1
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2025; 42:640-667. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
2
|
Tayebi M, Kwon E, McGeown J, Potter L, Taylor D, Condron P, Qiao M, McHugh P, Maller J, Nielsen P, Wang A, Fernandez J, Scadeng M, Shim V, Holdsworth S. Characterizing the Effect of Repetitive Head Impact Exposure and mTBI on Adolescent Collision Sports Players' Brain with Diffusion Magnetic Resonance Imaging. J Neurotrauma 2025; 42:349-366. [PMID: 39714998 DOI: 10.1089/neu.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Athletes in collision sports frequently sustain repetitive head impacts (RHI), which, while not individually severe enough for a clinical mild traumatic brain injury (mTBI) diagnosis, can compromise neuronal organization by transferring mechanical energy to the brain. Although numerous studies target athletes with mTBI, there is a lack of longitudinal research on young collision sport participants, highlighting an unaddressed concern regarding cumulative RHI effects on brain microstructures. Therefore, this study aimed to investigate the microstructural changes in the brains' of high school rugby players due to repeated head impacts and to establish a correlation between clinical symptoms, cumulative effects of RHI exposure, and changes in the brain's microstructure. We conducted a longitudinal magnetic resonance imaging (MRI) study on 36 male high school rugby players across a season using 3D T1-weighted and multi-shell diffusion MRI sequences, comparing them with 20 matched controls. Players with concussions were separately tracked up to 6 weeks post-injury with three-times scans within this period. The Sport Concussion Assessment Tool (SCAT5) symptom scale assessed mTBI symptoms, and mouthguard-embedded kinematic sensors recorded head impacts. No significant volumetric changes in subcortical structures were found post-rugby season. However, there were substantial differences in mean diffusivity (MD) and axial diffusivity (AD) between the rugby players and controls across widespread brain regions. Diffusion metrics, especially AD, MD, and radial diffusivity of certain brain tracts, displayed strong correlations with SCAT5 symptom severity. Repeated head impacts during a rugby season may adversely affect the structural organization of the brain's white matter. The observed diffusion changes, closely tied to SCAT5 symptom burden, stress the profound effects of seasonal head impacts and highlight individual variability in response to repetitive head impact exposure. To better manage sports-related mTBI and guide return-to-play decisions, comprehensive studies on brain injury mechanisms and recovery post-mTBI/RHI exposure are required.
Collapse
Affiliation(s)
- Maryam Tayebi
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Eryn Kwon
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Josh McGeown
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Leigh Potter
- Mātai Medical Research Institute, Gisborne, New Zealand
| | | | - Paul Condron
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Miao Qiao
- Department of Computer Science, The University of Auckland, Auckland, New Zealand
| | | | | | - Poul Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Miriam Scadeng
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Kwiatkowski A, Weidler C, Habel U, Coverdale NS, Hirad AA, Manning KY, Rauscher A, Bazarian JJ, Cook DJ, Li DKB, Mahon BZ, Menon RS, Taunton J, Reetz K, Romanzetti S, Huppertz C. Uncovering the hidden effects of repetitive subconcussive head impact exposure: A mega-analytic approach characterizing seasonal brain microstructural changes in contact and collision sports athletes. Hum Brain Mapp 2024; 45:e26811. [PMID: 39185683 PMCID: PMC11345636 DOI: 10.1002/hbm.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine 10, Research Centre JülichJülichGermany
- JARA‐BRAIN Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | | | - Adnan A. Hirad
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeuroscienceUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Del Monte Neuroscience Institute, University of RochesterNew YorkUSA
| | - Kathryn Y. Manning
- Department of RadiologyUniversity of Calgary and Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Alexander Rauscher
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pediatrics, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- UBC MRI Research Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey J. Bazarian
- Department of Emergency MedicineUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen's UniversityKingstonOntarioCanada
- Division of Neurosurgery, Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - David K. B. Li
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Bradford Z. Mahon
- Department of PsychologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Carnegie Mellon Neuroscience InstitutePittsburghPennsylvaniaUSA
- Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - Jack Taunton
- Allan McGavin Sports Medicine Centre, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathrin Reetz
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
4
|
