1
|
Munoz MJ, Arora R, Rivera YM, Drane QH, Pal GD, Verhagen Metman L, Sani SB, Rosenow JM, Goelz LC, Corcos DM, David FJ. Cognitive aspects of motor control deteriorate while off treatment following subthalamic nucleus deep brain stimulation surgery in Parkinson's disease. Front Neurol 2024; 15:1463970. [PMID: 39744112 PMCID: PMC11688652 DOI: 10.3389/fneur.2024.1463970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction The long-term effects of surgery for subthalamic nucleus deep brain stimulation (STN-DBS) on cognitive aspects of motor control for people with Parkinson's disease (PD) are largely unknown. We compared saccade latency and reach reaction time (RT) pre- and post-surgery while participants with PD were off-treatment. Methods In this preliminary study, we assessed people with PD approximately 1 month pre-surgery while OFF medication (OFF-MEDS) and about 8 months post-surgery while OFF medication and STN-DBS treatment (OFF-MEDS/OFF-DBS). We examined saccade latency and reach reaction time (RT) performance during a visually-guided reaching task requiring participants to look at and reach toward a visual target. Results We found that both saccade latency and reach RT significantly increased post-surgery compared to pre-surgery. In addition, there was no significant change in Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III score. Discussion We found detrimental post-surgical changes to saccade latency and reach RT. We discuss the potential contributions of long-term tissue changes and withdrawal from STN-DBS on this detrimental cognitive effect.
Collapse
Affiliation(s)
- Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Rishabh Arora
- USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yessenia M. Rivera
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Creighton University School of Medicine, Creighton University, Omaha, NE, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Leo Verhagen Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lisa C. Goelz
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Luo B, Zou Y, Yan J, Sun J, Wei X, Chang L, Lu Y, Zhao L, Dong W, Qiu C, Yan J, Zhang Y, Zhang W. Altered Cognitive Networks Connectivity in Parkinson's Disease During the Microlesion Period After Deep Brain Stimulation. CNS Neurosci Ther 2024; 30:e70184. [PMID: 39722165 DOI: 10.1111/cns.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS Cognitive functions are reduced in Parkinson's disease (PD) patients after deep brain stimulation (DBS) surgery. However, the underlying mechanisms remain unclear. The current study attempted to elucidate whether DBS alters the functional connectivity (FC) pattern of cognitive networks in PD patients. METHODS The study obtained fMRI and cognitive scale data from 37 PD patients before and after the DBS surgery. Seed-based FC analysis helped demonstrate the FC changes of the default mode network (DMN), executive control network (ECN), and dorsal attention network (DAN). RESULTS PD patients indicated significant network connectivity decline in DMN [such as in right precuneus, left angular gyrus, and left middle frontal gyrus (MFG)], ECN [such as in left inferior parietal gyrus, left MFG, and left supplementary motor area (SMA)], and DAN [such as in left inferior frontal gyrus and left MFG] post-DBS surgery. The phonemic fluency score was positively associated with the FC value of the right precuneus and left angular gyrus in DMN before DBS. CONCLUSION The general reduction in FC in the major cognitive networks after DBS surgery depicted the presence of the corresponding network reorganization. Further research can help explore the mechanism of impaired cognitive function post-DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanxiang Zou
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jiuqi Yan
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Sun
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wei
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Zhao
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Brumberg J, Blazhenets G, Bühler S, Fostitsch J, Rijntjes M, Ma Y, Eidelberg D, Weiller C, Jost WH, Frings L, Schröter N, Meyer PT. Cerebral Glucose Metabolism Is a Valuable Predictor of Survival in Patients with Lewy Body Diseases. Ann Neurol 2024; 96:539-550. [PMID: 38888141 DOI: 10.1002/ana.27005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Patients with Lewy body diseases have an increased risk of dementia, which is a significant predictor for survival. Posterior cortical hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (PET) precedes the development of dementia by years. We therefore examined the prognostic value of cerebral glucose metabolism for survival. METHODS We enrolled patients diagnosed with Parkinson's disease (PD), Parkinson's disease with dementia, or dementia with Lewy bodies who underwent [18F]fluorodeoxyglucose PET. Regional cerebral metabolism of each patient was analyzed by determining the expression of the PD-related cognitive pattern (Z-score) and by visual PET rating. We analyzed the predictive value of PET for overall survival using Cox regression analyses (age- and sex-corrected) and calculated prognostic indices for the best model. RESULTS Glucose metabolism was a significant predictor of survival in 259 included patients (n = 118 events; hazard ratio: 1.4 [1.2-1.6] per Z-score; hazard ratio: 1.8 [1.5-2.2] per visual PET rating score; both p < 0.0001). Risk stratification with visual PET rating scores yielded a median survival of 4.8, 6.8, and 12.9 years for patients with severe, moderate, and mild posterior cortical hypometabolism (median survival not reached for normal cortical metabolism). Stratification into 5 groups based on the prognostic index revealed 10-year survival rates of 94.1%, 78.3%, 34.7%, 0.0%, and 0.0%. INTERPRETATION Regional cerebral glucose metabolism is a significant predictor of survival in Lewy body diseases and may allow an earlier survival prediction than the clinical milestone "dementia." Thus, [18F]fluorodeoxyglucose PET may improve the basis for therapy decisions, especially for invasive therapeutic procedures like deep brain stimulation in Parkinson's disease. ANN NEUROL 2024;96:539-550.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Bühler
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Fostitsch
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - David Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Cornelius Weiller
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Lars Frings
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schröter
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Tröster AI. Developments in the prediction of cognitive changes following deep brain stimulation in persons with Parkinson's disease. Expert Rev Neurother 2024; 24:643-659. [PMID: 38814926 DOI: 10.1080/14737175.2024.2360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) motor symptoms that improves function and quality of life in appropriately selected patients. Because mild to moderate cognitive declines can follow DBS and impact quality of life in a minority of patients, an important consideration involves the cognitive deficit and its prediction. AREAS COVERED The author briefly summarizes cognitive outcomes from DBS and reviews in more detail the risks/predictors of post-DBS cognitive dysfunction by mainly focusing on work published between 2018 and 2024 and using comprehensive neuropsychological (NP) evaluations. Most publications concern bilateral subthalamic nucleus (STN) DBS. Comment is offered on challenges and potential avenues forward. EXPERT OPINION STN DBS is relatively safe cognitively but declines occur especially in verbal fluency and executive function/working memory. Numerous predictors and risk factors for cognitive outcomes have been identified (age and pre-operative neuropsychological status appear the most robust) but precise risk estimates cannot yet be confidently offered. Future studies should employ study center consortia, follow uniform reporting criteria (to be developed), capitalize on advances in stimulation, biomarkers, and artificial intelligence, and address DBS in diverse groups. Advances offer an avenue to investigate the amelioration of cognitive deficits in PD using neuromodulation.
