1
|
Pino RD, Acera MÁ, de Echevarrría AO, Tijero B, Ruiz-Lopez M, Somme J, Ruiz-Martínez J, Gabilondo A, Croitoru IM, Pardina L, Ayo-Mentxakatorre N, Murueta-Goyena A, Gabilondo I, Sanchez-Pernaute R, Fernández-Valle T, Esteban JCG. Characterization of visual cognition in pre-manifest, manifest and reduced penetrance Huntington's disease. Sci Rep 2025; 15:4707. [PMID: 39922862 PMCID: PMC11807097 DOI: 10.1038/s41598-025-88406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Cognitive and visual impairment are common in Huntington's Disease (HD) and may precede motor diagnosis. We investigate the early presence of visual cognitive deficits in 181 participants, including HD carriers (40 pre-manifest, 30 early manifest, 27 manifest, and 6 reduced penetrance) and 78 healthy controls (HC). Significant differences in visual memory were observed between reduced penetrance and pre-manifest groups (p = .003), with pre-manifest showing worse performance. Age, education, CAG repeats, motor status, executive function, and verbal fluency, accounted for up to 72.8% of the variance in general and visual cognitive functions, with motor status having the strongest impact on visual domains in HD carriers. In pre-manifest HD, visual cognitive domains were primarily influenced by executive function, verbal fluency, age, and CAG repeats, while in early and manifest stages motor status and verbal fluency becomes more influential. ROC analyses showed that especially visuospatial abilities, visual memory, and visual attention (AUC = 0.927, 0.878, 0.874, respectively) effectively differentiated HC and pre-manifest from early and manifest HD. Early assessment of visual cognitive domains, particularly visual memory, could be an early marker of cognitive decline in HD. Our findings highlight the different profiles of impairment in visual cognition across HD carriers.
Collapse
Affiliation(s)
- Rocio Del Pino
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain.
| | - Maria Ángeles Acera
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
| | - Amaia Ortiz de Echevarrría
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
- Neurology Department, Cruces University Hospital, Osakidetza, Barakaldo, Spain
| | - Marta Ruiz-Lopez
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
- Neurology Department, Cruces University Hospital, Osakidetza, Barakaldo, Spain
| | - Johanne Somme
- Neurology Department, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Javier Ruiz-Martínez
- Neurology Department, Donostia University Hospital, San Sebastián, Gipuzkoa, Spain
| | - Andrea Gabilondo
- Outpatient Mental Health Network of Gipuzkoa, San Sebastián, Spain
- Neurology Department, Donostia University Hospital, San Sebastián, Gipuzkoa, Spain
| | - Ioana M Croitoru
- Neurology Department, Donostia University Hospital, San Sebastián, Gipuzkoa, Spain
| | - Lara Pardina
- Neurology Department, Donostia University Hospital, San Sebastián, Gipuzkoa, Spain
| | - Naia Ayo-Mentxakatorre
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
| | - Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
- Department of Neuroscience, University of the Basque Country (Universidad del Pais Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
- Neurology Department, Cruces University Hospital, Osakidetza, Barakaldo, Spain
- The Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Rosario Sanchez-Pernaute
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
- The Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Tamara Fernández-Valle
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
- Neurology Department, Cruces University Hospital, Osakidetza, Barakaldo, Spain
- Department of Neuroscience, University of the Basque Country (Universidad del Pais Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| | - Juan Carlos Gómez Esteban
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Plaza de Cruces 12, Barakaldo (Bizkaia), Barakaldo, CP 48903, Spain
- Neurology Department, Cruces University Hospital, Osakidetza, Barakaldo, Spain
- Department of Neuroscience, University of the Basque Country (Universidad del Pais Vasco/Euskal Herriko Unibertsitatea), Leioa, Spain
| |
Collapse
|
2
|
Han Y, Gao Y, Wang S, Lin X, Li P, Liu W, Lu L, Wang C. Cortical folding in distinguishing first-episode bipolar and unipolar depression. J Affect Disord 2025; 369:897-905. [PMID: 39424150 DOI: 10.1016/j.jad.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUNDS Clinical studies to date have yet to establish distinct boundaries between depression in bipolar disorder (BD) and unipolar depression (UD), leading to misdiagnoses and even exacerbation of the conditions. This study aimed to explore the distinctions in the local gyrification index (LGI) between BD and UD, and to evaluate its potential diagnostic value as a biomarker. METHODS LGI values across 68 cortical regions were measured from 42 patients with BD, 45 patients with UD, and 45 healthy controls (HCs) based on the Desikan-Killiany atlas. General linear model was performed to compare LGI values among the three groups. XGBoost classifier was implemented to develop a binary classification model for distinguishing BD from UD. Additionally, the correlation between clinical characteristics and LGI values was investigated separately within the BD and UD groups. RESULTS Compared to HCs, individuals with BD and UD exhibited significantly reduced LGI values in various cortical regions. Nine LGI regions in the BD group displayed reduced values compared to the UD group, except for a singular increase in the left frontal pole (ηp2 = 0.173; P = 0.006). No significant association was found between LGI values and clinical characteristics within the patient groups. The XGBoost classifier achieved a distinction accuracy of 73.7 % between BD and UD, with the left frontal pole making the most significant contribution to the model. CONCLUSIONS The findings suggest that LGI could be a relatively stable neuroimaging biomarker for distinguishing between BD and UD.
Collapse
Affiliation(s)
- Yong Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yujun Gao
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Sanwang Wang
- Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Weijian Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health, Peking University, Beijing 100191, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Changhong Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China.
| |
Collapse
|
3
|
Sun S, Yan C, Qu S, Luo G, Liu X, Tian F, Dong Q, Li X, Hu B. Resting-state dynamic functional connectivity in major depressive disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111076. [PMID: 38972502 DOI: 10.1016/j.pnpbp.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
As a novel measure, dynamic functional connectivity (dFC) provides insight into the dynamic nature of brain networks and their interactions in resting-state, surpassing traditional static functional connectivity in pathological conditions such as depression. Since a comprehensive review is still lacking, we then reviewed forty-five eligible papers to explore pathological mechanisms of major depressive disorder (MDD) from perspectives including abnormal brain regions and functional networks, brain state, topological properties, relevant recognition, along with longitudinal studies. Though inconsistencies could be found, common findings are: (1) From different perspectives based on dFC, default-mode network (DMN) with its subregions exhibited a close relation to the pathological mechanism of MDD. (2) With a corrupted integrity within large-scale functional networks and imbalance between them, longer fraction time in a relatively weakly-connected state may be a possible property of MDD concerning its relation with DMN. Abnormal transition frequencies between states were correlated to the severity of MDD. (3) Including dynamic properties in topological network metrics enhanced recognition effect. In all, this review summarized its use for clinical diagnosis and treatment, elucidating the non-stationary of MDD patients' aberrant brain activity in the absence of stimuli and bringing new views into its underlying neuro mechanism.
