoxygenation-based DSC (dDSC) method that uses a transient hypoxia gas paradigm to deliver a bolus of paramagnetic deoxygenated hemoglobin to the cerebral vasculature for perfusion imaging. METHODS Through traditional DSC tracer kinetic modeling, the MR signal change induced by this hypoxic bolus can be used to generate regional perfusion maps of cerebral blood flow, cerebral blood volume, and mean transit time. This gas paradigm and blood-oxygen-level-dependent (BOLD)-MRI were performed concurrently on a cohort of 66 healthy and chronically anemic subjects (age 23.5 ± 9.7, female 64%). RESULTS Our results showed reasonable global and regional agreement between dDSC and other flow techniques, such as phase contrast and arterial spin labeling. CONCLUSION In this proof-of-concept study, we demonstrated the feasibility of using transient hypoxia to generate a contrast bolus that mimics the effect of gadolinium and yields reasonable perfusion estimates. Looking forward, optimization of the hypoxia boluses and measurement of the arterial-input function is necessary to improve the accuracy of dDSC. Additionally, a cross-validation study of dDSC and DSC in brain tumor and ischemic stroke subjects is warranted to evaluate the clinical diagnostic utility of this approach.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yaqiong Chai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie Coloigner
- Department of Radiology, CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, France
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam Bush
- Department of Radiology, Stanford University, Stanford, CA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - John C Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Division of Cardiology, Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Coloigner J, Vu C, Borzage M, Bush A, Choi S, Miao X, Chai Y, Galarza C, Lepore N, Tamrazi B, Coates TD, Wood JC. Transient Hypoxia Model Revealed Cerebrovascular Impairment in Anemia Using BOLD MRI and Near-Infrared Spectroscopy. J Magn Reson Imaging 2020; 52:1400-1412. [PMID: 32648323 DOI: 10.1002/jmri.27210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea and nocturnal oxygen desaturations, which are prevalent in sickle cell disease (SCD) and chronic anemia disorders, have been linked to risks of stroke and silent cerebral infarcts (SCI). Cerebrovascular response to intermittent desaturations has not been well studied and may identify patients at greatest risk. PURPOSE To investigate the cerebral dynamic response to induced desaturation in SCD patients with and without SCI, chronic anemia, and healthy subjects. STUDY TYPE Prospective. SUBJECTS Twenty-six SCD patients (age = 21 ± 8.2, female 46.2%), including 15 subjects without SCI and nine subjects with SCI, 15 nonsickle anemic patients (age = 22 ± 5.8, female 66.7%), and 31 controls (age = 28 ± 12.3, female 77.4%). FIELD STRENGTH/SEQUENCE 3T, gradient-echo echo-planar imaging. ASSESSMENT A transient hypoxia challenge of five breaths of 100% nitrogen gas was performed with blood oxygen level-dependent (BOLD) MRI and near-infrared spectroscopy (NIRS) acquisitions. Hypoxia responses were characterized by desaturation depth, time-to-peak, return-to-baseline half-life, and posthypoxia recovery in the BOLD and NIRS time courses. SCI were documented by T2 fluid-attenuation inversion recovery (FLAIR). STATISTICAL TESTS Univariate and multivariate regressions were performed between hypoxic parameters and anemia predictors. Voxelwise two-sample t-statistic maps were used to assess the regional difference in hypoxic responses between anemic and control groups. RESULTS Compared to controls, SCD and chronically anemic patients demonstrated significantly higher desaturation depth (P < 0.01) and shorter return-to-baseline timing response (P < 0.01). Patients having SCI had shorter time-to-peak (P < 0.01), return-to-baseline (P < 0.01), and larger desaturation depth (P < 0.01) in both white matter regions at risk and normal-appearing white matter than patients without infarcts. On multivariate analysis, desaturation depth and timing varied with age, sex, blood flow, white blood cells, and cell-free hemoglobin (r2 = 0.25 for desaturation depth; r2 = 0.18 for time-to-peak; r2 = 0.37 for return-to-baseline). DATA CONCLUSION Transient hypoxia revealed global and regional response differences between anemic and healthy subjects. SCI was associated with extensive heterogeneity of desaturation dynamics, consistent with extensive underlying microvascular remodeling.