Delang N, Irwin C, Peek AL, McGregor IS, Desbrow B, McCartney D. The effect of contact/collision sport participation without concussion on neurometabolites: A systematic review and meta-analysis of magnetic resonance spectroscopy studies. J Neurochem 2023; 167:615-632. [PMID: 37908148 DOI: 10.1111/jnc.16000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The aim of this study was to systematically review prior research investigating the effects of contact/collision sport participation on neurometabolite levels in the absence of concussion. Four online databases were searched to identify studies that measured neurometabolite levels in contact/collision sport athletes (without concussion) using proton (1 H) or phosphorus (31 P) magnetic resonance spectroscopy (MRS). All study designs were acceptable for inclusion. Meta-analytic procedures were used to quantify the effect of contact/collision sport participation on neurometabolite levels and explore the impact of specific moderating factors (where sufficient data were available). Narrative synthesis was used to describe outcomes that could not be meta-analysed. Nine observational studies involving 300 contact/collision sport athletes were identified. Six studies (providing 112 effect estimates) employed longitudinal (cohort) designs and three (that could not be meta-analysed) employed case-control designs. N-acetylaspartate (NAA; g = -0.331, p = 0.013) and total creatine (tCr; creatine + phosphocreatine; g = -0.524, p = 0.029), but not glutamate-glutamine (Glx), myo-inositol (mI) or total choline (tCho; choline-containing compounds; p's > 0.05), decreased between the pre-season and mid-/post-season period. Several moderators were statistically significant, including: sex (Glx: 6 female/23 male, g = -0.549, p = 0.013), sport played (Glx: 22 American football/4 association football [soccer], g = 0.724, p = 0.031), brain region (mI: 2 corpus callosum/9 motor cortex, g = -0.804, p = 0.015), and the MRS quantification approach (mI: 18 absolute/3 tCr-referenced, g = 0.619, p = 0.003; and tCho: 18 absolute/3 tCr-referenced, g = 0.554, p = 0.005). In case-control studies, contact/collision sport athletes had higher levels of mI, but not NAA or tCr compared to non-contact sport athletes and non-athlete controls. Overall, this review suggests that contact/collision sport participation has the potential to alter neurometabolites measured via 1 H MRS in the absence of concussion. However, further research employing more rigorous and consistent methodologies (e.g. interventional studies with consistent 1 H MRS pulse sequences and quantifications) is required to confirm and better understand the clinical relevance of observed effects.
Collapse
Affiliation(s)
- Nathan Delang
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Queensland Academy of Sport, Nathan, Queensland, Australia
| | - Christopher Irwin
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Aimie L Peek
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain S McGregor
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - Danielle McCartney
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Allen J, Pham L, Bond ST, O’Brien WT, Spitz G, Shultz SR, Drew BG, Wright DK, McDonald SJ. Acute effects of single and repeated mild traumatic brain injury on levels of neurometabolites, lipids, and mitochondrial function in male rats. Front Mol Neurosci 2023; 16:1208697. [PMID: 37456524 PMCID: PMC10338885 DOI: 10.3389/fnmol.2023.1208697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Mild traumatic brain injuries (mTBIs) are the most common form of acquired brain injury. Symptoms of mTBI are thought to be associated with a neuropathological cascade, potentially involving the dysregulation of neurometabolites, lipids, and mitochondrial bioenergetics. Such alterations may play a role in the period of enhanced vulnerability that occurs after mTBI, such that a second mTBI will exacerbate neuropathology. However, it is unclear whether mTBI-induced alterations in neurometabolites and lipids that are involved in energy metabolism and other important cellular functions are exacerbated by repeat mTBI, and if such alterations are associated with mitochondrial dysfunction. Methods In this experiment, using a well-established awake-closed head injury (ACHI) paradigm to model mTBI, male rats were subjected to a single injury, or five injuries delivered 1 day apart, and injuries were confirmed with a beam-walk task and a video observation protocol. Abundance of several neurometabolites was evaluated 24 h post-final injury in the ipsilateral and contralateral hippocampus using in vivo proton magnetic resonance spectroscopy (1H-MRS), and mitochondrial bioenergetics were evaluated 30 h post-final injury, or at 24 h in place of 1H-MRS, in the rostral half of the ipsilateral hippocampus. Lipidomic evaluations were conducted in the ipsilateral hippocampus and cortex. Results We found that behavioral deficits in the beam task persisted 1- and 4 h after the final injury in rats that received repetitive mTBIs, and this was paralleled by an increase and decrease in hippocampal glutamine and glucose, respectively, whereas a single mTBI had no effect on sensorimotor and metabolic measurements. No group differences were observed in lipid levels and mitochondrial bioenergetics in the hippocampus, although some lipids were altered in the cortex after repeated mTBI. Discussion The decrease in performance in sensorimotor tests and the presence of more neurometabolic and lipidomic abnormalities, after repeated but not singular mTBI, indicates that multiple concussions in short succession can have cumulative effects. Further preclinical research efforts are required to understand the underlying mechanisms that drive these alterations to establish biomarkers and inform treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon T. Bond