Collapse
Affiliation(s)
- Alexander I Tröster
- Department of Clinical Neuropsychology and Center for Neuromodulation, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
5
|
Barker MS, Ceslis A, Argall R, McCombe P, Henderson RD, Robinson GA. Verbal and nonverbal fluency in amyotrophic lateral sclerosis. J Neuropsychol 2024; 18:265-285. [PMID: 37997256 DOI: 10.1111/jnp.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system disorder that commonly affects cognition and behaviour. Verbal fluency impairments are consistently reported in ALS patients, and we aimed to investigate whether this deficit extends beyond the verbal domain. We further aimed to determine whether deficits are underpinned by a primary intrinsic response generation impairment (i.e., a global reduction across tasks), potentially related to apathy, or an inability to maintain responding over time (i.e., a 'drop off' pattern). Twenty-two ALS patients and 21 demographically-matched controls completed verbal and nonverbal fluency tasks (phonemic/semantic word fluency, design fluency, gesture fluency and ideational fluency), requiring the generation of responses over a specified time period. Fluency performance was analysed in terms of the overall number of novel items produced, as well as the number of items produced in the first 'initiation' and the remaining 'maintenance' time periods. ALS patients' overall performance was not globally reduced across tasks. Patients were impaired only on meaningful gesture fluency, which requires the generation of gestures that communicate meaning (e.g., waving). On phonemic fluency, ALS patients showed a 'drop off' pattern of performance, where they had difficulty maintaining responding over time, but this pattern was not evident on the other fluency tasks. Apathy did not appear to be related to fluency performance. The selective meaningful gesture fluency deficit, in the context of preserved meaningless gesture fluency, highlights that the retrieval of action knowledge may be weakened in early ALS.
Collapse
Affiliation(s)
- Megan S Barker
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia Ceslis
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
- Neuropsychology and Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Rosemary Argall
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
- Neuropsychology and Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Pamela McCombe
- Neuropsychology and Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert D Henderson
- Neuropsychology and Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Wesley Medical Research, The Wesley Hospital, Brisbane, Queensland, Australia
| | - Gail A Robinson
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Neuropsychology and Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
6
|
Cai W, Young CB, Yuan R, Lee B, Ryman S, Kim J, Yang L, Levine TF, Henderson VW, Poston KL, Menon V. Subthalamic nucleus-language network connectivity predicts dopaminergic modulation of speech function in Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2316149121. [PMID: 38768342 PMCID: PMC11145286 DOI: 10.1073/pnas.2316149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Rui Yuan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Byeongwook Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Sephira Ryman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Jeehyun Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Laurice Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Taylor F Levine
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Victor W Henderson
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen L Poston
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
Tabari F, Berger JI, Flouty O, Copeland B, Greenlee JD, Johari K. Speech, voice, and language outcomes following deep brain stimulation: A systematic review. PLoS One 2024; 19:e0302739. [PMID: 38728329 PMCID: PMC11086900 DOI: 10.1371/journal.pone.0302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| | - Joel I. Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States of America
| | - Brian Copeland
- Department of Neurology, LSU Health Sciences Center, New Orleans, LA, United States of America
| | - Jeremy D. Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
- Iowa Neuroscience Institute, Iowa City, IA, United States of America
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
8
|
Chiang H, Mudar RA, Dugas CS, Motes MA, Kraut MA, Hart J. A modified neural circuit framework for semantic memory retrieval with implications for circuit modulation to treat verbal retrieval deficits. Brain Behav 2024; 14:e3490. [PMID: 38680077 PMCID: PMC11056716 DOI: 10.1002/brb3.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Word finding difficulty is a frequent complaint in older age and disease states, but treatment options are lacking for such verbal retrieval deficits. Better understanding of the neurophysiological and neuroanatomical basis of verbal retrieval function may inform effective interventions. In this article, we review the current evidence of a neural retrieval circuit central to verbal production, including words and semantic memory, that involves the pre-supplementary motor area (pre-SMA), striatum (particularly caudate nucleus), and thalamus. We aim to offer a modified neural circuit framework expanded upon a memory retrieval model proposed in 2013 by Hart et al., as evidence from electrophysiological, functional brain imaging, and noninvasive electrical brain stimulation studies have provided additional pieces of information that converge on a shared neural circuit for retrieval of memory and words. We propose that both the left inferior frontal gyrus and fronto-polar regions should be included in the expanded circuit. All these regions have their respective functional roles during verbal retrieval, such as selection and inhibition during search, initiation and termination of search, maintenance of co-activation across cortical regions, as well as final activation of the retrieved information. We will also highlight the structural connectivity from and to the pre-SMA (e.g., frontal aslant tract and fronto-striatal tract) that facilitates communication between the regions within this circuit. Finally, we will discuss how this circuit and its correlated activity may be affected by disease states and how this circuit may serve as a novel target engagement for neuromodulatory treatment of verbal retrieval deficits.
Collapse
Affiliation(s)
- Hsueh‐Sheng Chiang
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Raksha A. Mudar
- Department of Speech and Hearing ScienceUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Christine S. Dugas
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Motes
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Kraut
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | - John Hart
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
9
|
Costentin G, Derrey S, Maltête D. Directional deep brain stimulation is useful to correct the misplacement of intracerebral electrode after reimplantation. Rev Neurol (Paris) 2024; 180:463-465. [PMID: 37923700 DOI: 10.1016/j.neurol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/21/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Affiliation(s)
- G Costentin
- Department of Neurology, CHU Rouen, 76000 Rouen, France.
