1
|
Khan K, Kane K, Davison Z, Green D. Post-treatment late and long-term effects in bone sarcoma: A scoping review. J Bone Oncol 2025; 52:100671. [PMID: 40206491 PMCID: PMC11979976 DOI: 10.1016/j.jbo.2025.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Despite the fact that chemotherapy for bone sarcomas (e.g. Ewing sarcoma, osteosarcoma) has well-reported toxicities and that surgical intervention is frequently life altering, follow-up care to monitor for late and long-term effects beyond that of oncological surveillance in former patients is variable. Anecdotal evidence suggests that inconsistent follow-up means some former bone sarcoma patients are left to cope with post-treatment late and long-term effects with limited support. Here, we performed a scoping review to provide a more empirical identification of the knowledge gaps and to provide an overview of the peer reviewed academic literature reporting the late and long-term effects of treatment for bone sarcoma. JBI Scoping Review Network guidelines for charting, analysis and data extraction were followed. Literature searches were conducted in Medline (Ovid), Cochrane CENTRAL, EMBASE (Ovid), CINAHL, PsycINFO, Proquest and Web of Science (Clarivate Analytics) from March 2024 to September 2024. Paper titles and abstracts were screened by two independent reviewers followed by full text analysis by the lead researcher. Seventy-four peer reviewed articles were included in the analysis. Most studies were of a retrospective study design, some up to 20 years of follow-up and included chemotherapy, surgery and sometimes radiotherapy as the treatment modality. Our analysis identified secondary malignancies, cardio- and nephrotoxicity, lower bone mineral density and microarchitectural deterioration, cancer related fatigue and motor neuropathies as the major physical late and long-term effects requiring dedicated follow-up. In some cases, follow-up may need to span decades, especially given the increasing population of former patients. Our results form the evidence-based foundations for future work that might include late and long-term effect follow-up service mapping exercises and expanded clinical recommendations.
Collapse
Affiliation(s)
- Kaainat Khan
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | - Zoe Davison
- Bone Cancer Research Trust, Leeds, United Kingdom
| | - Darrell Green
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
2
|
Grundström A, Harila A, Lönnerblad M. Educational and occupational outcomes in Swedish children treated for sarcomas: A nationwide registry-based study. Pediatr Blood Cancer 2024; 71:e30719. [PMID: 37837179 DOI: 10.1002/pbc.30719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Many children treated for cancer experience a negative impact on their academic performance; however, most studies of children treated for sarcomas have not investigated academic performance. Our aim was to explore how Swedish children treated for sarcomas perform academically, as well as how they adjust to life afterwards. PROCEDURE We compared 167 pediatric sarcoma survivors with 776 matched, non-sibling controls without a history of cancer, in a retrospective cohort study using data from nationwide registries. Primary outcomes were grades at the end of compulsory education, high school eligibility, post-compulsory education (i.e., education after school Year 9), employment, and sickness or activity compensation. RESULTS Pediatric sarcoma survivors were more likely to be ineligible for high school (odds ratio [OR] 1.76; p = .045) and more likely to fail Swedish (OR 2.12; p = .046), mathematics (OR 2.27; p = .011), and/or physical education (OR 2.24; p = .004), compared with controls. Survivors were less likely to have been employed (OR 0.58; p = .027) and received sickness or activity compensation more often (OR 2.49; p = .008) compared with controls. CONCLUSIONS Pediatric sarcoma survivors have poorer academic performance compared to peers without cancer in multiple school subjects. Survivors seem to catch up during post-compulsory education, but might struggle to find employment.
Collapse
Affiliation(s)
- Albin Grundström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Malin Lönnerblad
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Special Education, Stockholm University, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Liu X, Duan Z, Fang S, Wang S. Imaging Assessment of the Efficacy of Chemotherapy in Primary Malignant Bone Tumors: Recent Advances in Qualitative and Quantitative Magnetic Resonance Imaging and Radiomics. J Magn Reson Imaging 2024; 59:7-31. [PMID: 37154415 DOI: 10.1002/jmri.28760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Recent studies have shown that MRI demonstrates promising results for evaluating the chemotherapy efficacy in bone sarcomas. This article reviews current methods for evaluating the efficacy of malignant bone tumors and the application of MRI in this area, and emphasizes the advantages and limitations of each modality. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xiaoge Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Zhiqing Duan
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Shaobo Fang