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - William T. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian G. Drew
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
La PL, Joyce JM, Bell TK, Mauthner M, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Brain metabolites measured with magnetic resonance spectroscopy in pediatric concussion and orthopedic injury: An Advancing Concussion Assessment in Pediatrics (A-CAP) study. Hum Brain Mapp 2023; 44:2493-2508. [PMID: 36763547 PMCID: PMC10028643 DOI: 10.1002/hbm.26226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Millions of children sustain a concussion annually. Concussion disrupts cellular signaling and neural pathways within the brain but the resulting metabolic disruptions are not well characterized. Magnetic resonance spectroscopy (MRS) can examine key brain metabolites (e.g., N-acetyl Aspartate (tNAA), glutamate (Glx), creatine (tCr), choline (tCho), and myo-Inositol (mI)) to better understand these disruptions. In this study, we used MRS to examine differences in brain metabolites between children and adolescents with concussion versus orthopedic injury. Children and adolescents with concussion (n = 361) or orthopedic injury (OI) (n = 184) aged 8 to 17 years were recruited from five emergency departments across Canada. MRS data were collected from the left dorsolateral prefrontal cortex (L-DLPFC) using point resolved spectroscopy (PRESS) at 3 T at a mean of 12 days post-injury (median 10 days post-injury, range 2-33 days). Univariate analyses for each metabolite found no statistically significant metabolite differences between groups. Within each analysis, several covariates were statistically significant. Follow-up analyses designed to account for possible confounding factors including age, site, scanner, vendor, time since injury, and tissue type (and interactions as appropriate) did not find any metabolite group differences. In the largest sample of pediatric concussion studied with MRS to date, we found no metabolite differences between concussion and OI groups in the L-DLPFC. We suggest that at 2 weeks post-injury in a general pediatric concussion population, brain metabolites in the L-DLPFC are not specifically affected by brain injury.
Collapse
Affiliation(s)
- Parker L La
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Julie M Joyce
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Micaela Mauthner
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - William Craig
- Department of Pediatrics, University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal and Ste Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Childrens' Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
La PL, Bell TK, Craig W, Doan Q, Beauchamp MH, Zemek R, Yeates KO, Harris AD. Comparison of different approaches to manage multi-site magnetic resonance spectroscopy clinical data analysis. Front Psychol 2023; 14:1130188. [PMID: 37151330 PMCID: PMC10157208 DOI: 10.3389/fpsyg.2023.1130188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The effects caused by differences in data acquisition can be substantial and may impact data interpretation in multi-site/scanner studies using magnetic resonance spectroscopy (MRS). Given the increasing use of multi-site studies, a better understanding of how to account for different scanners is needed. Using data from a concussion population, we compare ComBat harmonization with different statistical methods in controlling for site, vendor, and scanner as covariates to determine how to best control for multi-site data. Methods The data for the current study included 545 MRS datasets to measure tNAA, tCr, tCho, Glx, and mI to study the pediatric concussion acquired across five sites, six scanners, and two different MRI vendors. For each metabolite, the site and vendor were accounted for in seven different models of general linear models (GLM) or mixed-effects models while testing for group differences between the concussion and orthopedic injury. Models 1 and 2 controlled for vendor and site. Models 3 and 4 controlled for scanner. Models 5 and 6 controlled for site applied to data harmonized by vendor using ComBat. Model 7 controlled for scanner applied to data harmonized by scanner using ComBat. All the models controlled for age and sex as covariates. Results Models 1 and 2, controlling for site and vendor, showed no significant group effect in any metabolites, but the vendor and site were significant factors in the GLM. Model 3, which included a scanner, showed a significant group effect for tNAA and tCho, and the scanner was a significant factor. Model 4, controlling for the scanner, did not show a group effect in the mixed model. The data harmonized by the vendor using ComBat (Models 5 and 6) had no significant group effect in both the GLM and mixed models. Lastly, the data harmonized by the scanner using ComBat (Model 7) showed no significant group effect. The individual site data suggest there were no group differences. Conclusion Using data from a large clinical concussion population, different analysis techniques to control for site, vendor, and scanner in MRS data yielded different results. The findings support the use of ComBat harmonization for clinical MRS data, as it removes the site and vendor effects.