| | - S Derrey
- Department of Neurosurgery, CHU Rouen, 76000 Rouen, France
| | - D Maltête
- Department of Neurology, CHU Rouen, 76000 Rouen, France; INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
| |
Collapse
|
10
|
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP. Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun 2024; 6:fcae093. [PMID: 38707711 PMCID: PMC11069120 DOI: 10.1093/braincomms/fcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto M5G 1V7, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| | - Ana Carolina P Campos
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| |
Collapse
|
11
|
Melo-Thomas L, Schwarting RKW. Paradoxical kinesia may no longer be a paradox waiting for 100 years to be unraveled. Rev Neurosci 2023; 34:775-799. [PMID: 36933238 DOI: 10.1515/revneuro-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder mainly characterized by bradykinesia and akinesia. Interestingly, these motor disabilities can depend on the patient emotional state. Disabled PD patients remain able to produce normal motor responses in the context of urgent or externally driven situations or even when exposed to appetitive cues such as music. To describe this phenomenon Souques coined the term "paradoxical kinesia" a century ago. Since then, the mechanisms underlying paradoxical kinesia are still unknown due to a paucity of valid animal models that replicate this phenomenon. To overcome this limitation, we established two animal models of paradoxical kinesia. Using these models, we investigated the neural mechanisms of paradoxical kinesia, with the results pointing to the inferior colliculus (IC) as a key structure. Intracollicular electrical deep brain stimulation, glutamatergic and GABAergic mechanisms may be involved in the elaboration of paradoxical kinesia. Since paradoxical kinesia might work by activation of some alternative pathway bypassing basal ganglia, we suggest the IC as a candidate to be part of this pathway.
Collapse
Affiliation(s)
- Liana Melo-Thomas
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Rainer K W Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| |
Collapse
|
12
|
Zhou Y, Zhang J. Neuronal activity and remyelination: new insights into the molecular mechanisms and therapeutic advancements. Front Cell Dev Biol 2023; 11:1221890. [PMID: 37564376 PMCID: PMC10410458 DOI: 10.3389/fcell.2023.1221890] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
This article reviews the role of neuronal activity in myelin regeneration and the related neural signaling pathways. The article points out that neuronal activity can stimulate the formation and regeneration of myelin, significantly improve its conduction speed and neural signal processing ability, maintain axonal integrity, and support axonal nutrition. However, myelin damage is common in various clinical diseases such as multiple sclerosis, stroke, dementia, and schizophrenia. Although myelin regeneration exists in these diseases, it is often incomplete and cannot promote functional recovery. Therefore, seeking other ways to improve myelin regeneration in clinical trials in recent years is of great significance. Research has shown that controlling neuronal excitability may become a new intervention method for the clinical treatment of demyelinating diseases. The article discusses the latest research progress of neuronal activity on myelin regeneration, including direct or indirect stimulation methods, and the related neural signaling pathways, including glutamatergic, GABAergic, cholinergic, histaminergic, purinergic and voltage-gated ion channel signaling pathways, revealing that seeking treatment strategies to promote myelin regeneration through precise regulation of neuronal activity has broad prospects.
Collapse
Affiliation(s)
| | - Jing Zhang
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Luo B, Qiu C, Chang L, Lu Y, Dong W, Liu D, Xue C, Yan J, Zhang W. Altered brain network centrality in Parkinson's disease patients after deep brain stimulation: a functional MRI study using a voxel-wise degree centrality approach. J Neurosurg 2023; 138:1712-1719. [PMID: 36334296 DOI: 10.3171/2022.9.jns221640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE After deep brain stimulation (DBS), patients with Parkinson's disease (PD) show improved motor symptoms and decreased verbal fluency, an effect that occurs before the initiation of DBS in the subthalamic nucleus. However, the underlying mechanism remains unclear. This study aimed to evaluate the effects of DBS on whole-brain degree centrality (DC) and seed-based functional connectivity (FC) in PD patients. METHODS The authors obtained resting-state functional MRI data of 28 PD patients before and after DBS surgery. All patients underwent MRI scans in the off-stimulation state. The DC method was used to evaluate the effects of DBS on whole-brain FC at the voxel level. Seed-based FC analysis was used to examine network function changes after DBS. RESULTS After DBS surgery, PD patients showed significantly weaker DC values in the left middle temporal gyrus, left supramarginal gyrus, and left middle frontal gyrus, but significantly stronger DC values in the midbrain, left precuneus, and right precentral gyrus. FC analysis revealed decreased FC values within the default mode network (DMN). CONCLUSIONS This study demonstrated that the DC of DMN-related brain regions decreased in PD patients after DBS surgery, whereas the DC of the motor cortex increased. These findings provide new evidence for the neural effects of DBS on voxel-based whole-brain networks in PD patients.
Collapse
Affiliation(s)
- Bei Luo
- Departments of1Functional Neurosurgery
| | - Chang Qiu
- Departments of1Functional Neurosurgery
| | - Lei Chang
- Departments of1Functional Neurosurgery
| | - Yue Lu
- Departments of1Functional Neurosurgery
| | | | | | | | - Jun Yan
- 4Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
14
|
Xiong Y, Khlif MS, Egorova-Brumley N, Brodtmann A, Stark BC. Neural correlates of verbal fluency revealed by longitudinal T1, T2 and FLAIR imaging in stroke. Neuroimage Clin 2023; 38:103406. [PMID: 37104929 PMCID: PMC10165164 DOI: 10.1016/j.nicl.2023.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Diffusion-weighted imaging has been widely used in the research on post-stroke verbal fluency but acquiring diffusion data is not always clinically feasible. Achieving comparable reliability for detecting brain variables associated with verbal fluency impairments, based on more readily available anatomical, non-diffusion images (T1, T2 and FLAIR), enables clinical practitioners to have complementary neurophysiological information at hand to facilitate diagnosis and treatment of language impairment. Meanwhile, although the predominant focus in the stroke recovery literature has been on cortical contributions to verbal fluency, it remains unclear how subcortical regions and white matter disconnection are related to verbal fluency. Our study thus utilized anatomical scans of ischaemic stroke survivors (n = 121) to identify longitudinal relationships between subcortical volume, white matter tract disconnection, and verbal fluency performance at 3- and 12-months post-stroke. Subcortical grey matter volume was derived from FreeSurfer. We used an indirect probabilistic approach to quantify white matter disconnection in terms of disconnection severity, the proportion of lesioned voxel volume to the total volume of a tract, and disconnection probability, the probability of the overlap between the stroke lesion and a tract. These disconnection variables of each subject were identified based on the disconnectome map of the BCBToolkit. Using a linear mixed multiple regression method with 5-fold cross-validations, we correlated the semantic and phonemic fluency scores with longitudinal measurements of subcortical grey matter volume and 22 bilateral white matter tracts, while controlling for demographic variables (age, sex, handedness and education), total brain volume, lesion volume, and cortical thickness. The results showed that the right subcortical grey matter volume was positively correlated with phonemic fluency averaged over 3 months and 12 months. The finding generalized well on the test data. The disconnection probability of left superior longitudinal fasciculus II and left posterior arcuate fasciculus was negatively associated with semantic fluency only on the training data, but the result aligned with our previous study using diffusion scans in the same clinical population. In sum, our results presented evidence that routinely acquired anatomical scans can serve as a reliable source for deriving neural variables of post-stroke verbal fluency performance. The use of this method might provide an ecologically valid and more readily implementable analysis tool.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington IN 47408, USA.