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Kadan-Lottick NS, Zheng DJ, Wang M, Bishop MW, Srivastava DK, Ross WL, Rodwin RL, Ness KK, Gibson TM, Spunt SL, Okcu MF, Leisenring WM, Robison LL, Armstrong GT, Krull KR. Patient-reported neurocognitive function in adult survivors of childhood and adolescent osteosarcoma and Ewing sarcoma. J Cancer Surviv 2023; 17:1238-1250. [PMID: 35059962 PMCID: PMC9300774 DOI: 10.1007/s11764-021-01154-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Little is known regarding long-term neurocognitive outcomes in osteosarcoma and Ewing sarcoma (EWS) survivors despite potential risk factors. We evaluated associations among treatment exposures, chronic health conditions, and patient-reported neurocognitive outcomes in adult survivors of childhood osteosarcoma and EWS. METHODS Five-year survivors of osteosarcoma (N = 604; median age 37.0 years) and EWS (N = 356; median age 35.0 years) diagnosed at < 21 years from 1970 to 1999, and 697 siblings completed the Childhood Cancer Survivor Study Neurocognitive Questionnaire and reported chronic health conditions, education, and employment. Prevalence of reported neurocognitive difficulties were compared between diagnostic groups and siblings. Modified Poisson regression identified factors associated with neurocognitive difficulties. RESULTS Osteosarcoma and EWS survivors, vs. siblings, reported higher prevalences of difficulties with task efficiency (15.4% [P = 0.03] and 14.0% [P = 0.04] vs. 9.6%, respectively) and emotional regulation (18.0% [P < 0.0001] and 15.2% [P = 0.03] vs. 11.3%, respectively), adjusted for age, sex, and ethnicity/race. Osteosarcoma survivors reported greater memory difficulties vs. siblings (23.5% vs. 16.4% [P = 0.01]). Comorbid impairment (i.e., ≥ 2 neurocognitive domains) was more prevalent in osteosarcoma (20.0% [P < 0.001]) and EWS survivors (16.3% [P = 0.02]) vs. siblings (10.9%). Neurological conditions were associated with worse task efficiency (RR = 2.17; 95% CI = 1.21-3.88) and emotional regulation (RR = 1.88; 95% CI = 1.01-3.52), and respiratory conditions were associated with worse organization (RR = 2.60; 95% CI = 1.05-6.39) for EWS. Hearing impairment was associated with emotional regulation difficulties for osteosarcoma (RR = 1.98; 95% CI = 1.22-3.20). Patient report of cognitive difficulties was associated with employment but not educational attainment. CONCLUSIONS Survivors of childhood osteosarcoma and EWS are at increased risk for reporting neurocognitive difficulties, which are associated with employment status and appear related to chronic health conditions that develop over time. IMPLICATIONS FOR CANCER SURVIVORS Early screening, prevention, and treatment of chronic health conditions may improve/prevent long-term neurocognitive outcomes.
Collapse
Affiliation(s)
- Nina S Kadan-Lottick
- Cancer Prevention and Control Program, Georgetown Lombardi Comprehensive Cancer Center, 2115 Wisconsin Ave., NW - 3Rd Floor, Washington, DC, 20007, USA.
| | - Daniel J Zheng
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mingjuan Wang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael W Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deo Kumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wilhelmenia L Ross
- Section of Pediatric Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Rozalyn L Rodwin
- Section of Pediatric Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Gibson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sheri L Spunt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehmet Fatih Okcu
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | | | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kevin R Krull
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Tanedo J, Gajawelli N, Guo S, Baron Nelson M, Lepore N. White matter tract changes in pediatric posterior fossa brain tumor survivors after surgery and chemotherapy. FRONTIERS IN NEUROIMAGING 2022; 1:845609. [PMID: 37555139 PMCID: PMC10406254 DOI: 10.3389/fnimg.2022.845609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/24/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND Survivors of pediatric posterior fossa brain tumors are susceptible to the adverse effects of treatment as they grow into adulthood. While the exact neurobiological mechanisms of these outcomes are not yet understood, the effects of treatment on white matter (WM) tracts in the brain can be visualized using diffusion tensor (DT) imaging. We investigated these WM microstructural differences using the statistical method tract-specific analysis (TSA). We applied TSA to the DT images of 25 children with a history of posterior fossa tumor (15 treated with surgery, 10 treated with surgery and chemotherapy) along with 21 healthy controls. Between these 3 groups, we examined differences in the most used DTI metric, fractional anisotropy (FA), in 11 major brain WM tracts. RESULTS Lower FA was found in the splenium of the corpus callosum (CC), the bilateral corticospinal tract (CST), the right inferior frontal occipital fasciculus (IFOF) and the left uncinate fasciculus (UF) in children with brain tumors as compared to healthy controls. Lower FA, an indicator of microstructural damage to WM, was observed in 4 of the 11 WM tracts examined in both groups of children with a history of posterior fossa tumor, with an additional tract unique to children who received surgery and chemotherapy (left UF). CONCLUSIONS Our findings indicate that a history of tumor in the posterior fossa and surgical resection may have effects on the WM in other parts of the brain.
Collapse
Affiliation(s)
- Jeffrey Tanedo
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Niharika Gajawelli
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Sharon Guo
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mary Baron Nelson
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Savchuk S, Monje M. Mini-Review: Aplastic Myelin Following Chemotherapy. Neurosci Lett 2022; 790:136861. [PMID: 36055447 DOI: 10.1016/j.neulet.2022.136861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The contribution of chemotherapy to improved outcomes for cancer patients is unquestionable. Yet as its applications broaden, so do the concerns for the long-term implications of chemotherapy on the health of cancer survivors, with chemotherapy-related cognitive impairment as a cause for particular urgency. In this mini review, we explore myelin aplasticity following chemotherapy, discussing the role of myelin plasticity in healthy cognition and failure of myelin plasticity chiefly due microenvironmental aberrations in chemotherapy-related cognitive impairment. Possible therapeutic strategies to mitigate chemotherapy-induced myelin dysfunction are also discussed.