Collapse
Affiliation(s)
- Parker L. La
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Parker L. La,
| | - Tiffany K. Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - William Craig
- Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - Quynh Doan
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Miriam H. Beauchamp
- Department of Psychology, Ste-Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
9
|
DiFabio MS, Smith DR, Breedlove KM, Pohlig RT, Buckley TA, Johnson CL. Altered Brain Functional Connectivity in the Frontoparietal Network following an Ice Hockey Season. Eur J Sport Sci 2022; 23:684-692. [PMID: 35466861 DOI: 10.1080/17461391.2022.2069512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSustaining sports-related head impacts has been reported to result in neurological changes that potentially lead to later-life neurological disease. Advanced neuroimaging techniques have been used to detect subtle neurological effects resulting from head impacts, even after a single competitive season. The current study used resting-state functional magnetic resonance imaging to assess changes in functional connectivity of the frontoparietal network, a brain network responsible for executive functioning, in collegiate club ice hockey players over one season. Each player was scanned before and after the season and wore accelerometers to measure head impacts at practices and home games throughout the season. We examined pre- to post-season differences in connectivity within the frontoparietal and default mode networks, as well as the relationship between the total number of head impacts sustained and changes in connectivity. We found a significant interaction between network region of interest and time point (p = 0.016), in which connectivity between the left and right posterior parietal cortex seed regions increased over the season (p < 0.01). Number of impacts had a significant effect on frontoparietal network connectivity, such that more impacts were related to greater connectivity differences over the season (p = 0.042). Overall, functional connectivity increased in ice hockey athletes over a season between regions involved in executive functioning, and sensory integration, in particular. Furthermore, those who sustained more impacts had the greatest changes in connectivity. Consistent with prior findings in resting-state sports-related head impact literature, these findings have been suggested to represent brain injury.
Collapse
Affiliation(s)
- Melissa S DiFabio
- Department of Biomedical Engineering, University of Delaware, Newark, DE.,Department of Child and Adolescent Psychiatry, Psychomatics, and Psychotherapy, Ludwig-Maximilans-Universität München - University of Munich, Munich, Germany
| | - Daniel R Smith
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA.,Department of Radiology, Harvard Medical School, Boston, MA
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, DE
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| |
Collapse
|
10
|
Associations Between Neurochemistry and Gait Performance Following Concussion in Collegiate Athletes. J Head Trauma Rehabil 2021; 35:342-353. [PMID: 32881768 DOI: 10.1097/htr.0000000000000616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To evaluate the strength of associations between single-task and dual-task gait measures and posterior cingulate gyrus (PCG) neurochemicals in acutely concussed collegiate athletes. SETTING Participants were recruited from an NCAA Division 1 University. PARTICIPANTS Nineteen collegiate athletes acutely (<4 days) following sports-related concussion. DESIGN We acquired magnetic resonance spectroscopy (MRS) in the PCG and gait performance measurements in the participants, acutely following concussion. Linear mixed-effects models were constructed to measure the effect of gait performance, in the single- and dual-task settings, and sex on the 6 neurochemicals quantified with MRS in mmol. Correlation coefficients were also calculated to determine the direction and strength of the relationship between MRS neurochemicals and gait performance, postconcussion symptom score, and number of previous concussions. MAIN MEASURES Average gait speed, average cadence, N-acetyl aspartate, choline, myo-inositol, glutathione, glutamate plus glutamine, and creatine. RESULTS Single-task gait speed (P = .0056) and cadence (P = .0065) had significant effects on myo-inositol concentrations in the PCG, independent of sex, in concussed collegiate athletes. Single-task cadence (P = .047) also had a significant effect on glutathione in the PCG. No significant effects were observed between dual-task gait performance and PCG neurochemistry. CONCLUSIONS These findings indicate that increased concentrations of neuroinflammatory markers in the PCG are associated with slower single-task gait performance within 4 days of sports-related concussion.
Collapse
|
11
|
Lees B, Earls NE, Meares S, Batchelor J, Oxenham V, Rae CD, Jugé L, Cysique LA. Diffusion Tensor Imaging in Sport-Related Concussion: A Systematic Review Using an a priori Quality Rating System. J Neurotrauma 2021; 38:3032-3046. [PMID: 34309410 DOI: 10.1089/neu.2021.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) of brain white matter (WM) may be useful for characterizing the nature and degree of brain injury after sport-related concussion (SRC) and assist in establishing objective diagnostic and prognostic biomarkers. This study aimed to conduct a systematic review using an a priori quality rating strategy to determine the most consistent DTI-WM changes post-SRC. Articles published in English (until June 2020) were retrieved by standard research engine and gray literature searches (N = 4932), using PRISMA guidelines. Eligible studies were non-interventional naturalistic original studies that conducted DTI within 6 months of SRC in current athletes from all levels of play, types of sports, and sex. A total of 29 articles were included in the review, and after quality appraisal by two raters, data from 10 studies were extracted after being identified as high quality. High-quality studies showed widespread moderate-to-large WM differences when SRC samples were compared to controls during the acute to early chronic stage (days to weeks) post-SRC, including both increased and decreased fractional anisotropy and axial diffusivity and decreased mean diffusivity and radial diffusivity. WM differences remained stable in the chronic stage (2-6 months post-SRC). DTI metrics were commonly associated with SRC symptom severity, although standardized SRC diagnostics would improve future research. This indicates that microstructural recovery is often incomplete at return to play and may lag behind clinically assessed recovery measures. Future work should explore interindividual trajectories to improve understanding of the heterogeneous and dynamic WM patterns post-SRC.