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Natalia Egorova-Brumley
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Brielle C Stark
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington IN 47408, USA
| |
Collapse
|
15
|
Krishna V, Mindel J, Sammartino F, Block C, Dwivedi AK, Van Gompel JJ, Fountain N, Fisher R. A phase 1 open-label trial evaluating focused ultrasound unilateral anterior thalamotomy for focal onset epilepsy. Epilepsia 2023; 64:831-842. [PMID: 36745000 DOI: 10.1111/epi.17535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Focused ultrasound ablation (FUSA) is an emerging treatment for neurological and psychiatric diseases. We describe the initial experience from a pilot, open-label, single-center clinical trial of unilateral anterior nucleus of the thalamus (ANT) FUSA in patients with treatment-refractory epilepsy. METHODS Two adult subjects with treatment-refractory, focal onset epilepsy were recruited. The subjects received ANT FUSA using the Exablate Neuro (Insightec) system. We determined the safety and feasibility (primary outcomes), and changes in seizure frequency (secondary outcome) at 3, 6, and 12 months. Safety was assessed by the absence of side effects, that is, new onset neurological deficits or performance deterioration on neuropsychological testing. Feasibility was defined as the ability to create a lesion within the anterior nucleus. The monthly seizure frequency was compared between baseline and postthalamotomy. RESULTS The patients tolerated the procedure well, without neurological deficits or serious adverse events. One patient experienced a decline in verbal fluency, attention/working memory, and immediate verbal memory. Seizure frequency reduced significantly in both patients; one patient was seizure-free at 12 months, and in the second patient, the frequency reduced from 90-100 seizures per month to 3-6 seizures per month. SIGNIFICANCE This is the first known clinical trial to assess the safety, feasibility, and preliminary efficacy of ANT FUSA in adult patients with treatment-refractory focal onset epilepsy.
Collapse
Affiliation(s)
- Vibhor Krishna
- Department of Neurosurgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jesse Mindel
- Department of Neurology, Ohio State University, Columbus, Ohio, USA
| | - Francesco Sammartino
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, Ohio, USA
| | - Cady Block
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Alok Kumar Dwivedi
- Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Jamie J Van Gompel
- Department of Neurosurgery and Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan Fountain
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Robert Fisher
- Department of Neurology, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
17
|
Del Bene VA, Martin RC, Brinkerhoff SA, Olson JW, Nelson MJ, Marotta D, Gonzalez CL, Mills KA, Kamath V, Bentley JN, Guthrie BL, Knight RT, Walker HC. Differential cognitive effects of unilateral left and right subthalamic nucleus deep brain stimulation for Parkinson disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286478. [PMID: 36909562 PMCID: PMC10002774 DOI: 10.1101/2023.02.27.23286478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Objective To investigate hemispheric effects of directional versus ring subthalamic nucleus (STN) deep brain stimulation (DBS) surgery on cognitive function in patients with advanced Parkinson's disease (PD). Methods We examined 31 PD patients (Left STN n = 17; Right STN n = 14) who underwent unilateral subthalamic nucleus (STN) DBS as part of a NIH-sponsored randomized, cross-over, double-blind (ring vs directional) clinical trial. Outcome measures were tests of verbal fluency, auditory-verbal memory, and response inhibition. First, all participants were pooled together to study the effects of directional versus ring stimulation. Then, we stratified the groups by surgery hemisphere and studied the longitudinal changes in cognition post-unilateral STN DBS. Results Relative to pre-DBS cognitive baseline performances, there were no group changes in cognition following unilateral DBS for either directional or ring stimulation. However, assessment of unilateral DBS by hemisphere revealed a different pattern. The left STN DBS group had lower verbal fluency than the right STN group (t(20.66 = -2.50, p = 0.02). Over a period of eight months post-DBS, verbal fluency declined in the left STN DBS group (p = 0.013) and improved in the right STN DBS group over time (p < .001). Similarly, response inhibition improved following right STN DBS (p = 0.031). Immediate recall did not significantly differ over time, nor was it affected by implant hemisphere, but delayed recall equivalently declined over time for both left and right STN DBS groups (left STN DBS p = 0.001, right STN DBS differ from left STN DBS p = 0.794). Conclusions Directional and ring DBS did not differentially or adversely affect cognition over time. Regarding hemisphere effects, verbal fluency decline was observed in those who received left STN DBS, along with the left and right STN DBS declines in delayed memory. The left STN DBS verbal fluency decrement is consistent with prior bilateral DBS research, likely reflecting disruption of the basal-ganglia-thalamocortical network connecting STN and inferior frontal gyrus. Interestingly, we found an improvement in verbal fluency and response inhibition following right STN DBS. It is possible that unilateral STN DBS, particularly in the right hemisphere, may mitigate cognitive decline.