Collapse
Affiliation(s)
- Julie Coloigner
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, USA.,Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Rennes, France
| | - Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Adam Bush
- Department of Radiology and Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Xin Miao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yaqiong Chai
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Cristina Galarza
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Benita Tamrazi
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Thomas D Coates
- Division of Hematology-Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John C Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Division of Cardiology, Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
21
|
Krishnamurthy V, Krishnamurthy LC, Drucker JH, Kundu S, Ji B, Hortman K, Roberts SR, Mammino K, Tran SM, Gopinath K, McGregor KM, Rodriguez AD, Qiu D, Crosson B, Nocera JR. Correcting Task fMRI Signals for Variability in Baseline CBF Improves BOLD-Behavior Relationships: A Feasibility Study in an Aging Model. Front Neurosci 2020; 14:336. [PMID: 32425745 PMCID: PMC7205008 DOI: 10.3389/fnins.2020.00336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Blood Oxygen Level Dependent (BOLD) functional MRI is a complex neurovascular signal whose magnitude depends on baseline physiological factors such as cerebral blood flow (CBF). Because baseline CBF varies across the brain and is altered with aging, the interpretation of stand-alone aging-related BOLD changes can be misleading. The primary objective of this study was to develop a methodology that combines task fMRI and arterial spin labeling (ASL) techniques to sensitize task-induced BOLD activity by covarying out the baseline physiology (i.e., CBF) in an aging model. We recruited 11 younger and 13 older healthy participants who underwent ASL and an overt language fMRI task (semantic category member generation). We measured in-scanner language performance to investigate the effect of BOLD sensitization on BOLD-behavior relationships. The results demonstrate that our correction approach is effective at enhancing the specificity and sensitivity of the BOLD signal in both groups. In addition, the correction strengthens the statistical association between task BOLD activity and behavioral performance. Although CBF has inherent age dependence, our results show that retaining the age factor within CBF aides in greater sensitization of task fMRI signals. From a cognitive standpoint, compared to young adults, the older participants showed a delayed domain-general language-related task activity possibly due to compromised vessel compliance. Further, assessment of functional evolution of corrected BOLD activity revealed biphasic BOLD dynamics in both groups where BOLD deactivation may reflect greater semantic demand or increased premium on domain general executive functioning in response to task difficulty. Although it was promising to note that the predictability of behavior using the proposed methodology outperforms other methodologies (i.e., no correction and normalization by division), and provides moderate stability and adequate power, further work with a larger cohort and other task designs is necessary to improve the stability of predicting associated behavior. In summary, we recommend correction of task fMRI signals by covarying out baseline CBF especially when comparing groups with different neurovascular properties. Given that ASL and BOLD fMRI are well established and widely employed techniques, our proposed multi-modal methodology can be readily implemented into data processing pipelines to obtain more accurate BOLD activation maps.
Collapse
Affiliation(s)
- Venkatagiri Krishnamurthy
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States.,Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
| | - Jonathan H Drucker
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States
| | - Suprateek Kundu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States
| | - Bing Ji
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States.,Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Kyle Hortman
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States
| | - Simone R Roberts
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Kevin Mammino
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States
| | - Stella M Tran
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Kaundinya Gopinath
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Keith M McGregor
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States
| | - Amy D Rodriguez
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Bruce Crosson
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Joe R Nocera
- Department of Neurology, Emory University, Atlanta, GA, United States.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center (VAMC), Decatur, GA, United States.,Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Li W, Xu X, Liu P, Strouse JJ, Casella JF, Lu H, van Zijl PCM, Qin Q. Quantification of whole-brain oxygenation extraction fraction and cerebral metabolic rate of oxygen consumption in adults with sickle cell anemia using individual T 2 -based oxygenation calibrations. Magn Reson Med 2019; 83:1066-1080. [PMID: 31483528 DOI: 10.1002/mrm.27972] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To evaluate different T2 -oxygenation calibrations for estimating venous oxygenation in people with sickle cell anemia (SCA). METHODS Blood T2 values were measured at 3 T in the internal jugular veins of 12 healthy volunteers and 11 SCA participants with no history of stroke, recent transfusion, or renal impairment. T2 -oxygenation relationships of both sickled and normal blood samples were calibrated individually and compared with values generated from published models. After converting venous T2 values to venous oxygenation, whole-brain oxygen extraction fraction and cerebral metabolic rate of oxygen were calculated. RESULTS Sickle blood samples' oxygenation values calculated from our individual calibrations agreed well with measurements using a blood analyzer, whereas previous T2 calibrations based on normal blood samples showed 13%-19% underestimation. Meanwhile, oxygenation values calculated from previous grouped T2 calibration for sickle blood agreed well with experimental measurement on averaged values, but showed up to 20% variation for several individual samples. Using individual T2 calibrations, the whole-brain oxygen extraction fraction and cerebral metabolic rate of oxygen of SCA participants were 0.38 ± 0.08 and 172 ± 42 µmol/min/100 g, respectively, which were comparable to those values measured on healthy volunteers. CONCLUSION Our results confirm that sickle blood T2 values not only depend on the hematocrit and oxygenation values, but also on other hematological factors. The individual T2 calibrations minimized the effect of heterogeneity of sickle blood between different SCA populations and improved the accuracy of T2 -based oximetry. The measured oxygen extraction fraction and cerebral metabolic rate of oxygen of this group of SCA participants were found to not differ significantly from those of healthy individuals.