Collapse
Affiliation(s)
- Shuting Sun
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Chang Yan
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Shanshan Qu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Gang Luo
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xuesong Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Fuze Tian
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| |
Collapse
|
4
|
Li J, Xu Y, Liu X, Yang F, Fan W. Cortical morphological alterations in cognitively normal Parkinson's disease with severe hyposmia. Brain Res 2024; 1844:149150. [PMID: 39127119 DOI: 10.1016/j.brainres.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Olfactory dysfunction is a common non-motor symptom of Parkinson's disease(PD) and may hold valuable insights into the disease's underlying pathophysiology. This study aimed to investigate cortical morphometry alterations in PD patients with severe hyposmia(PD-SH) and mild hyposmia(PD-MH) using surface-based morphometry(SBM) methods. Participants included 36 PD-SH patients, 38 PD-MH patients, and 40 healthy controls(HCs). SBM analysis revealed distinct patterns of cortical alterations in PD-SH and PD-MH patients. PD-MH patients exhibited reduced cortical thickness in the right supramarginal gyrus, while PD-SH patients showed widespread cortical thinning in regions including the bilateral pericalcarine cortex, bilateral lingual gyrus, left inferior parietal cortex, left lateral occipital cortex, right pars triangularis, right cuneus, and right superior parietal cortex. Moreover, PD-SH patients displayed reduced cortical thickness in the right precuneus compared to PD-MH patients. Fractal dimension analysis indicated increased cortical complexity in PD-MH patients' right superior temporal cortex and right supramarginal gyrus, as well as decreased complexity in the bilateral postcentral cortex, left superior parietal cortex, and right precentral cortex. Similarly, cortical gyrification index and cortical sulcal depth exhibited heterogeneous patterns of changes in PD-SH and PD-MH patients compared to HCs. These findings underscore the multifaceted nature of olfactory impairment in PD, with distinct patterns of cortical morphometry alterations associated with different degrees of hyposmia. The observed discrepancies in brain regions showing alterations reflect the complexity of PD's pathophysiology. These insights contribute to a deeper understanding of olfactory dysfunction in PD and provide potential avenues for early diagnosis and targeted interventions.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
5
|
Horne K, Carmichael A, Mercieca EC, Glikmann-Johnston Y, Stout JC, Irish M. Delineating the neural substrates of autobiographical memory impairment in Huntington's disease. Eur J Neurosci 2024; 60:6509-6524. [PMID: 39419578 DOI: 10.1111/ejn.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Emerging evidence suggests that autobiographical memory (ABM) is altered in Huntington's disease (HD). While these impairments are typically attributed to frontostriatal dysfunction, the neural substrates of ABM impairment in HD remain unexplored. To this end, we assessed ABM in 30 participants with genetically confirmed HD (18 premanifest, 12 manifest) and 24 age-matched healthy controls. Participants completed the Autobiographical Interview to assess free and probed ABM recall and underwent structural brain imaging. Whole-brain voxel-based morphometry (VBM) was used to explore voxel-wise associations between ABM performance and grey matter intensity (False Discovery Rate corrected at q = 0.05). Relative to controls, HD participants displayed significantly less detailed ABM retrieval across free and probed recall conditions, irrespective of disease stage. Recall performance did not differ significantly between manifest and premanifest HD groups. VBM analyses indicated that poorer ABM performance was associated with atrophy of a distributed cortico-subcortical network. Key regions implicated irrespective of ABM condition included the bilateral occipital cortex, left precuneus, right parahippocampal gyrus and right caudate nucleus. In addition, probed ABM recall was associated with the superior and inferior frontal gyri, frontal pole, right hippocampus, nucleus accumbens, paracingulate gyrus and cerebellum. Overall, our findings indicate that ABM impairments in HD reflect the progressive degeneration of a distributed cortico-subcortical brain network comprising medial temporal, frontal, striatal and posterior parietal cortices. Our findings advance our understanding of the neurocognitive profile of HD, providing an important foundation for future interventions to support memory function in this population.
Collapse
Affiliation(s)
- Kristina Horne
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Anna Carmichael
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Emily-Clare Mercieca
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Yifat Glikmann-Johnston
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Julie C Stout
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
7
|
Aracil-Bolaños I, Pérez-Pérez J, Martínez-Horta S, Horta-Barba A, Puig-Davi A, García-Cornet J, Olmedo-Saura G, Campolongo A, Pagonabarraga J, Kulisevsky J. Baseline Large-Scale Network Dynamics Associated with Disease Progression in Huntington's Disease. Mov Disord 2024; 39:197-203. [PMID: 38148511 DOI: 10.1002/mds.29655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a genetically determined disease with motor, cognitive, and neuropsychiatric disorders. However, the links between clinical progression and disruptions to dynamics in motor and cognitive large-scale networks are not well established. OBJECTIVE To investigate changes in dynamic and static large-scale networks using an established tool of disease progression in Huntington's disease, the composite Unified Huntington's Disease Rating Scale (cUHDRS). METHODS Sixty-four mutation carriers were included. Static and dynamic baseline functional connectivity as well as topological features were correlated to 2-year follow-up clinical assessments using the cUHDRS. RESULTS Decline in cUHDRS scores was associated with higher connectivity between frontal default-mode and motor networks, whereas higher connectivity in posterior, mainly visuospatial regions was associated with a smaller decline in cUHDRS scores. CONCLUSIONS Structural disruptions in HD were evident both in posterior parietal/occipital and frontal motor regions, with reciprocal increases in functional connectivity. However, although higher visuospatial network connectivity was tied to a smaller cUHDRS decline, increased motor and frontal default-mode connections were linked to a larger cUHDRS decreases. Therefore, divergent functional compensation mechanisms might be at play in the clinical evolution of HD.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Júlia García-Cornet
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
8
|
Matmat K, Conart JB, Graindorge PH, El Kouche S, Hassan Z, Siblini Y, Umoret R, Safar R, Baspinar O, Robert A, Alberto JM, Oussalah A, Coelho D, Guéant JL, Guéant-Rodriguez RM. A transgenic mice model of retinopathy of cblG-type inherited disorder of one-carbon metabolism highlights epigenome-wide alterations related to cone photoreceptor cells development and retinal metabolism. Clin Epigenetics 2023; 15:158. [PMID: 37798757 PMCID: PMC10557304 DOI: 10.1186/s13148-023-01567-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND MTR gene encodes the cytoplasmic enzyme methionine synthase, which plays a pivotal role in the methionine cycle of one-carbon metabolism. This cycle holds a significant importance in generating S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the respective universal methyl donor and end-product of epigenetic transmethylation reactions. cblG type of inherited disorders of vitamin B12 metabolism due to mutations in MTR gene exhibits a wide spectrum of symptoms, including a retinopathy unresponsive to conventional therapies. METHODS To unveil the underlying epigenetic pathological mechanisms, we conducted a comprehensive study of epigenomic-wide alterations of DNA methylation by NGS of bisulfited retinal DNA in an original murine model with conditional Mtr deletion in retinal tissue. Our focus was on postnatal day 21, a critical developmental juncture for ocular structure refinement and functional maturation. RESULTS We observed delayed eye opening and impaired visual acuity and alterations in the one-carbon metabolomic profile, with a notable dramatic decline in SAM/SAH ratio predicted to impair DNA methylation. This metabolic disruption led to epigenome-wide changes in genes involved in eye development, synaptic plasticity, and retinoid metabolism, including promoter hypermethylation of Rarα, a regulator of Lrat expression. Consistently, we observed a decline in cone photoreceptor cells and reduced expression of Lrat, Rpe65, and Rdh5, three pivotal genes of eye retinoid metabolism. CONCLUSION We introduced an original in vivo model for studying cblG retinopathy, which highlighted the pivotal role of altered DNA methylation in eye development, cone differentiation, and retinoid metabolism. This model can be used for preclinical studies of novel therapeutic targets.