Collapse
Affiliation(s)
- Solomiia Savchuk
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA; Department of Pathology, Stanford University, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Lv P, Ma G, Chen W, Liu R, Xin X, Lu J, Su S, Li M, Yang S, Ma Y, Rong P, Dong N, Chen Q, Zhang X, Han X, Zhang B. Brain morphological alterations and their correlation to tumor differentiation and duration in patients with lung cancer after platinum chemotherapy. Front Oncol 2022; 12:903249. [PMID: 36016623 PMCID: PMC9396961 DOI: 10.3389/fonc.2022.903249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Chemotherapy-related brain impairments and changes can occur in patients with lung cancer after platinum chemotherapy and have a substantial impact on survivors' quality of life. Therefore, it is necessary to understand the brain neuropathological alterations and response mechanisms to provide a theoretical basis for rehabilitation strategies. This study aimed to investigate the related brain morphological changes and clarified their correlation with clinical and pathological indicators in patients with lung cancer after platinum chemotherapy. METHODS Overall, 28 patients with chemotherapy, 56 patients without chemotherapy, and 41 healthy controls were categorized in three groups, matched for age, sex, and years of education, and included in the cross-sectional comparison of brain volume and cortical thickness. 14 matched patients before and after chemotherapy were subjected to paired comparison for longitudinal observation of brain morphological changes. Three-dimensional T1-weighted images were acquired from all participants, and quantitative parameters were calculated using the formula of the change from baseline. Correlation analysis was performed to evaluate the relationship between abnormal morphological indices and clinical information of patients. RESULTS Brain regions with volume differences among the three groups were mainly distributed in frontal lobe and limbic cortex. Additionally, significant differences in cerebrospinal fluid were observed in most ventricles, and the main brain regions with cortical thickness differences were the gyrus rectus and medial frontal cortex of the frontal lobe, transverse temporal gyrus of the temporal lobe, insular cortex, anterior insula, and posterior insula of the insular cortex. According to the paired comparison, decreased brain volumes in the patients after chemotherapy appeared in some regions of the frontal, parietal, temporal, and occipital lobes; limbic cortex; insular cortex; and lobules VI-X and decreased cortical thickness in the patients after chemotherapy was found in the frontal, temporal, limbic, and insular cortexes. In the correlation analysis, only the differentiation degree of the tumor and duration after chemotherapy were significantly correlated with imaging indices in the abnormal brain regions. CONCLUSIONS Our findings illustrate the platinum-related brain reactivity morphological alterations which provide more insights into the neuropathological mechanisms of patients with lung cancer after platinum chemotherapy and empirical support for the details of brain injury related to cancer and chemotherapy.
Collapse
Affiliation(s)
- Pin Lv
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenqian Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyan Xin
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu Su
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ming Li
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - ShangWen Yang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yiming Ma
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ping Rong
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ningyu Dong
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaowei Han
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Petr J, Hogeboom L, Nikulin P, Wiegers E, Schroyen G, Kallehauge J, Chmelík M, Clement P, Nechifor RE, Fodor LA, De Witt Hamer PC, Barkhof F, Pernet C, Lequin M, Deprez S, Jančálek R, Mutsaerts HJMM, Pizzini FB, Emblem KE, Keil VC. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. MAGMA (NEW YORK, N.Y.) 2022; 35:163-186. [PMID: 34919195 PMCID: PMC8901489 DOI: 10.1007/s10334-021-00985-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.
Collapse
Affiliation(s)
- Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Louise Hogeboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Evita Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gwen Schroyen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jesper Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Marek Chmelík
- Department of Technical Disciplines in Medicine, Faculty of Health Care, University of Prešov, Prešov, Slovakia
| | - Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Ruben E Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviu-Andrei Fodor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Evidence Based Psychological Assessment and Interventions Doctoral School, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cyril Pernet
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Radim Jančálek
- St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Francesca B Pizzini
- Radiology, Deptartment of Diagnostic and Public Health, Verona University, Verona, Italy
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Neuroinflammation and Its Association with Cognition, Neuronal Markers and Peripheral Inflammation after Chemotherapy for Breast Cancer. Cancers (Basel) 2021; 13:cancers13164198. [PMID: 34439351 PMCID: PMC8391457 DOI: 10.3390/cancers13164198] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Up to 70% of chemotherapy-treated patients experience problems with memory and concentration, potentially caused by direct and indirect neurotoxicity, such as (neuro-)inflammatory processes. Can neuroinflammation changes be detected in chemotherapy-treated patients with breast cancer using translocator protein [18F]DPA714 simultaneous positron emission tomographic- and magnetic resonance imaging? Moreover, what is the association with clinical biomarkers? In a study including 19 chemotherapy-treated breast cancer patients, 18 chemotherapy-naïve and 37 healthy controls, we found significant relative glial overexpression in parietal and occipital brain regions in chemotherapy-treated patients compared to controls, which were associated with cognitive abnormalities and markers of neuronal survival. Shortly after ending chemotherapy, changes in brain neuroinflammation seem to occur, possibly contributing to the cognitive decline seen in breast cancer patients. Additionally, blood levels of an axonal damage marker were 20-fold higher in chemotherapy-treated patients, providing evidence for its use as a biomarker to assess neurotoxic effects of anticancer chemotherapies. Abstract To uncover mechanisms underlying chemotherapy-induced cognitive impairment in breast cancer, we studied new biomarkers of neuroinflammation and neuronal survival. This cohort study included 74 women (47 ± 10 years) from 22 October 2017 until 20 August 2020. Nineteen chemotherapy-treated and 18 chemotherapy-naïve patients with breast cancer were assessed one month after the completion of surgery and/or chemotherapy, and 37 healthy controls were included. Assessments included neuropsychological testing, questionnaires, blood sampling for 17 inflammatory and two neuronal survival markers (neurofilament light-chain (NfL), and brain-derived neurotrophic factor (BDNF) and PET-MR neuroimaging. To investigate neuroinflammation, translocator protein (TSPO) [18F]DPA714-PET-MR was acquired for 15 participants per group, and evaluated by volume of distribution normalized to the cerebellum. Chemotherapy-treated patients showed higher TSPO expression, indicative for neuroinflammation, in the occipital and parietal lobe when compared to healthy controls or chemotherapy-naïve patients. After partial-volume correction, differences with healthy controls persisted (pFWE < 0.05). Additionally, compared to healthy- or chemotherapy-naïve controls, cognitive impairment (17–22%) and altered levels in blood markers (F ≥ 3.7, p ≤ 0.031) were found in chemotherapy-treated patients. NfL, an axonal damage marker, was particularly sensitive in differentiating groups (F = 105, p = 4.2 × 10 −21), with levels 20-fold higher in chemotherapy-treated patients. Lastly, in chemotherapy-treated patients alone, higher local TSPO expression was associated with worse cognitive performance, higher blood levels of BDNF/NfL, and decreased fiber cross-section in the corpus callosum (pFWE < 0.05). These findings suggest that increased neuroinflammation is associated with chemotherapy-related cognitive impairment in breast cancer. Additionally, NfL could be a useful biomarker to assess neurotoxic effects of anticancer chemotherapies.