Collapse
Affiliation(s)
- Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Roy C. Martin
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sarah A. Brinkerhoff
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Joseph W. Olson
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Matthew J. Nelson
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Dario Marotta
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Christopher L. Gonzalez
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Kelly A. Mills
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Barton L. Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Robert T. Knight
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
18
|
Meng L, Wang H, Zou T, Wang X, Chen H, Xie F, Li R. Attenuated brain white matter functional network interactions in Parkinson's disease. Hum Brain Mapp 2022; 43:4567-4579. [PMID: 35674466 PMCID: PMC9491278 DOI: 10.1002/hbm.25973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by extensive structural abnormalities in cortical and subcortical brain areas. However, an association between changes in the functional networks in brain white matter (BWM) and Parkinson's symptoms remains unclear. With confirming evidence that resting-state functional magnetic resonance imaging (rs-fMRI) of BWM signals can effectively describe neuronal activity, this study investigated the interactions among BWM functional networks in PD relative to healthy controls (HC). Sixty-eight patients with PD and sixty-three HC underwent rs-fMRI. Twelve BWM functional networks were identified by K-means clustering algorithm, which were further classified as deep, middle, and superficial layers. Network-level interactions were examined via coefficient Granger causality analysis. Compared with the HC, the patients with PD displayed significantly weaker functional interaction strength within the BWM networks, particularly excitatory influences from the superficial to deep networks. The patients also showed significantly weaker inhibitory influences from the deep to superficial networks. Additionally, the sum of the absolutely positive/negative regression coefficients of the tri-layered networks in the patients was lower relative to HC (p < .05, corrected for false discovery rate). Moreover, we found the functional interactions involving the deep BWM networks negatively correlated with part III of the Unified Parkinson's Disease Rating Scales and Hamilton Depression Scales. Taken together, we demonstrated attenuated BWM interactions in PD and these abnormalities were associated with clinical motor and nonmotor symptoms. These findings may aid understanding of the neuropathology of PD and its progression throughout the nervous system from the perspective of BWM function.
Collapse
Affiliation(s)
- Li Meng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Fangfang Xie
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| |
Collapse
|
19
|
Askari A, Greif TR, Lam J, Maher AC, Persad CC, Patil PG. Decline of verbal fluency with lateral superior frontal gyrus penetration in subthalamic nucleus deep brain stimulation for Parkinson disease. J Neurosurg 2022; 137:729-734. [PMID: 35090137 DOI: 10.3171/2021.11.jns211528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Verbal fluency (VF) decline is a well-recognized adverse cognitive outcome following subthalamic nucleus deep brain stimulation (STN DBS) in patients with Parkinson disease (PD). The mechanisms underlying VF decline, whether from stimulation, lesioning, or both, remain unclear. This study aims to investigate the unique effects of DBS lead trajectory on VF beyond previously reported effects of active contact location. METHODS The study population included 56 patients with idiopathic PD who underwent bilateral STN DBS. Phonemic and semantic VF scores were compared pre- and postoperatively. Features of the electrode trajectory were measured on postoperative imaging, including distance from the falx cerebri, distance from the superior frontal sulcus, and caudate nucleus penetration. The authors used t-tests, Pearson's correlation, and multiple linear regression analyses to examine the relationship between VF change and demographic, disease, and electrode trajectory variables. RESULTS The laterality of entry within the left superior frontal gyrus (SFG) predicted greater phonemic VF decline (sr2 = 0.28, p < 0.001) after controlling for active contact location. VF change did not differ by the presence of caudate nucleus penetration in either hemisphere (p > 0.05). CONCLUSIONS Lateral penetration of the SFG in the left hemisphere is associated with worsening phonemic VF and has greater explanatory power than active contact location. This may be explained by lesioning of the lateral SFG-Broca area pathway, which is implicated in language function.
Collapse
Affiliation(s)
| | - Taylor R Greif
- 2Department of Psychiatry-Neuropsychology Section, University of Michigan, Ann Arbor, Michigan
| | | | - Amanda C Maher
- 2Department of Psychiatry-Neuropsychology Section, University of Michigan, Ann Arbor, Michigan
| | - Carol C Persad
- 2Department of Psychiatry-Neuropsychology Section, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
20
|
Optimized Deep Brain Stimulation Surgery to Avoid Vascular Damage: A Single-Center Retrospective Analysis of Path Planning for Various Deep Targets by MRI Image Fusion. Brain Sci 2022; 12:brainsci12080967. [PMID: 35892408 PMCID: PMC9332267 DOI: 10.3390/brainsci12080967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Co-registration of stereotactic and preoperative magnetic resonance imaging (MRI) images can serve as an alternative for trajectory planning. However, the role of this strategy has not yet been proven by any control studies, and the trajectories of commonly used targets have not been systematically studied. The purpose of this study was to analyze the trajectories for various targets, and to assess the role of trajectories realized on fused images in preventing intracranial hemorrhage (ICH). Data from 1019 patients who underwent electrode placement for deep brain stimulation were acquired. Electrode trajectories were not planned for 396 patients, whereas trajectories were planned for 623 patients. Preoperative various MRI sequences and frame-placed MRI images were fused for trajectory planning. The patients’ clinical characteristics, the stereotactic systems, intracranial hemorrhage cases, and trajectory angles were recorded and analyzed. No statistically significant differences in the proportions of male patients, patients receiving local anesthesia, and diseases or target distributions (p > 0.05) were found between the trajectory planning group and the non-trajectory planning group, but statistically significant differences were observed in the numbers of both patients and leads associated with symptomatic ICH (p < 0.05). Regarding the ring and arc angle values, statistically significant differences were found among various target groups (p < 0.05). The anatomic structures through which leads passed were found to be diverse. Trajectory planning based on MRI fusion is a safe technique for lead placement. The electrode for each given target has its own relatively constant trajectory.
