1
|
Phang KAS, Tan CH. Cognitive variation reflects amyloid, tau, and neurodegenerative biomarkers in Alzheimer's disease. GeroScience 2025:10.1007/s11357-025-01541-9. [PMID: 39873919 DOI: 10.1007/s11357-025-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes. In this study, we comprehensively evaluated the global and regional associations of IICV with positron emission tomography (PET) and magnetic resonance imaging (MRI) measures of AD biomarkers in cognitively normal (CN) and mild cognitive impairment (MCI) participants. We found that higher IICV was robustly associated with increased Aβ, increased tau, decreased brain glucose metabolism, and reduced cortical thickness. Higher IICV was also associated with tau (OR = 2.53, P < .001) and fluorodeoxyglucose (OR = 1.34, P < .001) positivity but not Aβ positivity (OR = 1.15, P = .107). In regional analyses, IICV showed widespread associations with AD biomarkers, with the strongest Aβ and tau effects in the frontal and temporal regions, respectively. The strongest regional cortical thickness effects were found in the entorhinal and parahippocampal cortices. Our findings suggest that IICV may be a useful neuropsychological marker for increased Aβ, and especially increased tau and neurodegeneration that are reflective of emerging AD pathology in individuals without dementia.
Collapse
Affiliation(s)
- Kia Ann Sean Phang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chin Hong Tan
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Jang I, Li B, Rashid B, Jacoby J, Huang SY, Dickerson BC, Salat DH. Brain structural indicators of β-amyloid neuropathology. Neurobiol Aging 2024; 136:157-170. [PMID: 38382159 PMCID: PMC10938906 DOI: 10.1016/j.neurobiolaging.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/23/2024]
Abstract
Recent efforts demonstrated the efficacy of identifying early-stage neuropathology of Alzheimer's disease (AD) through lumbar puncture cerebrospinal fluid assessment and positron emission tomography (PET) radiotracer imaging. These methods are effective yet are invasive, expensive, and not widely accessible. We extend and improve the multiscale structural mapping (MSSM) procedure to develop structural indicators of β-amyloid neuropathology in preclinical AD, by capturing both macrostructural and microstructural properties throughout the cerebral cortex using a structural MRI. We find that the MSSM signal is regionally altered in clear positive and negative cases of preclinical amyloid pathology (N = 220) when cortical thickness alone or hippocampal volume is not. It exhibits widespread effects of amyloid positivity across the posterior temporal, parietal, and medial prefrontal cortex, surprisingly consistent with the typical pattern of amyloid deposition. The MSSM signal is significantly correlated with amyloid PET in almost half of the cortex, much of which overlaps with regions where beta-amyloid accumulates, suggesting it could provide a regional brain 'map' that is not available from systemic markers such as plasma markers.
Collapse
Affiliation(s)
- Ikbeom Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, South Korea.
| | - Binyin Li
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Barnaly Rashid
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - John Jacoby
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
3
|
Martucci A, Di Giuliano F, Minosse S, Pocobelli G, Nucci C, Garaci F. MRI and Clinical Biomarkers Overlap between Glaucoma and Alzheimer's Disease. Int J Mol Sci 2023; 24:14932. [PMID: 37834380 PMCID: PMC10573932 DOI: 10.3390/ijms241914932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma is the leading cause of blindness worldwide. It is classically associated with structural and functional changes in the optic nerve head and retinal nerve fiber layer, but the damage is not limited to the eye. The involvement of the central visual pathways and disruption of brain network organization have been reported using advanced neuroimaging techniques. The brain structural changes at the level of the areas implied in processing visual information could justify the discrepancy between signs and symptoms and underlie the analogy of this disease with neurodegenerative dementias, such as Alzheimer's disease, and with the complex group of pathologies commonly referred to as "disconnection syndromes." This review aims to summarize the current state of the art on the use of advanced neuroimaging techniques in glaucoma and Alzheimer's disease, highlighting the emerging biomarkers shared by both diseases.
Collapse
Affiliation(s)
- Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.M.); (G.P.)
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Silvia Minosse
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (S.M.); (F.G.)
| | - Giulio Pocobelli
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.M.); (G.P.)
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.M.); (G.P.)
| | - Francesco Garaci
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (S.M.); (F.G.)