Collapse
Affiliation(s)
- Briana Lees
- The Matilda Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicola E Earls
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Susanne Meares
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer Batchelor
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Vincent Oxenham
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lucette A Cysique
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,St. Vincent's Hospital Applied Medical Research Centre, Peter Duncan Neuroscience, Sydney, New South Wales, Australia.,School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Symons GF, Clough M, Fielding J, O'Brien WT, Shepherd CE, Wright DK, Shultz SR. The Neurological Consequences of Engaging in Australian Collision Sports. J Neurotrauma 2021; 37:792-809. [PMID: 32056505 DOI: 10.1089/neu.2019.6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collision sports are an integral part of Australian culture. The most common collision sports in Australia are Australian rules football, rugby union, and rugby league. Each of these sports often results in participants sustaining mild brain traumas, such as concussive and subconcussive injuries. However, the majority of previous studies and reviews pertaining to the neurological implications of sustaining mild brain traumas, while engaging in collision sports, have focused on those popular in North America and Europe. As part of this 2020 International Neurotrauma Symposium special issue, which highlights Australian neurotrauma research, this article will therefore review the burden of mild brain traumas in Australian collision sports athletes. Specifically, this review will first provide an overview of the consequences of mild brain trauma in Australian collision sports, followed by a summary of the previous studies that have investigated neurocognition, ocular motor function, neuroimaging, and fluid biomarkers, as well as neuropathological outcomes in Australian collision sports athletes. A review of the literature indicates that although Australians have contributed to the field, several knowledge gaps and limitations currently exist. These include important questions related to sex differences, the identification and implementation of blood and imaging biomarkers, the need for consistent study designs and common data elements, as well as more multi-modal studies. We conclude that although Australia has had an active history of investigating the neurological impact of collision sports participation, further research is clearly needed to better understand these consequences in Australian athletes and how they can be mitigated.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, The University of New South Wales, Sydney, New South Wales, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Tayebi M, Holdsworth SJ, Champagne AA, Cook DJ, Nielsen P, Lee TR, Wang A, Fernandez J, Shim V. The role of diffusion tensor imaging in characterizing injury patterns on athletes with concussion and subconcussive injury: a systematic review. Brain Inj 2021; 35:621-644. [PMID: 33843389 DOI: 10.1080/02699052.2021.1895313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a major public health problem. The majority of TBIs are in the form of mild TBI (also known as concussion) with sports-related concussion (SRC) receiving public attention in recent years.Here we have performed a systematic review of the literature on the use of Diffusion Tensor Imaging (DTI) on sports-related concussion and subconcussive injuries. Our review found different patterns of change in DTI parameters between concussed and subconcussed groups. The Fractional Anisotropy (FA) was either unchanged or increased for the concussion group, while the subconcussed group generally experienced a decrease in FA. A reverse pattern was observed for Mean Diffusivity (MD) - where the concussed group experienced a decrease in MD while the subconcussed group showed an increase in MD. However, in general, discrepancies were observed in the results reported in the literature - likely due to the huge variations in DTI acquisition parameters, and image processing and analysis methods used in these studies. This calls for more comprehensive and well-controlled studies in this field, including those that combine the advanced brain imaging with biomechancial modeling and kinematic sensors - to shed light on the underlying mechanisms behind the structural changes observed from the imaging studies.
Collapse
Affiliation(s)
- Maryam Tayebi
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Insitute, Gisborne, New Zealand
| | - Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Poul Nielsen
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Republic of Korea
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Xu X, Cowan M, Beraldo F, Schranz A, McCunn P, Geremia N, Brown Z, Patel M, Nygard KL, Khazaee R, Lu L, Liu X, Strong MJ, Dekaban GA, Menon R, Bartha R, Daley M, Mao H, Prado V, Prado MAM, Saksida L, Bussey T, Brown A. Repetitive mild traumatic brain injury in mice triggers a slowly developing cascade of long-term and persistent behavioral deficits and pathological changes. Acta Neuropathol Commun 2021; 9:60. [PMID: 33823944 PMCID: PMC8025516 DOI: 10.1186/s40478-021-01161-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
We have previously reported long-term changes in the brains of non-concussed varsity rugby players using magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and functional magnetic imaging (fMRI). Others have reported cognitive deficits in contact sport athletes that have not met the diagnostic criteria for concussion. These results suggest that repetitive mild traumatic brain injuries (rmTBIs) that are not severe enough to meet the diagnostic threshold for concussion, produce long-term consequences. We sought to characterize the neuroimaging, cognitive, pathological and metabolomic changes in a mouse model of rmTBI. Using a closed-skull model of mTBI that when scaled to human leads to rotational and linear accelerations far below what has been reported for sports concussion athletes, we found that 5 daily mTBIs triggered two temporally distinct types of pathological changes. First, during the first days and weeks after injury, the rmTBI produced diffuse axonal injury, a transient inflammatory response and changes in diffusion tensor imaging (DTI) that resolved with time. Second, the rmTBI led to pathological changes that were evident months after the injury including: changes in magnetic resonance spectroscopy (MRS), altered levels of synaptic proteins, behavioural deficits in attention and spatial memory, accumulations of pathologically phosphorylated tau, altered blood metabolomic profiles and white matter ultrastructural abnormalities. These results indicate that exceedingly mild rmTBI, in mice, triggers processes with pathological consequences observable months after the initial injury.