Collapse
Affiliation(s)
- Karim Matmat
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Baptiste Conart
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- Department of Ophthalmology, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Paul-Henri Graindorge
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Sandra El Kouche
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ziad Hassan
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Youssef Siblini
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Rémy Umoret
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Okan Baspinar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Aurélie Robert
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Marc Alberto
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| | - Rosa-Maria Guéant-Rodriguez
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
9
|
Kim YJ, Park I, Choi HC, Ahn ME, Ryu OH, Jang D, Lee U, Lee SK. Relationship of Neural Correlates of Gait Characteristics and Cognitive Dysfunction in Patients with Mild Cognitive Impairment. J Clin Med 2023; 12:5347. [PMID: 37629389 PMCID: PMC10455461 DOI: 10.3390/jcm12165347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Background: Some patients with mild cognitive impairment (MCI) experience gait disturbances. However, there are few reports on the relationship between gait disturbance and cognitive function in patients with MCI. Therefore, we investigated the neural correlates of gait characteristics related to cognitive dysfunction. Methods: Eighty patients diagnosed with MCI from three dementia centers in Gangwon-do, Korea, were recruited for this study. We defined MCI as a Clinical Dementia Rating global score of 0.5 or higher, with a memory domain score of 0.5 or greater. The patients were classified as having either higher or lower MMSE and the groups were based on their Mini Mental Status Examination z-scores. Multiple logistic regression analysis was performed to examine the association between the gait characteristics and cognitive impairment. Analyses included variables such as age, sex, years of education, number of comorbidities, body mass index, and height. Results: Gait velocity, step count, step length, heel-to-heel base support, swing and stance phase duration, and support time were associated with cognitive function. A decrease in gray matter volume in the right pericalcarine area was associated with gait characteristics related to cognitive dysfunction. An increase in the curvature of gray matter in the right entorhinal, right lateral orbitofrontal, right cuneus, and right and left pars opercularis areas was also associated with gait characteristics related to cognitive dysfunction. Conclusion: Since gait impairment is an important factor in determining activities of daily living in patients with mild cognitive impairment, the evaluation of gait and cognitive functions in patients with mild cognitive impairment is important.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| | - Ingyu Park
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea; (I.P.); (D.J.)
| | - Hui-Chul Choi
- Department of Neurology, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Moo-Eob Ahn
- Department of Emergency Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Ohk-Hyun Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Daehun Jang
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea; (I.P.); (D.J.)
| | - Unjoo Lee
- Division of Software, School of Information Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang-Kyu Lee
- Department of Psychiatry, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
10
|
van Harten TW, van Rooden S, Koemans EA, van Opstal AM, Greenberg SM, van der Grond J, Wermer MJH, van Osch MJP. Impact of region of interest definition on visual stimulation-based cerebral vascular reactivity functional MRI with a special focus on applications in cerebral amyloid angiopathy. NMR IN BIOMEDICINE 2023; 36:e4916. [PMID: 36908068 DOI: 10.1002/nbm.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/15/2023]
Abstract
Cerebral vascular reactivity quantified using blood oxygen level-dependent functional MRI in conjuncture with a visual stimulus has been proven to be a potent and early marker for cerebral amyloid angiopathy. This work investigates the influence of different postprocessing methods on the outcome of such vascular reactivity measurements. Three methods for defining the region of interest (ROI) over which the reactivity is measured are investigated: structural (transformed V1), functional (template based on the activation of a subset of subjects), and percentile (11.5 cm3 most responding voxels). Evaluation is performed both in a test-retest experiment in healthy volunteers (N = 12), as well as in 27 Dutch-type cerebral amyloid angiopathy patients and 33 age- and sex-matched control subjects. The results show that the three methods select a different subset of voxels, although all three lead to similar outcome measures in healthy subjects. However, in (severe) pathology, the percentile method leads to higher reactivity measures than the other two, due to circular analysis or "double dipping" by defining a subject-specific ROI based on the strongest responses within each subject. Furthermore, while different voxels are included in the presence of lesions, this does not necessarily result in different outcome measures. In conclusion, to avoid bias created by the method, either a structural or a functional method is recommended. Both of these methods provide similar reactivity measures, although the functional ROI appears to be less reproducible between studies, because slightly different subsets of voxels were found to be included. On the other hand, the functional method did include fewer lesion voxels than the structural method.
Collapse
Affiliation(s)
- Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna M van Opstal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Wei L, Li X, Huang L, Liu Y, Hu L, Shen W, Ding Q, Liang P. An fMRI study of visual geometric shapes processing. Front Neurosci 2023; 17:1087488. [PMID: 37008223 PMCID: PMC10062448 DOI: 10.3389/fnins.2023.1087488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Cross-modal correspondence has been consistently evidenced between shapes and other sensory attributes. Especially, the curvature of shapes may arouse the affective account, which may contribute to understanding the mechanism of cross-modal integration. Hence, the current study used the functional magnetic resonance imaging (fMRI) technique to examine brain activity’s specificity when people view circular and angular shapes. The circular shapes consisted of a circle and an ellipse, while the angular shapes consisted of a triangle and a star. Results show that the brain areas activated by circular shapes mainly involved the sub-occipital lobe, fusiform gyrus, sub and middle occipital gyrus, and cerebellar VI. The brain areas activated by angular shapes mainly involve the cuneus, middle occipital gyrus, lingual gyrus, and calcarine gyrus. The brain activation patterns of circular shapes did not differ significantly from those of angular shapes. Such a null finding was unexpected when previous cross-modal correspondence of shape curvature was considered. The different brain regions detected by circular and angular shapes and the potential explanations were discussed in the paper.