Collapse
|
10
|
Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. Neuroimage 2021; 241:118417. [PMID: 34298083 DOI: 10.1016/j.neuroimage.2021.118417] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Collapse
|
11
|
Foster R, Zheng DJ, Netson-Amore KL, Kadan-Lottick NS. Cognitive Impairment in Survivors of Pediatric Extracranial Solid Tumors and Lymphomas. J Clin Oncol 2021; 39:1727-1740. [PMID: 33886354 DOI: 10.1200/jco.20.02358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rebecca Foster
- St Louis Children's Hospital, St Louis, MO.,Washington University, St Louis, MO
| | | | | | | |
Collapse
|
12
|
Siegwart V, Steiner L, Pastore-Wapp M, Benzing V, Spitzhuttl J, Schmidt M, Kiefer C, Slavova N, Grotzer M, Roebers C, Steinlin M, Leibundgut K, Everts R. The Working Memory Network and Its Association with Working Memory Performance in Survivors of non-CNS Childhood Cancer. Dev Neuropsychol 2021; 46:249-264. [PMID: 33969767 DOI: 10.1080/87565641.2021.1922410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Childhood cancer and its treatment puts survivors at risk of low working memory capacity. Working memory represents a core cognitive function, which is crucial in daily life and academic tasks. The aim of this functional MRI (fMRI) study was to examine the working memory network of survivors of childhood cancer without central nervous system (CNS) involvement and its relation to cognitive performance. Thirty survivors (aged 7-16 years, ≥ 1 year after cancer treatment) and 30 healthy controls performed a visuospatial working memory task during MRI, including a low- and a high-demand condition. Working memory performance was assessed using standardized tests outside the scanner. When cognitive demands increased, survivors performed worse than controls and showed evidence for slightly atypical working memory-related activation. The survivor group exhibited hyperactivation in the right-hemispheric superior parietal lobe (SPL) in the high- compared to the low-demand working memory condition, while maintaining their performance levels. Hyperactivation in the right SPL coincided with poorer working memory performance outside the scanner in survivors. Even in survivors of childhood cancer without CNS involvement, we find neural markers pointing toward late effects in the cerebral working memory network.AbbreviationsfMRI: Functional magnetic resonance imaging; CNS: Central nervous system; MNI: Montreal Neurological Institute; SES: Socioeconomic status; SPL: Superior parietal lobe.
Collapse
Affiliation(s)
- Valerie Siegwart
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Leonie Steiner
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Manuela Pastore-Wapp
- Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valentin Benzing
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Janine Spitzhuttl
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Psychology, University of Bern, Bern, Switzerland
| | - Mirko Schmidt
- Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Claus Kiefer
- Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nedelina Slavova
- Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Grotzer
- Department of Pediatric Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudia Roebers
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Maja Steinlin
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Kurt Leibundgut
- Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Regula Everts
- Division of Neuropediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Pediatric Hematology and Oncology, Children's University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
13
|
Sleurs C, Blommaert J, Batalle D, Verly M, Sunaert S, Peeters R, Lemiere J, Uyttebroeck A, Deprez S. Cortical thinning and altered functional brain coherence in survivors of childhood sarcoma. Brain Imaging Behav 2021; 15:677-688. [PMID: 32335825 DOI: 10.1007/s11682-020-00276-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
High-dose chemotherapy is increasingly evidenced to be neurotoxic and result in long-term neurocognitive sequelae. However, research investigating grey matter alterations in childhood cancer patients remains limited. As childhood sarcoma patients receive high-dose chemotherapy, we aimed to investigate cortical brain alterations in adult survivors. We analyzed high-resolution structural (T1-weighted) MRI and resting-state functional MRI (rsfMRI), to derive structural and functional cortical information in survivors of childhood sarcoma, treated with high-dose intravenous chemotherapy (n = 33). These scans were compared to age- and gender- matched controls (n = 34). Cortical volume and thickness were investigated using voxel-based morphometry and vertex-wise surface-based morphometry. Brain regions showing significant group differences in volume or thickness were implemented as seeds of interest to estimate their resting state co-activity with other areas (i.e. functional coherence). We explored whether structural measures were associated with potential risk factors, such as age at diagnosis, and cumulative doses of chemotherapeutic agents (methotrexate, ifosfamide). Finally, we investigated the link between functional regional strength, neurocognitive assessments and daily life complaints. In patients relative to controls we observed lower grey matter volumes in cerebellar and frontal areas, as well as frontal cortical thinning. Cerebellar volume and orbitofrontal thickness appeared dose- and age-related, respectively. Cortical thickness of the parahippocampal area appeared lower, only if the group comparison was not adjusted for depression. This region specifically showed lower functional coherence, which was associated with lower processing speed. This study suggests cortical thinning as well as decreased functional coherence in survivors of childhood sarcoma, which could be important for both long-term attentional functioning and emotional distress in daily life. Frontal areas might be specifically vulnerable during adolescence.