- San Raffaele Cassino, 03043 Frosinone, Italy
| |
Collapse
|
4
|
Lamontagne-Caron R, Desrosiers P, Potvin O, Doyon N, Duchesne S. Predicting cognitive decline in a low-dimensional representation of brain morphology. Sci Rep 2023; 13:16793. [PMID: 37798311 PMCID: PMC10556003 DOI: 10.1038/s41598-023-43063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Identifying early signs of neurodegeneration due to Alzheimer's disease (AD) is a necessary first step towards preventing cognitive decline. Individual cortical thickness measures, available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers of neurodegeneration. However, normal aging cortical decline and high inter-individual variability complicate the comparison and statistical determination of the impact of AD-related neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 cognitively healthy participants aged 18-100 years old and the other on 233 mild cognitively impaired (MCI) and AD participants from the longitudinal database, the Alzheimer's Disease Neuroimaging Initiative database (ADNI). Each participant had multiple visits ([Formula: see text]), one year apart. The first embedding's principal axis was shown to be positively associated ([Formula: see text]) with participants' age. Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories between clusters were shown to be significantly different between MCI and AD subjects. Moreover, some clusters and trajectories between clusters were more prone to host AD subjects. This study was able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 with 10-fold cross-validation.
Collapse
Affiliation(s)
- Rémi Lamontagne-Caron
- Département de médecine, Université Laval, Quebec, QC, G1V 0A6, Canada.
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada.
| | - Patrick Desrosiers
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de physique, de génie physique et d'optique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | | | - Nicolas Doyon
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de mathématiques et de statistique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Simon Duchesne
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Département de radiologie et médecine nucléaire, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
5
|
Riphagen JM, Suresh MB, Salat DH. The canonical pattern of Alzheimer's disease atrophy is linked to white matter hyperintensities in normal controls, differently in normal controls compared to in AD. Neurobiol Aging 2022; 114:105-112. [PMID: 35414420 PMCID: PMC9387174 DOI: 10.1016/j.neurobiolaging.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
White matter signal abnormalities (WMSA), either hypo- or hyperintensities in MRI imaging, are considered a proxy of cerebrovascular pathology and contribute to, and modulate, the clinical presentation of Alzheimer's disease (AD), with cognitive dysfunction being apparent at lower levels of amyloid and/or tau pathology when lesions are present. To what extent the topography of cortical thinning associated with AD may be explained by WMSA remains unclear. Cortical thickness group difference maps and subgroup analyses show that the effect of WMSA on cortical thickness in cognitively normal participants has a higher overlap with the canonical pattern of AD, compared to AD participants. (Age and sex-matched group of 119 NC (AV45 PET negative, CDR = 0) versus 119 participants with AD (AV45 PET-positive, CDR > 0.5). The canonical patterns of cortical atrophy thought to be specific to Alzheimer's disease are strongly linked to cerebrovascular pathology supporting a reinterpretation of the classical models of AD suggesting that a part of the typical AD pattern is due to co-localized cortical loss before the onset of AD.
Collapse
|
6
|
Jang I, Li B, Riphagen JM, Dickerson BC, Salat DH. Multiscale structural mapping of Alzheimer's disease neurodegeneration. Neuroimage Clin 2022; 33:102948. [PMID: 35121307 PMCID: PMC8814667 DOI: 10.1016/j.nicl.2022.102948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 01/25/2023]
Abstract
The recently described biological framework of Alzheimer's disease (AD) emphasizes three types of pathology to characterize this disorder, referred to as the 'amyloid/tau/neurodegeneration' (A-T-N) status. The 'neurodegenerative' component is typically defined by atrophy measures derived from structural magnetic resonance imaging (MRI) such as hippocampal volume. Neurodegeneration measures from imaging are associated with disease symptoms and prognosis. Thus, sensitive image-based quantification of neurodegeneration in AD has an important role in a range of clinical and research operations. Although hippocampal volume is a sensitive metric of neurodegeneration, this measure is impacted by several clinical conditions other than AD and therefore lacks specificity. In contrast, selective regional cortical atrophy, known as the 'cortical signature of AD' provides greater specificity to AD pathology. Although atrophy is apparent even in the preclinical stages of the disease, it is possible that increased sensitivity to degeneration could be achieved by including tissue microstructural properties in the neurodegeneration measure. However, to facilitate clinical feasibility, such information should be obtainable from a single, short, noninvasive imaging protocol. We propose a multiscale MRI procedure that advances prior work through the quantification of features at both macrostructural (morphometry) and microstructural (tissue properties obtained from multiple layers of cortex and subcortical white matter) scales from a single structural brain image (referred to as 'multi-scale structural mapping'; MSSM). Vertex-wise partial least squares (PLS) regression was used to compress these multi-scale structural features. When contrasting patients with AD to cognitively intact matched older adults, the MSSM procedure showed substantially broader regional group differences including areas that were not statistically significant when using cortical thickness alone. Further, with multiple machine learning algorithms and ensemble procedures, we found that MSSM provides accurate detection of individuals with AD dementia (AUROC = 0.962, AUPRC = 0.976) and individuals with mild cognitive impairment (MCI) that subsequently progressed to AD dementia (AUROC = 0.908, AUPRC = 0.910). The findings demonstrate the critical advancement of neurodegeneration quantification provided through multiscale mapping. Future work will determine the sensitivity of this technique for accurately detecting individuals with earlier impairment and biomarker positivity in the absence of impairment.