Collapse
|
21
|
Zhang Y, Huan J, Gao D, Xu S, Han X, Song J, Wang L, Zhang H, Niu Q, Lu X. Blood pressure mediated the effects of cognitive function impairment related to aluminum exposure in Chinese aluminum smelting workers. Neurotoxicology 2022; 91:269-281. [PMID: 35654245 DOI: 10.1016/j.neuro.2022.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the effects that the Al on blood pressure and the effect of hypertension in aluminum-induced cognitive impairment in electrolytic aluminum worker. METHODS The study was conducted 392 male aluminum electrolytic workers in an aluminum plant of China. The concentration of alumina dust in the air of the electrolytic aluminum workshop is 1.07mg/m3-2.13mg/m3. According to the Permissible concentration-Time Weighted Average of alumina dust is 4mg/ m3, which does not exceed the standard. The blood pressure of the workers was measured. The plasma aluminum concentration of workers was determined by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Cognitive functions were measured using MMSE (Mini-Mental State Examination), VFT (Verbal Fluency Test), ATIME (Average Reaction Time), FOM (Fuld Object Memory Evaluation), DST (Digit Span Test), CDT (Clock Drawing Test) scales. Modified Poisson regression was used to analyze the risk of hypertension and cognitive impairment with different plasma aluminum concentrations. Generalized linear regression model was used to analyze the relationship between aluminum and cognitive function, blood pressure and cognitive function. Causal Mediation Analysis was used to analyze the mediation effect of blood press in aluminum-induced cognitive impairment. RESULTS Plasma aluminum appeared to be a risk factor for hypertension (PR (prevalence ratio) = 1.630, 95%-CI (confidence interval): 1.103 to 2.407), systolic blood pressure (PR = 1.578, 95%-CI: 1.038 to 2.399) and diastolic blood pressure (PR = 1.842, 95%-CI: 1.153 to 2.944). And plasma aluminum increased by e-fold, the scores of MMSE and VFT decreased by 0.630 and 2.231 units respectively and the time of ATIME increased by 0.029 units. In addition, generalized linear regression model showed that blood press was negatively correlated with the scores of MMSE and VFT. Finally, causal Mediation Analysis showed that hypertension was a part of the mediating factors of aluminum-induced decline in MMSE score, and the mediating effects was 16.300% (7.100%, 33.200%). In addition, hypertension was a part of the mediating factors of aluminum-induced decline in VFT score, and the mediating effects was 9.400% (2.600%, 29.000%) CONCLUSION: Occupational aluminum exposure increases the risk of hypertension and cognitive impairment. And hypertension may be a mediating factor of cognitive impairment caused by aluminum exposure.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; Center for Disease Control and Prevention, Linfen, Shanxi, China
| | - Jiaping Huan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Dan Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shimeng Xu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
22
|
Luo B, Dong W, Chang L, Qiu C, Lu Y, Liu D, Xue C, Zhang L, Liu W, Zhang W, Yan J. Altered Interhemispheric Functional Connectivity Associated With Early Verbal Fluency Decline After Deep Brain Stimulation in Parkinson’s Disease. Front Aging Neurosci 2022; 14:799545. [PMID: 35431904 PMCID: PMC9011328 DOI: 10.3389/fnagi.2022.799545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Patients with Parkinson’s disease (PD) experience a decline in verbal fluency (VF) immediately after undergoing deep brain stimulation (DBS) of the subthalamic nucleus (STN). This phenomenon is thought to be related to surgical microlesions. Purpose We investigated the alterations in interhemispheric functional connectivity after STN-DBS in PD patients. We also evaluated the correlation between these changes and decreased VF scores. Method Overall, 30 patients with PD were enrolled in the study. Resting-state functional magnetic resonance imaging scans were performed twice, once before and once after DBS, in PD patients. Voxel-mirrored homotopic connectivity (VMHC) was applied in order to evaluate the synchronicity of functional connectivity between the hemispheres. Result After undergoing STN-DBS, PD patients demonstrated reduced VMHC value in the posterior cerebellum lobe, angular gyrus, precuneus/posterior cingulate gyrus (PCC), supramarginal gyrus, superior frontal gyrus (SFG) (medial and dorsolateral) and middle frontal gyrus (MFG). In addition, we observed a significant positive correlation between the altered VMHC value in the SFG and MFG and the change of phonemic VF scores. Conclusion PD patients demonstrated an interhemispheric coordination disorder in the prefrontal cortex, cerebellum, supramarginal gyrus and DMN after undergoing STN-DBS. The positive correlation between reduced VMHC value in the SFG and MFG and the changes of VF scores provides a novel understanding with regard to the decline of VF after DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wenbin Zhang,
| | - Jun Yan
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Jun Yan,
| |
Collapse
|
23
|
Klostermann F, Ehlen F, Tiedt HO. Effects of thalamic and basal ganglia deep brain stimulation on language-related functions - Conceptual and clinical considerations. Eur J Paediatr Neurol 2022; 37:75-81. [PMID: 35149269 DOI: 10.1016/j.ejpn.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Deep Brain Stimulation (DBS) is a therapy for various neurological movement disorders. It acts predominantly on motor symptoms, but may unfold a number of mostly subtle cognitive effects. In this regard, reports on particular language-related DBS sequels are comparably frequent, but difficult to overlook, given the heterogeneity of targeted structures in the brain, treated diseases, assessment methods and results reported. Accordingly, available knowledge was organized with respect to important aspects, such as the main DBS loci and surgical versus neuromodulatory therapy actions. Current views of biolinguistic underpinnings of the reviewed data, their clinical relevance and potential implications are discussed.
Collapse
Affiliation(s)
- Fabian Klostermann
- Charité - University Medicine Berlin, Clinic for Neurology, Campus Benjamin Franklin, Germany; Berlin School of Mind and Brain, Germany.
| | - Felicitas Ehlen
- Jewish Hospital Berlin, Clinic for Psychiatry and Psychotherapy, Germany
| | - Hannes Ole Tiedt
- Charité - University Medicine Berlin, Clinic for Neurology, Campus Benjamin Franklin, Germany
| |
Collapse
|
24
|
Jahanshahi M, Leimbach F, Rawji V. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson's Disease and Identification of Relevant Factors. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2191-2209. [PMID: 36155529 DOI: 10.3233/jpd-223446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) successfully controls the motor symptoms of Parkinson's disease (PD) but has associated cognitive side-effects. OBJECTIVE Establish the short- and long-term cognitive effects of STN-DBS in PD. METHODS Both the short-term and long-term effects of STN-DBS on cognition were examined through evaluation of the controlled studies that compared patients with STN-DBS to unoperated PD patients, thus controlling for illness progression. We also reviewed the literature to identify the factors that influence cognitive outcome of STN-DBS in PD. RESULTS The meta-analysis of the short-term cognitive effects of STN-DBS revealed moderate effect sizes for semantic and phonemic verbal fluency and small effect sizes for psychomotor speed and language, indicating greater decline in the STN-DBS operated than the unoperated patients in these cognitive domains. The longer-term STN-DBS results from controlled studies indicated rates of cognitive decline/dementia up to 32%; which are no different from the rates from the natural progression of PD. Greater executive dysfunction and poorer memory pre-operatively, older age, higher pre-operative doses of levodopa, and greater axial involvement are some of the factors associated with worse cognition after STN-DBS in PD. CONCLUSION This evidence can be used to inform patients and their families about the short-term and long-term risks of cognitive decline following STN-DBS surgery and aid the team in selection of suitable candidates for surgery.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Friederike Leimbach
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Vishal Rawji
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| |
Collapse
|
25
|
Altered Regional Homogeneity and Functional Connectivity during Microlesion Period after Deep Brain Stimulation in Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:2711365. [PMID: 34512944 PMCID: PMC8429001 DOI: 10.1155/2021/2711365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Background Patients with Parkinson's disease (PD) undergoing deep brain electrode implantation experience a temporary improvement in motor symptoms before the electrical stimulation begins. We usually call this the microlesion effect (MLE), but the mechanism behind it is not clear. Purpose This study aimed to assess the alterations in brain functions at the regional and whole-brain levels, using regional homogeneity (ReHo) and functional connectivity (FC), during the postoperative microlesion period after deep brain stimulation (DBS) in PD patients. Method Resting-state functional MRI data were collected from 27 PD patients before and after the first day of DBS and 12 healthy controls (HCs) in this study. The ReHo in combination with FC analysis was used to investigate the alterations of regional brain activity in all the subjects. Results There were increased ReHo in the basal ganglia-thalamocortical circuit (left supplementary motor area and bilateral paracentral lobule), whereas decreased ReHo in the default mode network (DMN) (left angular gyrus, bilateral precuneus), prefrontal cortex (bilateral middle frontal gyrus), and the cerebello-thalamocortical (CTC) circuit (Cerebellum_crus2/1_L) after DBS. In addition, we also found abnormal FC in the lingual gyrus, cerebellum, and DMN. Conclusion Microlesion of the thalamus caused by electrode implantation can alter the activity of the basal ganglia-thalamocortical circuit, prefrontal cortex, DMN, and CTC circuit and induce abnormal FC in the lingual gyrus, cerebellum, prefrontal cortex, and DMN among PD patients. The findings of this study contribute to the understanding of the mechanism of MLE.