Collapse
Affiliation(s)
- Liuqing Wei
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
- Brain and Cognition Research Center, Faculty of Education, Hubei University, Wuhan, China
| | - Xueying Li
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
| | - Lina Huang
- Imaging Department, Changshu No. 2 People’s Hospital, The Clinical Medical College Affiliated to Xuzhou Medical University, Changshu, China
| | - Yuansheng Liu
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
| | - Luming Hu
- Department of Psychology, School of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Wenbin Shen
- Imaging Department, Changshu No. 2 People’s Hospital, The Clinical Medical College Affiliated to Xuzhou Medical University, Changshu, China
| | - Qingguo Ding
- Imaging Department, Changshu No. 2 People’s Hospital, The Clinical Medical College Affiliated to Xuzhou Medical University, Changshu, China
- *Correspondence: Qingguo Ding,
| | - Pei Liang
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
- Brain and Cognition Research Center, Faculty of Education, Hubei University, Wuhan, China
- Imaging Department, Changshu No. 2 People’s Hospital, The Clinical Medical College Affiliated to Xuzhou Medical University, Changshu, China
- Pei Liang,
| |
Collapse
|
12
|
van Dijk SE, Lak J, Drenth N, Hafkemeijer A, Rombouts SARB, van der Grond J, van Rooden S. Aging Effect, Reproducibility, and Test-Retest Reliability of a New Cerebral Amyloid Angiopathy MRI Severity Marker-Cerebrovascular Reactivity to Visual Stimulation. J Magn Reson Imaging 2023; 57:909-915. [PMID: 35876045 DOI: 10.1002/jmri.28362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Decreased cerebrovascular reactivity, measured as changes in blood-oxygen-level-dependent (BOLD) signal, is a potential new cerebral amyloid angiopathy (CAA) severity marker. Before clinical application, the effect of aging on BOLD parameters, and reproducibility and test-retest reliability of these parameters should be assessed. PURPOSE Assess the effect of healthy aging on cerebrovascular reactivity (BOLD amplitude, time to peak, and time to baseline). And determine reproducibility and test-retest reliability of these parameters. STUDY TYPE Prospective-observational. POPULATION Eighty-six healthy adults (mean age 56 years, 55% female), 10 presymptomatic D-CAA mutation carriers (mean age 34 years, 70% female), and 10 symptomatic D-CAA mutation carriers (mean age 54 years, 70% female). FIELD STRENGTH/SEQUENCE 3-T, three-dimensional (3D) T1-weighted MRI and gradient echo BOLD fMRI. ASSESSMENT To assess test-retest reliability of BOLD parameters, i.e. BOLD amplitude, time to peak, and time to baseline, BOLD fMRI scans were repeated three times immediately after each other, in both controls and mutation carriers. To assess reproducibility, BOLD fMRI scans were repeated with a 3-week interval for each subject. STATISTICAL TESTS Linear regression analyses and two-way mixed absolute agreement intra-class correlation approach. RESULTS Healthy aging was associated with decreased BOLD amplitude (β = -0.711) and prolonged time to baseline (β = 0.236) in the visual cortex after visual stimulation Reproducibility of BOLD amplitude was excellent (ICC 0.940) in the subgroup of healthy adults. Test-retest reliability for BOLD amplitude was excellent in healthy adults (ICC 0.856-0.910) and presymptomatic D-CAA mutation carriers (ICC 0.959-0.981). In symptomatic D-CAA mutation carriers, test-retest reliability was poor for all parameters (ICCs < 0.5). DATA CONCLUSION Healthy aging is associated with decreased cerebrovascular reactivity, measured by changes in BOLD response to visual stimulation. The BOLD amplitude appears to be a robust measurement in healthy adults and presymptomatic D-CAA mutation carriers, but not in symptomatic D-CAA mutation carriers.
Collapse
Affiliation(s)
- Suzanne E van Dijk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessie Lak
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadieh Drenth
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Hafkemeijer
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Horta-Barba A, Martinez-Horta S, Sampedro F, Pérez-Pérez J, Pagonabarraga J, Kulisevsky J. Structural and metabolic brain correlates of arithmetic word-problem solving in Huntington's disease. J Neurosci Res 2023; 101:990-999. [PMID: 36807154 DOI: 10.1002/jnr.25174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Individuals with pre-manifest and early symptomatic Huntington's disease (HD) have shown deficits in solving arithmetic word-problems. However, the neural correlates of these deficits in HD are poorly understood. We explored the structural (gray-matter volume; GMV) and metabolic (18F-FDG PET; SUVr) brain correlates of arithmetic performance using the recently developed HD-word problem arithmetic task (HD-WPA) in seventeen preHD and sixteen HD individuals. Symptomatic participants showed significantly lower scores in the HD-WPA than preHD participants. Lower performance in the HD-WPA was associated with reduced GMV in subcortical, medial frontal, and several posterior-cortical clusters in HD participants. No significant GMV loss was found in preHD participants. 18F-FDG data revealed a widespread pattern of hypometabolism in association with lower arithmetic performance in all participants. In preHD participants, this pattern was restricted to the ventrolateral and orbital prefrontal cortex, the insula, and the precentral gyrus. In HD participants, the pattern extended to several parietal-temporal regions. Word-problem solving arithmetic deficits in HD is subserved by a pattern of asynchronous metabolic and structural compromise across the cerebral cortex as a function of disease stage. In preHD individuals, arithmetic deficits were associated with prefrontal alterations, whereas in symptomatic HD patients, more severe arithmetic deficits are associated with the compromise of several frontal-subcortical and temporo-parietal regions. Our results support the hypothesis that cognitive deficits in HD are not exclusively dominated by frontal-striatal dysfunctions but also involve fronto-temporal and parieto-occipital damage.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| |
Collapse
|
14
|
Cermakova P, Chlapečka A, Csajbók Z, Andrýsková L, Brázdil M, Marečková K. Parental education, cognition and functional connectivity of the salience network. Sci Rep 2023; 13:2761. [PMID: 36797291 PMCID: PMC9935859 DOI: 10.1038/s41598-023-29508-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
The aim was to investigate the association of parental education at birth with cognitive ability in childhood and young adulthood and determine, whether functional connectivity of the salience network underlies this association. We studied participants of the Czech arm of the European Longitudinal Study of Pregnancy and Childhood who underwent assessment of their cognitive ability at age 8 (Wechsler Intelligence Scale for Children) and 28/29 years (Wechsler Adult Intelligence Scale) and measurement with resting state functional MRI at age 23/24. We estimated the associations of parental education with cognitive ability and functional connectivity between the seeds in the salience network and other voxels in the brain. We found that lower education of both mothers and fathers was associated with lower verbal IQ, performance IQ and full-scale IQ of the offspring at age 8. Only mother´s education was associated with performance IQ at age 28/29. Lower mother´s education correlated with greater functional connectivity between the right rostral prefrontal cortex and a cluster of voxels in the occipital cortex, which, in turn, was associated with lower performance IQ at age 28/29. We conclude that the impact of parental education, particularly father´s, on offspring´s cognitive ability weakens during the lifecourse. Functional connectivity between the right rostral prefrontal cortex and occipital cortex may be a biomarker underlying the transmission of mother´s education on performance IQ of their offspring.