Collapse
Affiliation(s)
- Ikbeom Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Binyin Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joost M Riphagen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
7
|
Li B, Jang I, Riphagen J, Almaktoum R, Yochim KM, Ances BM, Bookheimer SY, Salat DH. Identifying individuals with Alzheimer's disease-like brains based on structural imaging in the Human Connectome Project Aging cohort. Hum Brain Mapp 2021; 42:5535-5546. [PMID: 34582057 PMCID: PMC8559490 DOI: 10.1002/hbm.25626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Given the difficulty in factoring out typical age effects from subtle Alzheimer's disease (AD) effects on brain structure, identification of very early, as well as younger preclinical “at‐risk” individuals has unique challenges. We examined whether age‐correction procedures could be used to better identify individuals at very early potential risk from adults who did not have any existing cognitive diagnosis. First, we obtained cross‐sectional age effects for each structural feature using data from a selected portion of the Human Connectome Project Aging (HCP‐A) cohort. After age detrending, we weighted AD structural deterioration with patterns quantified from data of the Alzheimer's Disease Neuroimaging Initiative. Support vector machine was then used to classify individuals with brains that most resembled atrophy in AD across the entire HCP‐A sample. Additionally, we iteratively adjusted the pipeline by removing individuals classified as AD‐like from the HCP‐A cohort to minimize atypical brain structural contributions to the age detrending. The classifier had a mean cross‐validation accuracy of 94.0% for AD recognition. It also could identify mild cognitive impairment with more severe AD‐specific biomarkers and worse cognition. In an independent HCP‐A cohort, 8.8% were identified as AD‐like, and they trended toward worse cognition. An “AD risk” score derived from the machine learning models also significantly correlated with cognition. This work provides a proof of concept for the potential to use structural brain imaging to identify asymptomatic individuals at young ages who show structural brain patterns similar to AD and are potentially at risk for a future clinical disorder.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ikbeom Jang
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joost Riphagen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Randa Almaktoum
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kathryn Morrison Yochim
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Beau M Ances
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - David H Salat
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Iannopollo E, Garcia K. Enhanced detection of cortical atrophy in Alzheimer's disease using structural MRI with anatomically constrained longitudinal registration. Hum Brain Mapp 2021; 42:3576-3592. [PMID: 33988265 PMCID: PMC8249882 DOI: 10.1002/hbm.25455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cortical atrophy is a defining feature of Alzheimer's disease (AD), often detectable before symptoms arise. In surface-based analyses, studies have commonly focused on cortical thinning while overlooking the impact of loss in surface area. To capture the impact of both cortical thinning and surface area loss, we used anatomically constrained Multimodal Surface Matching (aMSM), a recently developed tool for mapping change in surface area. We examined cortical atrophy over 2 years in cognitively normal subjects and subjects with diagnoses of stable mild cognitive impairment, mild cognitive impairment that converted to AD, and AD. Magnetic resonance imaging scans were segmented and registered to a common atlas using previously described techniques (FreeSurfer and ciftify), then longitudinally registered with aMSM. Changes in cortical thickness, surface area, and volume were mapped within each diagnostic group, and groups were compared statistically. Changes in thickness and surface area detected atrophy at similar levels of significance, though regions of atrophy somewhat differed. Furthermore, we found that surface area maps offered greater consistency across scanners (3.0 vs. 1.5 T). Comparisons to the FreeSurfer longitudinal pipeline and parcellation-based (region-of-interest) analysis suggest that aMSM may allow more robust detection of atrophy, particularly in earlier disease stages and using smaller sample sizes.