Collapse
|
26
|
Luo B, Lu Y, Qiu C, Dong W, Xue C, Zhang L, Liu W, Zhang W. Altered Spontaneous Neural Activity and Functional Connectivity in Parkinson's Disease With Subthalamic Microlesion. Front Neurosci 2021; 15:699010. [PMID: 34354566 PMCID: PMC8329380 DOI: 10.3389/fnins.2021.699010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transient improvement in motor symptoms are immediately observed in patients with Parkinson's disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood. Purpose We utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS. Method Overall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients. Result Relative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN). Conclusion The subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Liu W, Yamamoto T, Yamanaka Y, Asahina M, Uchiyama T, Hirano S, Shimizu K, Higuchi Y, Kuwabara S. Neuropsychiatric Symptoms in Parkinson's Disease After Subthalamic Nucleus Deep Brain Stimulation. Front Neurol 2021; 12:656041. [PMID: 34017303 PMCID: PMC8129644 DOI: 10.3389/fneur.2021.656041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Indications for subthalamic nucleus deep brain stimulation (STN-DBS) surgery are determined basically by preoperative motor function; however, postoperative quality of life (QOL) is not necessarily associated with improvements in motor symptoms, suggesting that neuropsychiatric symptoms might be related to QOL after surgery in patients with Parkinson's disease. Objectives: We aimed to examine temporal changes in neuropsychiatric symptoms and their associations with QOL after STN-DBS. Materials and Methods: We prospectively enrolled a total of 61 patients with Parkinson's disease (mean age = 65.3 ± 0.9 years, mean disease duration = 11.9 ± 0.4 years). Motor function, cognitive function, and neuropsychiatric symptoms were evaluated before and after DBS surgery. Postoperative evaluation was performed at 3 months, 1 year, and 3 years after surgery. Results: Of the 61 participants, 54 completed postoperative clinical evaluation after 3 months, 47 after 1 year, and 23 after 3 years. Frontal lobe functions, depression, and verbal fluency significantly worsened 3 years after STN-DBS. Non-motor symptoms such as impulsivity and the Unified PD Rating Scale (UPDRS) part I score were associated with QOL after STN-DBS. Conclusions: Frontal lobe functions, depression, and verbal fluency significantly worsened 3 years after STN-DBS. The UPDRS part I score and higher impulsivity might be associated with QOL after STN-DBS.
Collapse
Affiliation(s)
- Weibing Liu
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Yamamoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Occupational Therapy, Department of Rehabilitation, Chiba Prefectural University of Health Sciences, Chiba, Japan
| | - Yoshitaka Yamanaka
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Tomoyuki Uchiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, International University of Health and Welfare, Ichikawa, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Shimizu
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshinori Higuchi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
Burkhardt E, Kinoshita M, Herbet G. Functional anatomy of the frontal aslant tract and surgical perspectives. J Neurosurg Sci 2021; 65:566-580. [PMID: 33870673 DOI: 10.23736/s0390-5616.21.05344-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The frontal aslant tract (FAT) is an intralobar white matter fasciculus providing dense connections between the medial part of the superior frontal gyrus, in particular the pre-supplementary motor area (SMA) and the SMA proper, and the lateral part of the frontal lobe, especially the inferior frontal gyrus. Although this tract has been characterized belatedly, it has received important attention in recent years due notably to its increasingly evidenced role in the speech and language networks. As cerebral tumors frequently affect the frontal lobe, an improved knowledge of the functional anatomy of the FAT is mandatory to refine the way neurosurgeries are performed and to give the patients the best opportunities to recover after surgery. In this work, we first describe the spatial arrangement of the FAT and detail its cortical projections. We then provide a comprehensive review of the functions supposedly mediated by this transverse frontal connectivity. It is structured following a tripartite organization where the linguistic (i.e. speech and language), supralinguistic (i.e. functions that interact with speech and language: executive functions, working memory, and social communication) and extralinguistic implications (i.e. functions outside the linguistic domain: visuospatial processing, praxis and motor skills) are successively addressed. We lastly discussed this knowledge in the context of wide-awake neurosurgeries for brain tumors. We emphasize the need to evaluate thoroughly the functions conveyed by FAT by means of longitudinally-designed studies to first estimate its plasticity potential and then to determine which tasks should be selected to avoid lasting impairments due to its disconnective breakdown.