Collapse
Affiliation(s)
- Wenbo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peiying Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John J Strouse
- Department of Pediatrics, Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Hematology, Duke University, Durham, North Carolina
| | - James F Casella
- Department of Pediatrics, Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
23
|
Delgado AF, De Luca F, Hanagandi P, van Westen D, Delgado AF. Arterial Spin-Labeling in Children with Brain Tumor: A Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1536-1542. [PMID: 30072368 PMCID: PMC7410530 DOI: 10.3174/ajnr.a5727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The value of arterial spin-labeling in a pediatric population has not been assessed in a meta-analysis. PURPOSE Our aim was to assess the diagnostic accuracy of arterial spin-labeling-derived cerebral blood flow to discriminate low- and high-grade tumors. DATA SOURCES MEDLINE, EMBASE, the Web of Science Core Collection, and the Cochrane Library were used. STUDY SELECTION Pediatric patients with arterial spin-labeling MR imaging with verified neuropathologic diagnoses were included. DATA ANALYSIS Relative CBF and absolute CBF and tumor grade were extracted, including sequence-specific information. Mean differences in CBF between low- and high-grade tumors were calculated. Study quality was assessed. DATA SYNTHESIS Data were aggregated using the bivariate summary receiver operating characteristic curve model. Heterogeneity was explored with meta-regression and subgroup analyses. The study protocol was published at PROSPERO (CRD42017075055). Eight studies encompassing 286 pediatric patients were included. The mean differences in absolute CBF were 29.62 mL/min/100 g (95% CI, 10.43-48.82 mL/min/100 g), I2 = 74, P = .002, and 1.34 mL/min/100 g (95% CI, 0.95-1.74 mL/min/100 g), P < .001, I2 = 38 for relative CBF. Pooled sensitivity for relative CBF ranged from 0.75 to 0.90, and specificity, from 0.77 to 0.92 with an area under curve = 0.92. Meta-regression showed no moderating effect of sequence parameters TE, TR, acquisition time, or ROI method. LIMITATIONS Included tumor types, analysis method, and original data varied among included studies. CONCLUSIONS Arterial spin-labeling-derived CBF measures showed high diagnostic accuracy for discriminating low- and high-grade tumors in pediatric patients with brain tumors. The relative CBF showed less variation among studies than the absolute CBF.
Collapse
Affiliation(s)
- A F Delgado
- From the Departments of Clinical Neuroscience (Anna F.D.)
| | - F De Luca
- Faculty of Medicine and Surgery (F.D.L.), School of Medicine and Health Sciences, University "G. d'Annunzio," Chieti, Italy
| | - P Hanagandi
- Neuroradiology (P.H.), Karolinska Institute, Stockholm, Sweden
| | - D van Westen
- Faculty of Medicine (D.v.W.), Clinical Sciences, Lund University, Sweden
| | - A F Delgado
- Department of Surgical Sciences (Alberto F.D.), Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Chen CM, Huang YC, Shih CT, Chen YF, Peng SL. MRI-based measurements of whole-brain global cerebral blood flow: Comparison and validation at 1.5T and 3T. J Magn Reson Imaging 2018; 48:1273-1280. [PMID: 29479823 DOI: 10.1002/jmri.25989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Whole-brain global cerebral blood flow (CBF) determined by MRI techniques, calculated using total CBF (TCBF) from phase-contrast MRI (PC-MRI), and brain parenchyma volume (BPV) from T1 -weighted image, have become increasingly popular in many applications. PURPOSE/HYPOTHESIS To determine if MRI-based measurements of whole-brain global CBF data obtained across different field strengths could be merged, TCBF and BPV data acquired at 1.5T and 3T were compared. STUDY TYPE Prospective study. POPULATION Seventeen healthy subjects (eight females, aged 21-29 years old). FIELD STRENGTH/SEQUENCE Fast spoiled gradient echo (FSPGR) and PC-MRI at both 1.5T and 3T. ASSESSMENT TCBF and BPV data acquired at 1.5T and 3T were compared. STATISTICAL TESTS The relationships of TCBF and whole-brain global CBF between two field strengths were examined by using the Pearson correlation coefficient analysis and intraclass correlation coefficient (ICC). RESULTS Regression analysis revealed a strong correlation between TCBF at two field strengths (R2 = 0.78, P < 0.001), and the ICC was 0.85, suggesting measurements of TCBF at 1.5T were comparable and correlated with those at 3T. There was a significant difference in BPV between field strengths, where the white matter estimate was significantly larger at 1.5T when compared with that at 3T (P < 0.001). When TCBF was further normalized to the brain parenchyma mass to obtain whole-brain global CBF, it only showed a moderate correlation between measurements at the two field strengths (R2 = 0.46, P = 0.003) and lower ICC of 0.66, reflecting the slightly higher interstrength variability in the whole-brain global CBF measurements. DATA CONCLUSION TCBF measurements could be performed equally well with comparable results at both field strengths, but specific attention should be given when TCBF is further normalized to BPV to obtain whole-brain global CBF. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1273-1280.
Collapse
Affiliation(s)
- Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Chih Huang
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ting Shih
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yung-Fang Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|