Collapse
Affiliation(s)
- Emily Iannopollo
- Department of Radiology and Imaging SciencesIndiana University School of MedicineEvansvilleIndianaUSA
| | - Kara Garcia
- Department of Radiology and Imaging SciencesIndiana University School of MedicineEvansvilleIndianaUSA
| | | |
Collapse
|
9
|
León I, Rodrigo MJ, Quiñones I, Hernández-Cabrera JA, García-Pentón L. Distinctive Frontal and Occipitotemporal Surface Features in Neglectful Parenting. Brain Sci 2021; 11:brainsci11030387. [PMID: 33803895 PMCID: PMC8003221 DOI: 10.3390/brainsci11030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 02/02/2023] Open
Abstract
Although the brain signatures of adaptive human parenting are well documented, the cortical features associated with maladaptive caregiving are underexplored. We investigated whether cortical thickness and surface area vary in a small group of mothers who had neglected their children (24 in the neglect group, NG) compared to a control group of mothers with non-neglectful caregiving (21 in the control group, CG). We also tested whether the cortical differences were related to dyadic mother-child emotional availability (EA) in a play task with their children and whether alexithymia involving low emotional awareness that characterizes the NG could play a role in the cortical-EA associations. Whole-brain analysis of the cortical mantle identified reduced cortical thickness in the right rostral middle frontal gyrus and an increased surface area in the right lingual and lateral occipital cortices for the NG with respect to the CG. Follow-up path analysis showed direct effects of the right rostral middle frontal gyrus (RMFG) on the emotional availability (EA) and on the difficulty to identify feelings (alexithymia factor), with a marginal indirect RMFG-EA effect through this factor. These preliminary findings extend existing work by implicating differences in cortical features associated with neglectful parenting and relevant to mother-child interactive bonding.
Collapse
Affiliation(s)
- Inmaculada León
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (M.J.R.); (J.A.H.-C.)
- Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Spain
- Correspondence:
| | - María José Rodrigo
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (M.J.R.); (J.A.H.-C.)
- Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ileana Quiñones
- Basque Center on Cognition, Brain, and Language, 20009 Donostia-San Sebastián, Spain;
| | - Juan Andrés Hernández-Cabrera
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (M.J.R.); (J.A.H.-C.)
- Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Lorna García-Pentón
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK;
| |
Collapse
|
10
|
Steffener J. Education and age-related differences in cortical thickness and volume across the lifespan. Neurobiol Aging 2020; 102:102-110. [PMID: 33765423 DOI: 10.1016/j.neurobiolaging.2020.10.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
This study investigated whether relationships between age and measures of gray matter in the brain differed across the lifespan and by years of education. The hypothesis is that year to year differences in brain measures vary across the lifespan and are affected by the years of education someone has. Cortical thickness and subcortical volume were measured from 391 healthy adults (age range: 19-80 years). Brain measures were predicted using a quadratic age effect and moderating effects of education using linear regression. Results demonstrate that 12 brain regions had significant moderating effects of age and education on brain measures. These are brain regions where the effect of age on gray matter varied across the lifespan and across levels of education. The results highlighted that when the moderating effects of education are absent from the model, age and brain measures were linearly related. The moderating effects reveal complex age-brain dynamics and support theories of brain maintenance, suggesting that lifestyle factors limit the negative effects of advancing age. Greater education was related to maintained gray matter until later ages. This protection came at a cost, which indicated that year to year decline in gray matter was larger in late life in those with greater levels of education. Improving our understanding of how age and individual differences affect gray matter measures is an important step toward improving the clinical utility of cortical thickness and volume. This article is part of the Virtual Special Issue titled "COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING". The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.