Collapse
Affiliation(s)
| | | | - Dafnis Batalle
- Department of Forensic & Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK.,Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Marjolein Verly
- Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospital Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Ron Peeters
- Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | - Jurgen Lemiere
- Department of Pediatric Hematology and Oncology, University Hospital Leuven, Leuven, Belgium
| | - Anne Uyttebroeck
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Pediatric Hematology and Oncology, University Hospital Leuven, Leuven, Belgium
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Kesler SR, Sleurs C, McDonald BC, Deprez S, van der Plas E, Nieman BJ. Brain Imaging in Pediatric Cancer Survivors: Correlates of Cognitive Impairment. J Clin Oncol 2021; 39:1775-1785. [PMID: 33886371 DOI: 10.1200/jco.20.02315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shelli R Kesler
- School of Nursing, Department of Diagnostic Medicine, Dell School of Medicine, Livestrong Cancer Institutes, Austin, TX
| | - Charlotte Sleurs
- Department of Oncology, Catholic University of Leuven, Leuven, Belgium.,Leuven Cancer Institute, Leuven, Belgium
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Center for Neuroimaging, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN
| | - Sabine Deprez
- Leuven Cancer Institute, Leuven, Belgium.,Department of Imaging and Pathology, Catholic University of Leuven, Leuven, Belgium
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada.,Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
15
|
Ikonomidou C. Cerebrospinal Fluid Biomarkers in Childhood Leukemias. Cancers (Basel) 2021; 13:cancers13030438. [PMID: 33498882 PMCID: PMC7866046 DOI: 10.3390/cancers13030438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Involvement of the central nervous system (CNS) in childhood leukemias remains a major cause of treatment failures. Analysis of the cerebrospinal fluid constitutes the most important diagnostic pillar in the detection of CNS leukemia and relies primarily on cytological and flow-cytometry studies. With increasing survival rates, it has become clear that treatments for pediatric leukemias pose a toll on the developing brain, as they may cause acute toxicities and persistent neurocognitive deficits. Preclinical research has demonstrated that established and newer therapies can injure and even destroy neuronal and glial cells in the brain. Both passive and active cell death forms can result from DNA damage, oxidative stress, cytokine release, and acceleration of cell aging. In addition, chemotherapy agents may impair neurogenesis as well as the function, formation, and plasticity of synapses. Clinical studies show that neurocognitive toxicity of chemotherapy is greatest in younger children. This raises concerns that, in addition to injury, chemotherapy may also disrupt crucial developmental events resulting in impairment of the formation and efficiency of neuronal networks. This review presents an overview of studies demonstrating that cerebrospinal fluid biomarkers can be utilized in tracing both CNS disease and neurotoxicity of administered treatments in childhood leukemias.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin Madison, 1685 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
16
|
Spitzhüttl JS, Kronbichler M, Kronbichler L, Benzing V, Siegwart V, Pastore‐Wapp M, Kiefer C, Slavova N, Grotzer M, Roebers CM, Steinlin M, Leibundgut K, Everts R. Impact of non-CNS childhood cancer on resting-state connectivity and its association with cognition. Brain Behav 2021; 11:e01931. [PMID: 33205895 PMCID: PMC7821559 DOI: 10.1002/brb3.1931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Non-central nervous system cancer in childhood (non-CNS CC) and its treatments pose a major threat to brain development, with implications for functional networks. Structural and functional alterations might underlie the cognitive late-effects identified in survivors of non-CNS CC. The present study evaluated resting-state functional networks and their associations with cognition in a mixed sample of non-CNS CC survivors (i.e., leukemia, lymphoma, and other non-CNS solid tumors). METHODS Forty-three patients (off-therapy for at least 1 year and aged 7-16 years) were compared with 43 healthy controls matched for age and sex. High-resolution T1-weighted structural magnetic resonance and resting-state functional magnetic resonance imaging were acquired. Executive functions, attention, processing speed, and memory were assessed outside the scanner. RESULTS Cognitive performance was within the normal range for both groups; however, patients after CNS-directed therapy showed lower executive functions than controls. Seed-based connectivity analyses revealed that patients exhibited stronger functional connectivity between fronto- and temporo-parietal pathways and weaker connectivity between parietal-cerebellar and temporal-occipital pathways in the right hemisphere than controls. Functional hyperconnectivity was related to weaker memory performance in the patients' group. CONCLUSION These data suggest that even in the absence of brain tumors, non-CNS CC and its treatment can lead to persistent cerebral alterations in resting-state network connectivity.