Collapse
Affiliation(s)
- Pavla Cermakova
- Second Faculty of Medicine, Charles University Prague, 150 06, Prague 5, Czech Republic. .,National Institute of Mental Health, 250 67, Klecany, Czech Republic.
| | - Adam Chlapečka
- grid.4491.80000 0004 1937 116XThird Faculty of Medicine, Charles University Prague, 100 00 Prague 10, Czech Republic ,grid.4491.80000 0004 1937 116XCentre of Clinical Neuroscience, Department of Neurology, First Faculty of Medicine, General University Hospital, Charles University in Prague, 128 21 Prague 2, Czech Republic
| | - Zsófia Csajbók
- grid.4491.80000 0004 1937 116XFaculty of Humanities, Charles University Prague, 182 00 Prague 8, Czech Republic
| | - Lenka Andrýsková
- grid.10267.320000 0001 2194 0956RECETOX, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Milan Brázdil
- grid.10267.320000 0001 2194 0956Brain and Mind Research, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Klára Marečková
- grid.10267.320000 0001 2194 0956Brain and Mind Research, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
15
|
Taghian T, Gallagher J, Batcho E, Pullan C, Kuchel T, Denney T, Perumal R, Moore S, Muirhead R, Herde P, Johns D, Christou C, Taylor A, Passler T, Pulaparthi S, Hall E, Chandra S, O’Neill CA, Gray-Edwards H. Brain Alterations in Aged OVT73 Sheep Model of Huntington's Disease: An MRI Based Approach. J Huntingtons Dis 2022; 11:391-406. [PMID: 36189602 PMCID: PMC9837686 DOI: 10.3233/jhd-220526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal neurodegenerative autosomal dominant disorder with prevalence of 1 : 20000 that has no effective treatment to date. Translatability of candidate therapeutics could be enhanced by additional testing in large animal models because of similarities in brain anatomy, size, and immunophysiology. These features enable realistic pre-clinical studies of biodistribution, efficacy, and toxicity. OBJECTIVE AND METHODS Here we non-invasively characterized alterations in brain white matter microstructure, neurochemistry, neurological status, and mutant Huntingtin protein (mHTT) levels in cerebrospinal fluid (CSF) of aged OVT73 HD sheep. RESULTS Similar to HD patients, CSF mHTT differentiates HD from normal sheep. Our results are indicative of a decline in neurological status, and alterations in brain white matter diffusion and spectroscopy metric that are more severe in aged female HD sheep. Longitudinal analysis of aged female HD sheep suggests that the decline is detectable over the course of a year. In line with reports of HD human studies, white matter alterations in corpus callosum correlates with a decline in gait of HD sheep. Moreover, alterations in the occipital cortex white matter correlates with a decline in clinical rating score. In addition, the marker of energy metabolism in striatum of aged HD sheep, shows a correlation with decline of clinical rating score and eye coordination. CONCLUSION This data suggests that OVT73 HD sheep can serve as a pre-manifest large animal model of HD providing a platform for pre-clinical testing of HD therapeutics and non-invasive tracking of the efficacy of the therapy.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jillian Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Batcho
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Caitlin Pullan
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Thomas Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Raj Perumal
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Shamika Moore
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Robb Muirhead
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Daniel Johns
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Amanda Taylor
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - Thomas Passler
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Sanjana Pulaparthi
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Hall
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sundeep Chandra
- Sana Biotechnology, South San Francisco, CA, USA,Bio Marin Pharmaceutical Inc., San Rafael, CA, USA
| | | | - Heather Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA,Correspondence to: Heather L. Gray-Edwards, DVM, PhD, University of Massachusetts Medical School, Department of Radiology and Horae Gene Therapy Center, 368 Plantation Street, ASC6-2055, Worcester, MA 01605, USA. Tel.: +1 508 856 4051; Fax: +1 508 856 1552; E-mail:
| |
Collapse
|
16
|
Ramirez-Garcia G, Galvez V, Diaz R, Campos-Romo A, Fernandez-Ruiz J. Montreal Cognitive Assessment (MoCA) performance in Huntington's disease patients correlates with cortical and caudate atrophy. PeerJ 2022; 10:e12917. [PMID: 35402100 PMCID: PMC8988933 DOI: 10.7717/peerj.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's Disease (HD) is an autosomal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops gradually in HD patients, progressing later into a severe cognitive dysfunction. The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly employed to detect mild cognitive impairment, which has also been useful to assess cognitive decline in HD patients. However, the relationship between MoCA performance and brain structural integrity in HD patients remains unclear. Therefore, to explore this relationship we analyzed if cortical thinning and subcortical nuclei volume differences correlated with HD patients' MoCA performance. Twenty-two HD patients and twenty-two healthy subjects participated in this study. T1-weighted images were acquired to analyze cortical thickness and subcortical nuclei volumes. Group comparison analysis showed a significantly lower score in the MoCA global performance of HD patients. Also, the MoCA total score correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as well as with bilateral caudate volume differences in HD patients. These results provide new insights into the effectiveness of using the MoCA test to detect cognitive impairment and the brain atrophy pattern associated with the cognitive status of prodromal/early HD patients.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Victor Galvez
- Escuela de Psicología, Universidad Panamericana, Ciudad de Mexico, Mexico
| | - Rosalinda Diaz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Aurelio Campos-Romo
- Facultad de Medicina, Unidad Periférica de Neurociencias, Universidad Nacional Autónoma de México/Instituto Nacional de Neurologia y Neurocirugia, Ciudad de Mexico, Mexico
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
17
|
Aracil-Bolaños I, Martínez-Horta S, González-de-Echávarri JM, Sampedro F, Pérez-Pérez J, Horta A, Campolongo A, Izquierdo C, Gómez-Ansón B, Pagonabarraga J, Kulisevsky J. Structure and Dynamics of Large-Scale Cognitive Networks in Huntington's Disease. Mov Disord 2021; 37:343-353. [PMID: 34752656 DOI: 10.1002/mds.28839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Huntington's disease is a neurodegenerative disorder characterized by clinical alterations in the motor, behavioral, and cognitive domains. However, the structure and disruptions to large-scale brain cognitive networks have not yet been established. OBJECTIVE We aimed to profile changes in large-scale cognitive networks in premanifest and symptomatic patients with Huntington's disease. METHODS We prospectively recruited premanifest and symptomatic Huntington's disease mutation carriers as well as healthy controls. Clinical and sociodemographic data were obtained from all participants, and resting-state functional connectivity data, using both time-averaged and dynamic functional connectivity, was acquired from whole-brain and cognitively oriented brain parcellations. RESULTS A total of 64 gene mutation carriers and 23 healthy controls were included; 21 patients with Huntington's disease were classified as premanifest and 43 as symptomatic Huntington's disease. Compared with healthy controls, patients with Huntington's disease showed decreased network connectivity within the posterior hubs of the default-mode network and the medial prefrontal cortex, changes that correlated with cognitive (t = 2.25, P = 0.01) and disease burden scores (t = -2.42, P = 0.009). The salience network showed decreased functional connectivity between insular and supramarginal cortices and also correlated with cognitive (t = 2.11, P = 0.02) and disease burden scores (t = -2.35, P = 0.01). Dynamic analyses showed that network variability was decreased for default-central executive networks, a feature already present in premanifest mutation carriers (dynamic factor 8, P = 0.02). CONCLUSIONS Huntington's disease shows an early and widespread disruption of large-scale cognitive networks. Importantly, these changes are related to cognitive and disease burden scores, and novel dynamic functional analyses uncovered subtler network changes even in the premanifest stages.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jose M González-de-Echávarri
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation and Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Andrea Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Beatriz Gómez-Ansón
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain.,Neuroradiology Unit, Sant Pau Hospital, Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
18
|
Altered neural networks and cognition in a hereditary colon cancer. IBRO Neurosci Rep 2021; 11:137-143. [PMID: 34693396 PMCID: PMC8517154 DOI: 10.1016/j.ibneur.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Familial Adenomatous Polyposis (FAP) is an autosomal dominant disorder caused by mutation of the APC gene presenting with numerous colorectal adenomatous polyps and a near 100% risk of colon cancer. Preliminary research findings from our group indicate that FAP patients experience significant deficits across many cognitive domains. In the current study, fMRI brain metrics in a FAP population and matched controls were used to further the mechanistic understanding of reported cognitive deficits. This research identified and characterized any possible differences in resting brain networks and associations between neural network changes and cognition from 34 participants (18 FAP patients, 16 healthy controls). Functional connectivity analysis was performed using FSL with independent component analysis (ICA) to identify functional networks. Significant differences between cases and controls were observed in 8 well-established resting state networks. With the addition of an aggregate cognitive measure as a covariate, these differences were virtually non-existent, indicating a strong correlation between cognition and brain activity at the network level. The data indicate robust and pervasive effects on functional neural network activity among FAP patients and these effects are likely involved in cognitive deficits associated with this disease.