Collapse
Affiliation(s)
- Jason Steffener
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Leocadi M, Canu E, Calderaro D, Corbetta D, Filippi M, Agosta F. An update on magnetic resonance imaging markers in AD. Ther Adv Neurol Disord 2020; 13:1756286420947986. [PMID: 33747128 PMCID: PMC7903819 DOI: 10.1177/1756286420947986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present review is to provide an update of the available recent scientific literature on the use of magnetic resonance imaging (MRI) in Alzheimer's disease (AD). MRI is playing an increasingly important role in the characterization of the AD signatures, which can be useful in both the diagnostic process and monitoring of disease progression. Furthermore, this technique is unique in assessing brain structure and function and provides a deep understanding of in vivo evolution of cerebral pathology. In the reviewing process, we established a priori criteria and we thoroughly searched the very recent scientific literature (January 2018-March 2020) for relevant articles on this topic. In summary, we selected 73 articles out of 1654 publications retrieved from PubMed. Based on this selection, this review summarizes the recent application of MRI in clinical trials, defining the predementia stages of AD, the clinical utility of MRI, proposal of novel biomarkers and brain regions of interest, and assessing the relationship between MRI and cognitive features, risk and protective factors of AD. Finally, the value of a multiparametric approach in clinical and preclinical stages of AD is discussed.
Collapse
Affiliation(s)
- Michela Leocadi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Calderaro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Corbetta
- Laboratory of Movement Analysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology and Neurophysiology Units, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Via Olgettina 60, Milan 20132, Italy
| |
Collapse
|
12
|
Li B, Zhang M, Riphagen J, Morrison Yochim K, Li B, Liu J, Salat DH. Prediction of clinical and biomarker conformed Alzheimer's disease and mild cognitive impairment from multi-feature brain structural MRI using age-correction from a large independent lifespan sample. Neuroimage Clin 2020; 28:102387. [PMID: 32871388 PMCID: PMC7476071 DOI: 10.1016/j.nicl.2020.102387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Structural neuroimaging has been applied to the identification of individuals with Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, these methods are greatly impacted by age limiting their utility for detection of preclinical pathology. We built linear models for age based on multiple combined structural features using a large independent lifespan sample of 272 healthy adults across a wide age range from the Human Connectome Project Aging study. These models were then used to create a new support vector machine (SVM) training model in 136 AD and 268 control participants based on residues of fit from the expected age-effects relationship. Subsequent validation assessed the accuracy of the SVM model in new datasets. Finally, we applied the classifier to 276 individuals with MCI to evaluate prediction for early impairment and longitudinal cognitive change. The optimal 10-fold cross-validation accuracy was 93.07%, compared to 91.83% without age detrending. In the validation dataset, the classifier for AD obtained an accuracy of 84.85% (56/66), sensitivity of 85.36% (35/41) and specificity of 84% (21/25). Classification accuracy was improved when using the lifespan sample as opposed to the classification sample. Importantly, we observed cross-sectional greater AD specific biomarkers, as well as faster cognitive decline in MCI who were classified as more 'AD-like' (MCI-AD), and these effects were pronounced in individuals who were late MCI. The top five contributive features were volumes of left hippocampus, right hippocampus, left amygdala, the thickness of left and right middle temporal & parahippocampus gyrus. Linear detrending for age in SVM for combined structural features resulted in good performance for recognition of AD and AD-specific biomarkers, as well as prediction of MCI progression. Such procedures may be used in future work to enhance prediction in samples with atypical age distributions.
Collapse
Affiliation(s)
- Binyin Li
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Neurology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Joost Riphagen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kathryn Morrison Yochim
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - David H Salat
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
13
|
Sun P, Lou W, Liu J, Shi L, Li K, Wang D, Mok VC, Liang P. Mapping the patterns of cortical thickness in single- and multiple-domain amnestic mild cognitive impairment patients: a pilot study. Aging (Albany NY) 2019; 11:10000-10015. [PMID: 31756169 PMCID: PMC6914405 DOI: 10.18632/aging.102362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/05/2019] [Indexed: 01/26/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as a transitional stage between the expected cognitive decline of normal aging and Alzheimer’s disease (AD). Structural brain difference has shown the potential in cognitive related diagnosis, however cortical thickness patterns transferred from aMCI to AD, especially in the subtypes of aMCI, is still unclear. In this study, we investigated the cortical thickness discrepancies among AD, aMCI and normal control (NC) entities, especially for two subtypes of aMCI - multiple-domain aMCI (aMCI-m) and single-domain aMCI (aMCI-s). Both region of interest (ROI)-based and vertex-based statistical strategies were performed for group-level cortical thickness comparison. Spearman correlation was utilized to identify the correlation between cortical thickness and clinical neuropsychological scores. The result demonstrated that there was a significant cortical thickness decreasing tendency in fusiform gyrus from NC to aMCI-s to aMCI-m to finally AD in both left and right hemispheres. Meanwhile, the two subtypes of aMCI showed cortical thickness difference in middle temporal gyrus in left hemisphere. Spearman correlation indicated that neuropsychological scores had significant correlations with entorhinal, inferior temporal and middle temporal gyrus. The findings suggested that cortical thickness might serve as a potential imaging biomarker for the differential diagnosis of cognitive impairment.