Collapse
Affiliation(s)
- Janine S. Spitzhüttl
- Department of PsychologyUniversity of BernBernSwitzerland
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of PsychologyUniversity of SalzburgSalzburgAustria
- Neuroscience InstituteChristian‐Doppler Medical CentreParacelsus Medical UniversitySalzburgAustria
| | - Lisa Kronbichler
- Centre for Cognitive Neuroscience and Department of PsychologyUniversity of SalzburgSalzburgAustria
- Neuroscience InstituteChristian‐Doppler Medical CentreParacelsus Medical UniversitySalzburgAustria
- Department of Psychiatry, Psychotherapy and PsychosomaticsChristian‐Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
| | - Valentin Benzing
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
- Institute of Sport ScienceUniversity of BernBernSwitzerland
| | - Valerie Siegwart
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Manuela Pastore‐Wapp
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Claus Kiefer
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Nedelina Slavova
- Support Center for Advanced Neuroimaging (SCAN)Institute of Diagnostic and Interventional Neuroradiology, InselspitalBern University Hospital, and University of BernBernSwitzerland
| | - Michael Grotzer
- Department of Pediatric OncologyUniversity Children's Hospital ZurichZurichSwitzerland
| | | | - Maja Steinlin
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
| | - Kurt Leibundgut
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| | - Regula Everts
- Neuropediatrics, Development and RehabilitationUniversity Children's Hospital Bern, and University of BernBernSwitzerland
- Department of Pediatric Hematology and OncologyUniversity Children's Hospital BernUniversity of BernBernSwitzerland
| |
Collapse
|
17
|
Blommaert J, Radwan A, Sleurs C, Maggen C, van Gerwen M, Wolters V, Christiaens D, Peeters R, Dupont P, Sunaert S, Van Calsteren K, Deprez S, Amant F. The impact of cancer and chemotherapy during pregnancy on child neurodevelopment: A multimodal neuroimaging analysis. EClinicalMedicine 2020; 28:100598. [PMID: 33294813 PMCID: PMC7700909 DOI: 10.1016/j.eclinm.2020.100598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study applies multimodal MRI to investigate neurodevelopment in nine-year-old children born to cancer-complicated pregnancies. METHODS In this cohort study, children born after cancer-complicated pregnancies were recruited alongside 1:1 matched controls regarding age, sex and gestational age at birth (GA). Multimodal MRI was used to investigate whole-brain and subcortical volume, cortical structure (using surface-based morphometry), white matter microstructure (using fixel-based analysis) and functional connectivity (using resting-state blood-oxygen-level-dependant signal correlations). Graph theory probed whole-brain structural and functional organization. For each imaging outcome we conducted two group comparisons: 1) children born after cancer-complicated pregnancies versus matched controls, and 2) the subgroup of children with prenatal chemotherapy exposure versus matched controls. In both models, we used the covariate of GA and the group-by-GA interaction, using false-discovery-rate (FDR) or family-wise-error (FWE) correction for multiple comparisons. Exploratory post-hoc analyses investigated the relation between brain structure/function, neuropsychological outcome and maternal oncological/obstetrical history. FINDINGS Forty-two children born after cancer-complicated pregnancies were included in this study, with 30 prenatally exposed to chemotherapy. Brain organization and functional connectivity were not significantly different between groups. Both cancer and chemotherapy in pregnancy, as compared to matched controls, were associated with a lower travel depth, indicating less pronounced gyrification, in the left superior temporal gyrus (pFDR ≤ 006), with post-hoc analysis indicating platinum derivatives during pregnancy as a potential risk factor (p = .028). Both cancer and chemotherapy in pregnancy were related to a lower fibre cross-section (FCS) and lower fibre density and cross-section (FDC) in the posterior corpus callosum and its tapetal fibres, compared to controls. Higher FDC in the chemotherapy subgroup and higher FCS in the whole study group were observed in the anterior thalamic radiations. None of the psycho-behavioural parameters correlated significantly with any of the brain differences in the study group or chemotherapy subgroup. INTERPRETATION Prenatal exposure to maternal cancer and its treatment might affect local grey and white matter structure, but not functional connectivity or global organization. While platinum-based therapy was identified as a potential risk factor, this was not the case for chemotherapy in general. FUNDING This project has received funding from the European Union's Horizon 2020 research and innovation program (European Research council, grant no 647,047), the Foundation against cancer (Stichting tegen kanker, grant no. 2014-152) and the Research Foundation Flanders (FWO, grants no. 11B9919N, 12ZV420N).