Collapse
|
15
|
Koerte IK, Esopenko C, Hinds SR, Shenton ME, Bonke EM, Bazarian JJ, Bickart KC, Bigler ED, Bouix S, Buckley TA, Choe MC, Echlin PS, Gill J, Giza CC, Hayes J, Hodges CB, Irimia A, Johnson PK, Kenney K, Levin HS, Lin AP, Lindsey HM, Lipton ML, Max JE, Mayer AR, Meier TB, Merchant-Borna K, Merkley TL, Mills BD, Newsome MR, Porfido T, Stephens JA, Tartaglia MC, Ware AL, Zafonte RD, Zeineh MM, Thompson PM, Tate DF, Dennis EL, Wilde EA, Baron D. The ENIGMA sports injury working group:- an international collaboration to further our understanding of sport-related brain injury. Brain Imaging Behav 2021; 15:576-584. [PMID: 32720179 PMCID: PMC7855299 DOI: 10.1007/s11682-020-00370-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor.
Collapse
Affiliation(s)
- Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität München, Waltherstr. 23, 80337, Munich, Germany.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Science, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sidney R Hinds
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elena M Bonke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität München, Waltherstr. 23, 80337, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Jeffrey J Bazarian
- Departments of Emergency Medicine & Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Kevin C Bickart
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Neurology and Neuropsychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Meeryo C Choe
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Pediatrics, Division of Neurology, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Paul S Echlin
- Elliott Sports Medicine Clinic, Burlington, ON, Canada
| | - Jessica Gill
- Department of Intramural Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Pediatrics, Division of Neurology, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jasmeet Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Michael L Lipton
- Departments of Radiology, Psychiatry and Behavioral Sciences and The Dominick P. Purpura Department of Neuroscience, The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Montefiore Medicine, Bronx, NY, USA
| | - Jeffrey E Max
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM, USA
- Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kian Merchant-Borna
- Departments of Emergency Medicine & Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Tricia L Merkley
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Brian D Mills
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Tara Porfido
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Jaclyn A Stephens
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| | - Maria Carmela Tartaglia
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross D Zafonte
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - David Baron
- Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
16
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Schranz AL, Dekaban GA, Fischer L, Blackney K, Barreira C, Doherty TJ, Fraser DD, Brown A, Holmes J, Menon RS, Bartha R. Brain Metabolite Levels in Sedentary Women and Non-contact Athletes Differ From Contact Athletes. Front Hum Neurosci 2020; 14:593498. [PMID: 33324185 PMCID: PMC7726472 DOI: 10.3389/fnhum.2020.593498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/28/2020] [Indexed: 01/31/2023] Open
Abstract
White matter tracts are known to be susceptible to injury following concussion. The objective of this study was to determine whether contact play in sport could alter white matter metabolite levels in female varsity athletes independent of changes induced by long-term exercise. Metabolite levels were measured by single voxel proton magnetic resonance spectroscopy (MRS) in the prefrontal white matter at the beginning (In-Season) and end (Off-Season) of season in contact (N = 54, rugby players) and non-contact (N = 23, swimmers and rowers) varsity athletes. Sedentary women (N = 23) were scanned once, at a time equivalent to the Off-Season time point. Metabolite levels in non-contact athletes did not change over a season of play, or differ from age matched sedentary women except that non-contact athletes had a slightly lower myo-inositol level. The contact athletes had lower levels of myo-inositol and glutamate, and higher levels of glutamine compared to both sedentary women and non-contact athletes. Lower levels of myo-inositol in non-contact athletes compared to sedentary women indicates long-term exercise may alter glial cell profiles in these athletes. The metabolite differences observed between contact and non-contact athletes suggest that non-contact athletes should not be used as controls in studies of concussion in high-impact sports because repetitive impacts from physical contact can alter white matter metabolite level profiles. It is imperative to use athletes engaged in the same contact sport as controls to ensure a matched metabolite profile at baseline.