Collapse
Affiliation(s)
- Pan Sun
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.,BrainNow Research Institute, Shenzhen, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Lab of MRI and Brain Informatics, Beijing, China
| | - Defeng Wang
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China
| | - Peipeng Liang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
14
|
Aycheh HM, Seong JK, Shin JH, Na DL, Kang B, Seo SW, Sohn KA. Biological Brain Age Prediction Using Cortical Thickness Data: A Large Scale Cohort Study. Front Aging Neurosci 2018; 10:252. [PMID: 30186151 PMCID: PMC6113379 DOI: 10.3389/fnagi.2018.00252] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 07/31/2018] [Indexed: 01/18/2023] Open
Abstract
Brain age estimation from anatomical features has been attracting more attention in recent years. This interest in brain age estimation is motivated by the importance of biological age prediction in health informatics, with an application to early prediction of neurocognitive disorders. It is well-known that normal brain aging follows a specific pattern, which enables researchers and practitioners to predict the age of a human's brain from its degeneration. In this paper, we model brain age predicted by cortical thickness data gathered from large cohort brain images. We collected 2,911 cognitively normal subjects (age 45-91 years) at a single medical center and acquired their brain magnetic resonance (MR) images. All images were acquired using the same scanner with the same protocol. We propose to first apply Sparse Group Lasso (SGL) for feature selection by utilizing the brain's anatomical grouping. Once the features are selected, a non-parametric non-linear regression using the Gaussian Process Regression (GPR) algorithm is applied to fit the final age prediction model. Experimental results demonstrate that the proposed method achieves the mean absolute error of 4.05 years, which is comparable with or superior to several recent methods. Our method can also be a critical tool for clinicians to differentiate patients with neurodegenerative brain disease by extracting a cortical thinning pattern associated with normal aging.
Collapse
Affiliation(s)
- Habtamu M. Aycheh
- Department of Software and Computer Engineering, Ajou University, Suwon, South Korea
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hyeon Shin
- School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Byungkon Kang
- Department of Software and Computer Engineering, Ajou University, Suwon, South Korea
| | - Sang W. Seo
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
15
|
Belathur Suresh M, Fischl B, Salat DH. Factors influencing accuracy of cortical thickness in the diagnosis of Alzheimer's disease. Hum Brain Mapp 2017; 39:1500-1515. [PMID: 29271096 DOI: 10.1002/hbm.23922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 02/04/2023] Open
Abstract
There is great value to use of structural neuroimaging in the assessment of Alzheimer's disease (AD). However, to date, predictive value of structural imaging tend to range between 80% and 90% in accuracy and it is unclear why this is the case given that structural imaging should parallel the pathologic processes of AD. There is a possibility that clinical misdiagnosis relative to the gold standard pathologic diagnosis and/or additional brain pathologies are confounding factors contributing to reduced structural imaging classification accuracy. We examined potential factors contributing to misclassification of individuals with clinically diagnosed AD purely from cortical thickness measures. Correctly classified and incorrectly classified groups were compared across a range of demographic, biological, and neuropsychological data including cerebrospinal fluid biomarkers, amyloid imaging, white matter hyperintensity (WMH) volume, cognitive, and genetic factors. Individual subject analyses suggested that at least a portion of the control individuals misclassified as AD from structural imaging additionally harbor substantial AD biomarker pathology and risk, yet are relatively resistant to cognitive symptoms, likely due to "cognitive reserve," and therefore clinically unimpaired. In contrast, certain clinical control individuals misclassified as AD from cortical thickness had increased WMH volume relative to other controls in the sample, suggesting that vascular conditions may contribute to classification accuracy from cortical thickness measures. These results provide examples of factors that contribute to the accuracy of structural imaging in predicting a clinical diagnosis of AD, and provide important information about considerations for future work aimed at optimizing structural based diagnostic classifiers for AD.
Collapse
Affiliation(s)
- Mahanand Belathur Suresh
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysuru, Karnataka, India
| | - Bruce Fischl
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - David H Salat
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts
| | | |
Collapse
|