Collapse
Affiliation(s)
- J. Blommaert
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - A. Radwan
- Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - C. Sleurs
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - C. Maggen
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - M. van Gerwen
- Department of Gynecology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands
- Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - V. Wolters
- Department of Gynecology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - D. Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - R. Peeters
- Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - P. Dupont
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - S. Sunaert
- Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - K. Van Calsteren
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, Unit Woman and child, KU Leuven, Leuven, Belgium
| | - S. Deprez
- Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - F. Amant
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Gynaecologic Oncology Amsterdam, Netherlands Cancer Institute and University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
18
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
19
|
Cahaney C, Stefancin P, Coulehan K, Parker RI, Preston T, Goldstein J, Hogan L, Duong TQ. Anatomical brain MRI study of pediatric cancer survivors treated with chemotherapy: Correlation with behavioral measures. Magn Reson Imaging 2020; 72:8-13. [PMID: 32526251 DOI: 10.1016/j.mri.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/16/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
The negative impacts of chemotherapy on pediatric patients treated with chemotherapy during the formative years of brain development are understudied compared to adult chemotherapy cancer patients. This work investigated the morphometry, cortical thickness, and subcortical volumes using MRI and their correlations with behavioral measures in pediatric oncology survivors treated with chemotherapy. Chemotherapy-treated childhood cancer survivors (N = 15, 15.12 ± 5.98 years old) diagnosed with a non-central nervous system malignancy and healthy age-matched controls (N = 15, 15.13 ± 4.21 years old) were studied. MRI was acquired at 3 Tesla. Behavioral Rating Inventory of Executive Functioning (BRIEF) Parental Rating, Purdue Pegboard manual dexterity and n-back working memory measures were administered. Structural MRI scans at 3 Tesla were acquired. Voxel-based morphometry, cortical thickness and subcortical volumes were analyzed and correlated with behavioral scores. Parametric statistics with a p < .05 and adjusted for multiple comparison corrections were performed. Patients exhibited significantly smaller gray-matter volumes in the left globus pallidum, bilateral thalami, left caudate and left nucleus accumbens (p < .05) and thinner cortex in the right parahippocampal gyrus (p < .05) compared to controls. BRIEF scores were similar to normative values. Purdue Pegboard revealed manual dexterity deficits compared to normative values, and the n-back task showed working-memory deficits in patients compared to controls. Left thalamus volume positively correlated with dexterity performance (p = .029). The number of correct answers positively correlated and the number of incorrect answers negatively correlated with total-brain and white-matter volume (p < .05), but not gray-matter volume (p > .05). Our results support the hypothesis that the neurotoxicity of systemic chemotherapy has widespread negative effects on brain development in pediatric oncology patients with relatively mild cognitive deficits. MRI identified neuroanatomical changes have the potential to provide neural correlates of the sequelae associated with pediatric chemotherapy.
Collapse
Affiliation(s)
- Christine Cahaney
- Departments of Radiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Patricia Stefancin
- Departments of Radiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Kelly Coulehan
- Neurology, Stony Brook University, Stony Brook, NY, United States of America
| | - Robert I Parker
- Department of Pediatrics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Thomas Preston
- Neurology, Stony Brook University, Stony Brook, NY, United States of America
| | - Jessica Goldstein
- Departments of Radiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Laura Hogan
- Department of Pediatrics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Timothy Q Duong
- Departments of Radiology, Stony Brook University, Stony Brook, NY, United States of America; Neurology, Stony Brook University, Stony Brook, NY, United States of America.
| |
Collapse
|
20
|
Stefancin P, Cahaney C, Parker RI, Preston T, Coulehan K, Hogan L, Duong TQ. Neural correlates of working memory function in pediatric cancer survivors treated with chemotherapy: an fMRI study. NMR IN BIOMEDICINE 2020; 33:e4296. [PMID: 32215994 DOI: 10.1002/nbm.4296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The goal of this study is to investigate the neural correlates of working memory function associated with chemotherapy in pediatric cancer survivors using event-related functional MRI (fMRI) analysis. Fifteen pediatric cancer survivors treated with chemotherapy and 15 healthy controls were studied. Blood oxygenation level dependent (BOLD) fMRI was acquired. A visual n-back task was used to test working memory function during the fMRI scan. Responses were recorded via an MRI compatible button box for analysis. fMRI scans were analyzed using statistical parametric mapping software. All statistics were corrected for multiple comparisons by false discovery rate, with p < 0.05 as significance. Patients however gave more incorrect responses (p < 0.05), more no responses (p < 0.05), and longer response times (p < 0.05) compared with healthy controls. Correct responses generated significantly lower BOLD responses in the posterior cingulate for pediatric cancer survivors compared with controls (p < 0.05). Incorrect responses generated significantly greater BOLD responses in the angular gyrus in survivors (p < 0.05), and no response trials generated greater BOLD responses within the superior parietal lobule (p < 0.05) compared with controls. Working memory impairment appears to be due to an inability to manipulate information and to retrieve information from memory. The ability to delineate the affected neural circuits associated with chemotherapy-induced cognitive impairment could inform treatment strategies, identify patients at high risk of developing cognitive deficits, and pre-emptively tailor behavioral enrichment to overcome specific cognitive deficits.
Collapse
Affiliation(s)
- Patricia Stefancin
- Department of Radiology, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Christine Cahaney
- Department of Radiology, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Robert I Parker
- Department of Pediatrics, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Thomas Preston
- Department of Neurology, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Kelly Coulehan
- Department of Neurology, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Laura Hogan
- Department of Pediatrics, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Timothy Q Duong
- Department of Radiology, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, New York
| |
Collapse
|
21
|
Long-term impact of prenatal exposure to chemotherapy on executive functioning: An ERP study. Clin Neurophysiol 2019; 130:1655-1664. [PMID: 31330451 DOI: 10.1016/j.clinph.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study examines the long-term impact of prenatal exposure to chemotherapy on executive functioning and the contribution of late-prematurity to this effect, using event-related potentials. METHODS Mothers of the prenatal-exposed children (n = 20) were diagnosed with cancer and received chemotherapeutic treatment during pregnancy. We recruited healthy controls (n = 20) who were matched on a 1:1 ratio regarding prematurity, age and sex. We assessed executive functioning at the age of nine, using two event-related potential paradigms: a Go/Nogo paradigm to investigate processes of response inhibition and conflict monitoring, as well as a Posner paradigm to investigate spatial attention. RESULTS Lower potentials were found in prenatal-exposed children compared to controls in the Go/Nogo P3 and Posner positive slow wave. Moreover, prenatal-exposed children responded slower on the Posner paradigm compared to controls (p < .033), with more incorrect responses (p = .023). In the control group, the N2 Go/Nogo wave was more pronounced in children born after a longer gestation. CONCLUSIONS This is the first study that demonstrates an effect of prenatal exposure to chemotherapy on the development of executive functioning, not limited to the effect of late-prematurity. SIGNIFICANCE This study emphasizes the necessity of a long-term follow-up of prenatal-exposed children to re-inform clinical practice on the costs and benefits of late-premature induction over treatment during pregnancy.