Collapse
Affiliation(s)
- Amy L Schranz
- Department of Medical Biophysics, Robarts Research Institute, Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Lisa Fischer
- Fowler Kennedy Sport Medicine Clinic, Department of Family Medicine, Western University, London, ON, Canada
| | - Kevin Blackney
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada
| | - Timothy J Doherty
- Physical Medicine and Rehabilitation, Western University, London, ON, Canada
| | - Douglas D Fraser
- Paediatrics Critical Care Medicine, London Health Sciences Centre, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Jeff Holmes
- School of Occupational Therapy, Western University, London, ON, Canada
| | - Ravi S Menon
- Department of Medical Biophysics, Robarts Research Institute, Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Robarts Research Institute, Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| |
Collapse
|
18
|
Manning KY, Brooks JS, Dickey JP, Harriss A, Fischer L, Jevremovic T, Blackney K, Barreira C, Brown A, Bartha R, Doherty T, Fraser D, Holmes J, Dekaban GA, Menon RS. Longitudinal changes of brain microstructure and function in nonconcussed female rugby players. Neurology 2020; 95:e402-e412. [PMID: 32554762 PMCID: PMC7455316 DOI: 10.1212/wnl.0000000000009821] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To longitudinally assess brain microstructure and function in female varsity athletes participating in contact and noncontact sports. METHODS Concussion-free female rugby players (n = 73) were compared to age-matched (ages 18-23) female swimmers and rowers (n = 31) during the in- and off-season. Diffusion and resting-state fMRI (rs-fMRI) measures were the primary outcomes. The Sports Concussion Assessment Tool and head impact accelerometers were used to monitor symptoms and impacts, respectively. RESULTS We found cross-sectional (contact vs noncontact) and longitudinal (in- vs off-season) changes in white matter diffusion measures and rs-fMRI network connectivity in concussion-free contact athletes relative to noncontact athletes. In particular, mean, axial, and radial diffusivities were increased with decreased fractional anisotropy in multiple white matter tracts of contact athletes accompanied with default mode and visual network hyperconnectivity (p < 0.001). Longitudinal diffusion changes in the brainstem between the in- and off-season were observed for concussion-free contact athletes only, with progressive changes observed in a subset of athletes over multiple seasons. Axial diffusivity was significantly lower in the genu and splenium of the corpus callosum in those contact athletes with a history of concussion. CONCLUSIONS Together, these findings demonstrate longitudinal changes in the microstructure and function of the brain in otherwise healthy, asymptomatic athletes participating in contact sport. Further research to understand the long-term brain health and biological implications of these changes is required, in particular to what extent these changes reflect compensatory, reparative, or degenerative processes.
Collapse
Affiliation(s)
- Kathryn Y Manning
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Jeffrey S Brooks
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - James P Dickey
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Alexandra Harriss
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Lisa Fischer
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Tatiana Jevremovic
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Kevin Blackney
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Christy Barreira
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Arthur Brown
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Robert Bartha
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Tim Doherty
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Douglas Fraser
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Jeff Holmes
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Gregory A Dekaban
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| | - Ravi S Menon
- From Medical Biophysics (K.Y.M., R.B., R.S.M.), School of Kinesiology (J.S.B., J.P.D.), Microbiology and Immunology (K.B.), Health and Rehabilitation Sciences (A.H.), Anatomy and Cell Biology (A.B.), Physical Medicine and Rehabilitation (T.D.), and School of Occupational Therapy (J.H.), Western University; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine Research Laboratories (K.B., C.B., A.B., G.A.D.), Robarts Research Institute; Primary Care Sport Medicine (L.F., T.J.), Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.F.), London Health Sciences Centre, Ontario, Canada
| |
Collapse
|
19
|
McGroarty NK, Brown SM, Mulcahey MK. Sport-Related Concussion in Female Athletes: A Systematic Review. Orthop J Sports Med 2020; 8:2325967120932306. [PMID: 32728590 PMCID: PMC7366411 DOI: 10.1177/2325967120932306] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Female athletes are more susceptible to sport-related concussions (SRCs) and experience worse outcomes compared with male athletes. Although numerous studies on SRC have compared the outcomes of concussions in male and female athletes after injury, research pertaining to why female athletes have worse outcomes is limited. Purpose: To determine the factors that predispose female athletes to more severe concussions than their male counterparts. Study Design: Systematic review; Level or evidence, 3. Methods: A systematic review was performed according to PRISMA (Preferred Reporting Items for Systematic Meta-Analyses) guidelines. The MEDLINE, EMBASE, CINAHL, PsychINFO, and Cochrane Library databases were systematically searched on July 5 to July 20, 2018. Included were cohort, case-control, and cross-sectional studies that examined the effects of concussive and subconcussive head impacts in only female athletes of all ages, regardless of competition level. These studies were further supplemented with epidemiologic studies. Exclusion criteria included narrative reviews, single case reports, abstracts and letters to the editor, and studies related to chronic traumatic brain injury. Results: A total of 25 studies met the inclusion criteria. Female athletes appear to sustain more severe concussions than male athletes, due in part to a lower biomechanical threshold tolerance for head impacts. Additionally, concussions may alter the hypothalamic-pituitary-ovarian axis, resulting in worse symptoms and amenorrhea. Although females are more likely to report concussions than males, underreporting still exists and may result in concussions going untreated. Conclusion: This systematic review demonstrates that female athletes may be more susceptible to concussion, have prolonged symptoms after a concussion, and are more likely to report a concussion than their male counterparts. However, underreporting still exists among female athletes. Possible factors that put female athletes at a higher risk for concussions include biomechanical differences and hormonal differences. To effectively prevent, diagnose, and treat concussions in female athletes, more research is required to determine when and how such injuries are sustained. Despite sex-based differences in the clinical incidence, reporting behavior, and outcomes of SRCs, female athletes remain an understudied population, resulting in lack of sex-specific treatment guidelines for female athletes postinjury.