Collapse
|
19
|
Kuhn T, Becerra S, Duncan J, Spivak N, Dang BH, Habelhah B, Mahdavi KD, Mamoun M, Whitney M, Pereles FS, Bystritsky A, Jordan SE. Translating state-of-the-art brain magnetic resonance imaging (MRI) techniques into clinical practice: multimodal MRI differentiates dementia subtypes in a traditional clinical setting. Quant Imaging Med Surg 2021; 11:4056-4073. [PMID: 34476189 PMCID: PMC8339641 DOI: 10.21037/qims-20-1355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/25/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND This study sought to validate the clinical utility of multimodal magnetic resonance imaging (MRI) techniques in the assessment of neurodegenerative disorders. We intended to demonstrate that advanced neuroimaging techniques commonly used in research can effectively be employed in clinical practice to accurately differentiate heathy aging and dementia subtypes. METHODS Twenty patients with dementia of the Alzheimer's type (DAT) and 18 patients with Parkinson's disease dementia (PDD) were identified using gold-standard techniques. Twenty-three healthy, age and sex matched control participants were also recruited. All participants underwent multimodal MRI including T1 structural, diffusion tensor imaging (DTI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS). MRI modalities were evaluated by trained neuroimaging readers and were separately assessed using cross-validated, iterative discriminant function analyses with subsequent feature reduction techniques. In this way, each modality was evaluated for its ability to differentiate patients with dementia from healthy controls as well as to differentiate dementia subtypes. RESULTS Following individual and group feature reduction, each of the multimodal MRI metrics except MRS successfully differentiated healthy aging from dementia and also demonstrated distinct dementia subtypes. Using the following ten metrics, excellent separation (95.5% accuracy, 92.3% sensitivity; 100.0% specificity) was achieved between healthy aging and neurodegenerative conditions: volume of the left frontal pole, left occipital pole, right posterior superior temporal gyrus, left posterior cingulate gyrus, right planum temporale; perfusion of the left hippocampus and left occipital lobe; fractional anisotropy (FA) of the forceps major and bilateral anterior thalamic radiation. Using volume of the left frontal pole, right posterior superior temporal gyrus, left posterior cingulate gyrus, perfusion of the left hippocampus and left occipital lobe; FA of the forceps major and bilateral anterior thalamic radiation, neurodegenerative subtypes were accurately differentiated as well (87.8% accuracy, 95.2% sensitivity; 85.0% specificity). CONCLUSIONS Regional volumetrics, DTI metrics, and ASL successfully differentiated dementia patients from controls with sufficient sensitivity to differentiate dementia subtypes. Similarly, feature reduction results suggest that advanced analyses can meaningfully identify brain regions with the most positive predictive value and discriminant validity. Together, these advanced neuroimaging techniques can contribute significantly to diagnosis and treatment planning for individual patients.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Sergio Becerra
- Neurology Management Associates, Los Angeles, California, USA
| | - John Duncan
- Neurology Management Associates, Los Angeles, California, USA
| | - Norman Spivak
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Bianca Huan Dang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | - Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Sheldon E. Jordan
- Neurology Management Associates, Los Angeles, California, USA
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
20
|
Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K, Mysore JS, Grote Urtubey DM, Parwez CR, von Hein SM, Clark HB, Nguyen HP, Förster E, Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1. Hum Mol Genet 2021; 29:2551-2567. [PMID: 32761094 PMCID: PMC7471505 DOI: 10.1093/hmg/ddaa139] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Collapse
Affiliation(s)
- Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - James V Giordano
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pedram Razghandi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Constanze R Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Sarah M von Hein
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Allison Beller
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Suman Jayadaev
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.,Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Geriatrics Research Education and Clinical Center, VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry Orr
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Differential Circuit Mechanisms of Young and Aged Visual Cortex in the Mammalian Brain. NEUROSCI 2021. [DOI: 10.3390/neurosci2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The main goal of this review is to summarize and discuss (1) age-dependent structural reorganization of mammalian visual cortical circuits underlying complex visual behavior functions in primary visual cortex (V1) and multiple extrastriate visual areas, and (2) current evidence supporting the notion of compensatory mechanisms in aged visual circuits as well as the use of rehabilitative therapy for the recovery of neural plasticity in normal and diseased aging visual circuit mechanisms in different species. It is well known that aging significantly modulates both the structural and physiological properties of visual cortical neurons in V1 and other visual cortical areas in various species. Compensatory aged neural mechanisms correlate with the complexity of visual functions; however, they do not always result in major circuit alterations resulting in age-dependent decline in performance of a visual task or neurodegenerative disorders. Computational load and neural processing gradually increase with age, and the complexity of compensatory mechanisms correlates with the intricacy of higher form visual perceptions that are more evident in higher-order visual areas. It is particularly interesting to note that the visual perceptual processing of certain visual behavior functions does not change with age. This review aims to comprehensively discuss the effect of normal aging on neuroanatomical alterations that underlie critical visual functions and more importantly to highlight differences between compensatory mechanisms in aged neural circuits and neural processes related to visual disorders. This type of approach will further enhance our understanding of inter-areal and cortico-cortical connectivity of visual circuits in normal aging and identify major circuit alterations that occur in different visual deficits, thus facilitating the design and evaluation of potential rehabilitation therapies as well as the assessment of the extent of their rejuvenation.