Collapse
|
22
|
Abstract
Survival rates of children with cancer are steadily increasing. This urges our attention to neurocognitive and psychiatric outcomes, as these can markedly influence the quality of life of these children. Neurobehavioral morbidity in childhood cancer survivors affects diverse aspects of cognitive function, which can include attention, memory, processing speed, intellect, academic achievement, and emotional health. Reasons for neurobehavioral morbidity are multiple with one major contributor being chemotherapy-induced central nervous system (CNS) toxicity. Clinical studies investigating the effects of chemotherapy on the CNS in children with cancer have reported causative associations with the development of leukoencephalopathies as well as smaller regional grey and white matter volumes, which have been found to correlate with neurocognitive deficits.Preclinical work has provided compelling evidence that chemotherapy drugs are potent neuro- and gliotoxins in vitro and in vivo and can cause brain injury via excitotoxic and apoptotic mechanisms. Furthermore, chemotherapy triggers DNA (deoxyribonucleic acid) damage directly or through increased oxidative stress. It can shorten telomeres and accelerate cell aging, cause cytokine deregulation, inhibit hippocampal neurogenesis, and reduce brain vascularization and blood flow. These mechanisms, when allowed to operate on the developing brain of a child, have high potential to not only cause brain injury, but also alter crucial developmental events, such as myelination, synaptogenesis, neurogenesis, cortical thinning, and formation of neuronal networks.This short review summarizes key publications describing neurotoxicity of chemotherapy in pediatric cancers and potential underlying pathomechanisms.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, Section of Child Neurology, University of Wisconsin Madison, Madison, WI, 53705, USA.
| |
Collapse
|
23
|
Sleurs C, Lemiere J, Christiaens D, Billiet T, Peeters R, Sunaert S, Uyttebroeck A, Deprez S. Advanced MR diffusion imaging and chemotherapy-related changes in cerebral white matter microstructure of survivors of childhood bone and soft tissue sarcoma? Hum Brain Mapp 2018; 39:3375-3387. [PMID: 29675944 DOI: 10.1002/hbm.24082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
With the increase of survival rates of pediatric cancer patients, the number of children facing potential cognitive sequelae has grown. Previous adult studies suggest that white matter (WM) microstructural changes may contribute to cognitive impairment. This study aims to investigate WM microstructure in childhood bone and soft tissue sarcoma. Differences in (micro-)structure can be investigated using diffusion MRI (dMRI). The typically used diffusion tensor model (DTI) assumes Gaussian diffusion, and lacks information about fiber populations. In this study, we compare WM structure of childhood bone and soft tissue sarcoma survivors (n = 34) and matched controls (n = 34), combining typical and advanced voxel-based models (DTI and NODDI model, respectively), as well as recently developed fixel-based models (for estimations of intra-voxel differences, apparent fiber density [AFD] and fiber cross-section [FC]). Parameters with significant findings were compared between treatments, and correlated with subscales of the WAIS-IV intelligence test, age at diagnosis, age at assessment and time since diagnosis. We encountered extensive regions showing lower fractional anisotropy, overlapping with both significant NODDI parameters and fixel-based parameters. In contrast to these diffuse differences, the fixel-based measure of AFD was reduced in the cingulum and corpus callosum only. Furthermore, AFD of the corpus callosum was significantly predicted by chemotherapy treatment and correlated positively with time since diagnosis, visual puzzles and similarities task scores. This study suggests altered WM structure of childhood bone and soft tissue sarcoma survivors. We conclude global chemotherapy-related changes, with particular vulnerability of centrally located WM bundles. Finally, such differences could potentially recover after treatment.
Collapse
Affiliation(s)
- Charlotte Sleurs
- Department of Pediatrics, University Hospitals Leuven, UZ Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, UZ Leuven, Belgium.,Department of Oncology, UZ Leuven, Belgium
| | - Jurgen Lemiere
- Department of Pediatrics, University Hospitals Leuven, UZ Leuven, Belgium
| | - Daan Christiaens
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Thibo Billiet
- Imaging Biomarker Experts, Icometrix, Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, UZ Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, UZ Leuven, Belgium.,Department of Imaging and Pathology, UZ Leuven, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospitals Leuven, UZ Leuven, Belgium.,Department of Oncology, UZ Leuven, Belgium
| | - Sabine Deprez
- Department of Radiology, University Hospitals Leuven, UZ Leuven, Belgium.,Department of Imaging and Pathology, UZ Leuven, Belgium
| |
Collapse
|