Collapse
Affiliation(s)
| | - Symone M Brown
- Department of Orthopaedic Surgery, Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Mary K Mulcahey
- Department of Orthopaedic Surgery, Tulane School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Schneider DK, Galloway R, Bazarian JJ, Diekfuss JA, Dudley J, Leach JL, Mannix R, Talavage TM, Yuan W, Myer GD. Diffusion Tensor Imaging in Athletes Sustaining Repetitive Head Impacts: A Systematic Review of Prospective Studies. J Neurotrauma 2019; 36:2831-2849. [PMID: 31062655 DOI: 10.1089/neu.2019.6398] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Daniel K. Schneider
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Medical Education, Riverside Methodist Hospital, Columbus, Ohio
| | - Ryan Galloway
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Duke University School of Medicine, Durham, North Carolina
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine, Rochester, New York
| | - Jed A. Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jon Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James L. Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Thomas M. Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, Ohio
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
| |
Collapse
|
21
|
Schranz AL, Manning KY, Dekaban GA, Fischer L, Jevremovic T, Blackney K, Barreira C, Doherty TJ, Fraser DD, Brown A, Holmes J, Menon RS, Bartha R. Reduced brain glutamine in female varsity rugby athletes after concussion and in non-concussed athletes after a season of play. Hum Brain Mapp 2018; 39:1489-1499. [PMID: 29271016 PMCID: PMC6866259 DOI: 10.1002/hbm.23919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 12/04/2017] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to use non-invasive proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) to monitor changes in prefrontal white matter metabolite levels and tissue microstructure in female rugby players with and without concussion (ages 18-23, n = 64). Evaluations including clinical tests and 3 T MRI were performed at the beginning of a season (in-season) and followed up at the end of the season (off-season). Concussed athletes were additionally evaluated 24-72 hr (n = 14), three months (n = 11), and six months (n = 8) post-concussion. Reduced glutamine at 24-72 hr and three months post-concussion, and reduced glutamine/creatine at three months post-concussion were observed. In non-concussed athletes (n = 46) both glutamine and glutamine/creatine were lower in the off-season compared to in-season. Within the MRS voxel, an increase in fractional anisotropy (FA) and decrease in radial diffusivity (RD) were also observed in the non-concussed athletes, and correlated with changes in glutamine and glutamine/creatine. Decreases in glutamine and glutamine/creatine suggest reduced oxidative metabolism. Changes in FA and RD may indicate neuroinflammation or re-myelination. The observed changes did not correlate with clinical test scores suggesting these imaging metrics may be more sensitive to brain injury and could aid in assessing recovery of brain injury from concussion.
Collapse
Affiliation(s)
- Amy L. Schranz
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Kathryn Y. Manning
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Lisa Fischer
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Tatiana Jevremovic
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Kevin Blackney
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
| | - Timothy J. Doherty
- Department of Physical Medicine and RehabilitationThe University of Western Ontario, Schulich School of Medicine and Dentistry, Parkwood Institute, 550 Wellington Road, Hobbins BuildingLondonOntarioN6C 0A7Canada
| | - Douglas D. Fraser
- Paediatrics Critical Care Medicine, London Health Sciences Centre, Children's Hospital, 800 Commissioners Road EastLondonOntarioN6A 5W9Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Anatomy and Cell BiologyThe University of Western Ontario, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Jeff Holmes
- School of Occupational TherapyThe University of Western Ontario, 1201 Western Road, Elborn CollegeLondonOntarioN6A 1H1Canada
| | - Ravi S. Menon
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Robert Bartha
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| |
Collapse
|