Collapse
|
22
|
Cali RJ, Nephew BC, Moore CM, Chumachenko S, Sala AC, Cintron B, Luciano C, King JA, Hooper SR, Giardiello FM, Cruz-Correa M. Altered Resting State Brain Networks and Cognition in Familial Adenomatous Polyposis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173924 DOI: 10.1101/2020.11.02.20224477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Familial Adenomatous Polyposis (FAP) is an autosomal dominant disorder caused by mutation of the APC gene presenting with numerous colorectal adenomatous polyps and a near 100% risk of colon cancer. Preliminary research findings from our group indicate that FAP patients experience significant deficits across many cognitive domains. In the current study, fMRI brain metrics in a FAP population and matched controls were used to further the mechanistic understanding of reported cognitive deficits. This research identified and characterized any possible differences in resting brain networks and associations between neural network changes and cognition from 34 participants (18 FAP patients, 16 healthy controls). Functional connectivity analysis was performed using FSL with independent component analysis (ICA) to identify functional networks. Significant differences between cases and controls were observed in 8 well-established resting state networks. With the addition of an aggregate cognitive measure as a covariate, these differences were virtually non-existent, indicating a strong correlation between cognition and brain activity at the network level. The data indicate robust and pervasive effects on functional neural network activity among FAP patients and these effects are likely involved in cognitive deficits associated with this disease.
Collapse
|
23
|
Martinez-Horta S, Sampedro F, Horta-Barba A, Perez-Perez J, Pagonabarraga J, Gomez-Anson B, Kulisevsky J. Structural brain correlates of dementia in Huntington's disease. NEUROIMAGE-CLINICAL 2020; 28:102415. [PMID: 32979842 PMCID: PMC7519361 DOI: 10.1016/j.nicl.2020.102415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Dementia may occur in the early stages of HD and with independence of disease burden. More severe posterior-cortical atrophy is associated with dementia in HD. Neuropsychological alterations of dementia in HD extends beyond executive dysfunction. CAG-independent neuropathological mechanisms may contribute to dementia in HD.
Background Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder with no effective treatment currently available. Progressive basal ganglia and whole-brain atrophy and concurrent cognitive deterioration are prototypical aspects of HD. However, the specific patterns of brain atrophy underlying cognitive impairment of different severity in HD are poorly understood. The aim of this study was to investigate the specific structural brain correlates of major cognitive deficits in HD and to explore its association with neuropsychological indicators. Participants Thirty-five symptomatic early-to-mild HD patients and 15 healthy controls (HC) with available T1-MRI imaging were included in this study. Methods In this cross-sectional study, HD patients were classified as patients with (HD-Dem) and without (HD-ND) major cognitive impairment in the range of dementia. This classification was based on previously validated PD-CRS cutoff scores for HD. Differences in brain atrophy across groups were studied by means of grey-matter volume voxel-based morphometry (GMV-VBM) and cortical thickness (Cth). Voxelwise and vertexwise general linear models were used to assess the group comparisons, controlling for the effects of age, sex, education, CAG repeat length and severity of motor symptoms. Clusters surviving p < 0.05 and family-wise error (FWE) correction were considered statistically significant. In order to characterize the impact on cognitive performance of the observed brain differences across groups, GMV and Cth values in the set of significant regions were computed and correlated with specific neuropsychological tests. Results All groups had similar sociodemographic profiles, and the HD groups did not significantly differ in terms of CAG repeat length. Compared to HC, both HD groups exhibited significant atrophy in multiple subcortical and parietal brain regions. However, compared to HC and HD-ND groups, HD-Dem patients showed a more prominent pattern of reduced GMV and cortical thinning. Importantly, this thinning was restricted to regions of the parietal-temporal and occipital cortices. Furthermore, these brain alterations were further associated with poorer cognitive performance in tasks assessing frontal-executive and attention domains as well as memory, language and constructional abilities. Conclusions Major cognitive impairment in the range of dementia in HD is associated with brain and cognitive alterations exceeding the prototypical frontal-executive deficits commonly recognized in HD. The observed posterior-cortical damage identified by MRI and its association with memory, language, and visuoconstructive dysfunction suggest a strong involvement of extra-striatal atrophy in the onset of severe cognitive dysfunction in HD patients. Critically, major cognitive impairment in this sample was not associated with CAG repeat length, age or education. This finding could support a possible involvement of additional neuropathological mechanisms aggravating cognitive deterioration in HD.
Collapse
Affiliation(s)
- Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; European Huntington's Disease Network (EHDN), Spain
| | - Jesús Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain
| | - Beatriz Gomez-Anson
- Neuroradiology, Radiology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain.
| |
Collapse
|
24
|
Martinez-Horta S, Horta-Barba A, Perez-Perez J, Sampedro F, de Lucia N, De Michele G, Kehrer S, Priller J, Migliore S, Squitieri F, Castaldo A, Mariotti C, Mañanes V, Lopez-Sendon JL, Rodriguez N, Martinez-Descals A, Garcia-Ruiz P, Júlio F, Januário C, Delussi M, de Tommaso M, Noguera S, Ruiz-Idiago J, Sitek EJ, Nuzzi A, Pagonabarraga J, Kulisevsky J. Utility of the Parkinson's disease-Cognitive Rating Scale for the screening of global cognitive status in Huntington's disease. J Neurol 2020; 267:1527-1535. [PMID: 32030521 DOI: 10.1007/s00415-020-09730-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cognitive impairment is an essential feature of Huntington's disease (HD) and dementia is a predictable outcome in all patients. However, validated instruments to assess global cognitive performance in the field of HD are lacking. OBJECTIVES We aimed to explore the utility of the Parkinson's disease-Cognitive Rating Scale (PD-CRS) for the screening of global cognition in HD. METHODS A multicenter cohort of 132 HD patients at different disease stages and 33 matched healthy controls were classified as having preserved cognition, mild cognitive impairment (HD-MCI) or dementia (HD-Dem) according to the Clinical Dementia Rating and Functional Independence Score. The PD-CRS and the Mini-Mental State Examination were administered. Receiver operating characteristic curve analysis was used to determine optimal cutoffs to differentiate patients according to their cognitive status. RESULTS A PD-CRS cutoff score ≤ 81/82 was optimal to detect HD-MCI (sensitivity = 93%; specificity = 80%; area under the curve (AUC) = 0.940), and ≤ 63/64 was optimal to detect HD-Dem (sensitivity = 90%; specificity = 87%; AUC = 0.933). MMSE scores failed to show robust psychometric properties in this context. DISCUSSION The PD-CRS is a valid and reliable instrument to assess global cognition in HD in routine clinical care and clinical trials.
Collapse
Affiliation(s)
- Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jesús Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Natascia de Lucia
- European Huntington's Disease Network (EHDN), Ulm, Germany.,University of Naples "Federico II", Naples, Italy
| | - Giuseppe De Michele
- European Huntington's Disease Network (EHDN), Ulm, Germany.,University of Naples "Federico II", Naples, Italy
| | - Stefanie Kehrer
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neuropsychiatry, Charité, Universitätsmedizin, Berlin, Germany
| | - Josef Priller
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neuropsychiatry, Charité, Universitätsmedizin, Berlin, Germany
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Anna Castaldo
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caterina Mariotti
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Veronica Mañanes
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neurology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Jose Luis Lopez-Sendon
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neurology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Noelia Rodriguez
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Asunción Martinez-Descals
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Pedro Garcia-Ruiz
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Filipa Júlio
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Neurology Department, Coimbra University Hospital, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research - CIBIT, University of Coimbra, Coimbra, Portugal
| | - Cristina Januário
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Neurology Department, Coimbra University Hospital, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research - CIBIT, University of Coimbra, Coimbra, Portugal
| | - Marianna Delussi
- European Huntington's Disease Network (EHDN), Ulm, Germany.,SMBNOS Department, Bari Aldo Moro University, Bari, Italy
| | - Marina de Tommaso
- European Huntington's Disease Network (EHDN), Ulm, Germany.,SMBNOS Department, Bari Aldo Moro University, Bari, Italy
| | - Sandra Noguera
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Hospital Mare de Deu de la Mercè, Barcelona, Spain
| | - Jesus Ruiz-Idiago
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Hospital Mare de Deu de la Mercè, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Emilia J Sitek
- European Huntington's Disease Network (EHDN), Ulm, Germany.,Department of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdańsk, Poland.,Department of Neurology, St. Adalbert Hospital, Copernicus, PL, Gdańsk, Poland
| | - Angela Nuzzi
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041, Barcelona, Spain. .,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain. .,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Autonomous University of Barcelona, Barcelona, Spain. .,European Huntington's Disease Network (EHDN), Ulm, Germany.
| | | |
Collapse
|
25
|
Martínez-Horta S, Horta-Barba A, Perez-Perez J, Antoran M, Pagonabarraga J, Sampedro F, Kulisevsky J. Impaired face-like object recognition in premanifest Huntington's disease. Cortex 2019; 123:162-172. [PMID: 31794910 DOI: 10.1016/j.cortex.2019.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022]
Abstract
Progressive striatal atrophy has long been considered the pathological hallmark of Huntington's disease (HD), but is it now recognized that malfunction and degeneration of posterior-cortical territories are also prominent characteristics of the disease. The limited knowledge about the functional impact of these posterior-cortical changes could be partially attributed to the lack of sensitive measures to capture them. We hypothesized that early malfunction of specific territories of the ventral visual pathway in premanifest HD would lead to difficulties in the recognition of complex stimuli and to differences in their neurophysiological correlates. To test this idea, we used an object, face and face-like object recognition task to be conducted during an electroencephalographic recording. Compared to healthy-matched controls, premanifest participants showed a significantly increased number of recognition errors in the face-like object condition. Moreover, premanifest participants showed a dramatic decrease in the N170 component elicited for the face-like objects. This N170 decrease was significantly associated with the number of recognition errors and with severity of apathy and global cognitive performance. The lack of differences in other clinical and cognitive measures supports a selective deficit in recognition of face-like objects and their neurophysiological correlates in premanifest HD. These deficits occurred in participants up to 15 years before the estimated time to disease onset and correlated strongly with cognitive and behavioral measures known to be sensitive to HD progression. This finding highlights the existence of selective visuoperceptive deficits years before motor-based onset of HD and emphasizes the need to develop sensitive measures to capture early visual system changes in this population. Assessing the integrity of the visual cortex and its related functions in HD could help to identify early markers of disease progression.
Collapse
Affiliation(s)
- Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany
| | - Jesús Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany
| | - Mizar Antoran
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany.
| |
Collapse
|
26
|
Pini L, Jacquemot C, Cagnin A, Meneghello F, Semenza C, Mantini D, Vallesi A. Aberrant brain network connectivity in presymptomatic and manifest Huntington's disease: A systematic review. Hum Brain Mapp 2019; 41:256-269. [PMID: 31532053 PMCID: PMC7268025 DOI: 10.1002/hbm.24790] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (rs‐fMRI) has the potential to shed light on the pathophysiological mechanisms of Huntington's disease (HD), paving the way to new therapeutic interventions. A systematic literature review was conducted in three online databases according to PRISMA guidelines, using keywords for HD, functional connectivity, and rs‐fMRI. We included studies investigating connectivity in presymptomatic (pre‐HD) and manifest HD gene carriers compared to healthy controls, implementing seed‐based connectivity, independent component analysis, regional property, and graph analysis approaches. Visual network showed reduced connectivity in manifest HD, while network/areas underpinning motor functions were consistently altered in both manifest HD and pre‐HD, showing disease stage‐dependent changes. Cognitive networks underlying executive and attentional functions showed divergent anterior–posterior alterations, possibly reflecting compensatory mechanisms. The involvement of these networks in pre‐HD is still unclear. In conclusion, aberrant connectivity of the sensory‐motor network is observed in the early stage of HD while, as pathology spreads, other networks might be affected, such as the visual and executive/attentional networks. Moreover, sensory‐motor and executive networks exhibit hyper‐ and hypo‐connectivity patterns following different spatiotemporal trajectories. These findings could potentially help to implement future huntingtin‐lowering interventions.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Charlotte Jacquemot
- Département d'Etudes Cognitives, Ecole Normale Supérieure-PSL University, Paris, France.,Laboratoire de NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, Institut National de la Santé et Recherche Médical (INSERM) U955, Equipe 01, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Annachiara Cagnin
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Francesca Meneghello
- Cognitive Neuroscience Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Carlo Semenza
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy.,Cognitive Neuroscience Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
27
|
Cortical atrophic-hypometabolic dissociation in the transition from premanifest to early-stage Huntington’s disease. Eur J Nucl Med Mol Imaging 2019; 46:1111-1116. [DOI: 10.1007/s00259-018-4257-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/27/2018] [Indexed: 02/05/2023]
|
28
|
Coppen EM, van der Grond J, Hafkemeijer A, Barkey Wolf JJH, Roos RAC. Structural and functional changes of the visual cortex in early Huntington's disease. Hum Brain Mapp 2018; 39:4776-4786. [PMID: 30144208 PMCID: PMC6866293 DOI: 10.1002/hbm.24322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/19/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor disturbances, psychiatric disturbances, and cognitive impairment. Visual cognitive deficits and atrophy of the posterior cerebral cortex are additionally present in early disease stages. This study aimed to assess the extent of structural and functional brain alterations of the visual cortex in HD gene carriers using different neuroimaging modalities. Structural and functional magnetic resonance imaging data were acquired from 18 healthy controls, 21 premanifest, and 20 manifest HD gene carriers. Voxel-based morphometry (VBM) analysis and cortical thickness measurements were performed to assess structural changes in the visual cortex. Brain function was measured by assessing neuronal connectivity changes in response to visual stimulation and at rest in visual resting-state networks. Multiple linear regression analyses were performed to examine the relationship between visual cognitive function and structural imaging measures. Compared to controls, pronounced atrophy and decreased neuronal function at rest were present in associative visual cortices in manifest HD. The primary visual cortex did not show group differences in cortical thickness and in vascular activity after visual stimulation. Thinning of the associative visual cortex was related to worse visual perceptual function. Premanifest HD gene carriers did not show any differences in brain structure or function compared to controls. This study improves the knowledge on posterior brain changes in HD, as our findings suggest that the primary visual cortex remains preserved, both structurally and functionally, while atrophy of associative visual cortices is present in early HD and linked to clinical visual deficits.
Collapse
Affiliation(s)
- Emma M. Coppen
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Anne Hafkemeijer
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Methodology and Statistics, Institute of PsychologyLeiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Jurriaan J. H. Barkey Wolf
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Molecular EpidemiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Raymund A. C. Roos
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|