Collapse
Affiliation(s)
- Eléonor Burkhardt
- Praxiling, CNRS UMR 5267, Paul Valéry Montpellier 3 University, Montpellier, France
| | - Masashi Kinoshita
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Guillaume Herbet
- University of Montpellier, CNRS UMR5203, INSERM U1191, Institute of Functional Genomics, Montpellier, France - .,Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
29
|
Wang J, Pan R, Cui Y, Wang Z, Li Q. Effects of Deep Brain Stimulation in the Subthalamic Nucleus on Neurocognitive Function in Patients With Parkinson's Disease Compared With Medical Therapy: A Meta-Analysis. Front Neurol 2021; 12:610840. [PMID: 33737902 PMCID: PMC7960912 DOI: 10.3389/fneur.2021.610840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background: DBS has been shown to significantly affect motor symptoms in Parkinson's disease (PD). However, some studies have suggested that it may have adverse effects on patients' neurocognitive function. To clarify this operation's effect on neurocognitive function, we collected studies containing neurocognitive function evaluation for qualitative and quantitative analysis. Methods: We searched relevant clinical studies through Pubmed and Embase databases and extracted and sorted out information such as sample size, post-operative scores, pre-operative and post-operative evaluation interval, PD course, and exclusion criteria, from articles meeting the standards. The magnitude and variance of the DBS group's combined effects and the drug therapy group in each neurocognitive domain were calculated and analyzed by the random-effects model. Results: Compared with the drug treatment group, the verbal fluency of patients in the experimental group was significantly decreased at least moderately (ES = −0.553), in which the phonemic fluency declines greatly (ES = −0.842), learning and memory ability was slightly decreased (ES = −0.305), and other neurocognitive functions were not significantly decreased. Conclusion: STN-DBS can affect verbal fluency and damage learning and memory. There was no significant correlation between the above effects and disease progression itself, and it was more likely to be associated with STN-DBS. It is suggested that post-operative patients should be trained and evaluated regularly for their verbal fluency and learning and memory ability. The safety of STN-DBS is acceptable for the majority of patients with motor symptoms.
Collapse
Affiliation(s)
- Jiazhen Wang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Ru Pan
- Pathology Department of Huzhou Central Hospital, Huzhou, China
| | - Ying Cui
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China.,Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhigang Wang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Qinghua Li
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| |
Collapse
|
30
|
John KD, Wylie SA, Dawant BM, Rodriguez WJ, Phibbs FT, Bradley EB, Neimat JS, van Wouwe NC. Deep brain stimulation effects on verbal fluency dissociated by target and active contact location. Ann Clin Transl Neurol 2021; 8:613-622. [PMID: 33596331 PMCID: PMC7951101 DOI: 10.1002/acn3.51304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) improves motor symptoms in Parkinson's disease (PD), but it can also disrupt verbal fluency with significant costs to quality of life. The current study investigated how variability of bilateral active electrode coordinates along the superior/inferior, anterior/posterior, and lateral/medial axes in the subthalamic nucleus (STN) or the globus pallidus interna (GPi) contribute to changes in verbal fluency. We predicted that electrode location in the left hemisphere would be linked to changes in fluency, especially in the STN. METHODS Forty PD participants treated with bilateral DBS targeting STN (n = 23) or GPi (n = 17) completed verbal fluency testing in their optimally treated state before and after DBS therapy. Normalized atlas coordinates from left and right active electrode positions along superior/inferior, anterior/posterior, and lateral/medial axes were used to predict changes in fluency postoperatively, separately for patients with STN and GPi targets. RESULTS Consistent with prior studies, fluency significantly declined pre- to postsurgery (in both DBS targets). In STN-DBS patients, electrode position along the inferior to superior axis in the left STN was a significant predictor of fluency changes; relatively more superior left active electrode was associated with the largest fluency declines in STN. Electrode coordinates in right STN or GPi (left or right) did not predict fluency changes. INTERPRETATION We discuss these findings in light of putative mechanisms and potential clinical impact.
Collapse
Affiliation(s)
- Kevin D. John
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| | - Scott A. Wylie
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| | - Benoit M. Dawant
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTNUSA
| | - William J. Rodriguez
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTNUSA
| | - Fenna T. Phibbs
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Elise B. Bradley
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Joseph S. Neimat
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| | - Nelleke C. van Wouwe
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
31
|
La Corte E, Eldahaby D, Greco E, Aquino D, Bertolini G, Levi V, Ottenhausen M, Demichelis G, Romito LM, Acerbi F, Broggi M, Schiariti MP, Ferroli P, Bruzzone MG, Serrao G. The Frontal Aslant Tract: A Systematic Review for Neurosurgical Applications. Front Neurol 2021; 12:641586. [PMID: 33732210 PMCID: PMC7959833 DOI: 10.3389/fneur.2021.641586] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
The frontal aslant tract (FAT) is a recently identified white matter tract connecting the supplementary motor complex and lateral superior frontal gyrus to the inferior frontal gyrus. Advancements in neuroimaging and refinements to anatomical dissection techniques of the human brain white matter contributed to the recent description of the FAT anatomical and functional connectivity and its role in the pathogenesis of several neurological, psychiatric, and neurosurgical disorders. Through the application of diffusion tractography and intraoperative electrical brain stimulation, the FAT was shown to have a role in speech and language functions (verbal fluency, initiation and inhibition of speech, sentence production, and lexical decision), working memory, visual–motor activities, orofacial movements, social community tasks, attention, and music processing. Microstructural alterations of the FAT have also been associated with neurological disorders, such as primary progressive aphasia, post-stroke aphasia, stuttering, Foix–Chavany–Marie syndrome, social communication deficit in autism spectrum disorders, and attention–deficit hyperactivity disorder. We provide a systematic review of the current literature about the FAT anatomical connectivity and functional roles. Specifically, the aim of the present study relies on providing an overview for practical neurosurgical applications for the pre-operative, intra-operative, and post-operative assessment of patients with brain tumors located around and within the FAT. Moreover, some useful tests are suggested for the neurosurgical evaluation of FAT integrity to plan a safer surgery and to reduce post-operative deficits.
Collapse
Affiliation(s)
- Emanuele La Corte
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Eldahaby
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Greco
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomo Bertolini
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vincenzo Levi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Malte Ottenhausen
- Department of Neurological Surgery, University Medical Center Mainz, Mainz, Germany
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Michele Romito
- Parkinson's Disease and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Paolo Schiariti
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Graziano Serrao
- San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
White matter pathways underlying Chinese semantic and phonological fluency in mild cognitive impairment. Neuropsychologia 2020; 149:107671. [PMID: 33189733 DOI: 10.1016/j.neuropsychologia.2020.107671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Neuroimaging evidence has suggested that Chinese-language processing differs from that of its alphabetic-language counterparts. However, the underlying white matter pathway correlations between semantic and phonological fluency in Chinese-language processing remain unknown. Thus, we investigated the differences between two verbal fluency tests on 50 participants with amnestic mild cognitive impairment (aMCI) and 36 healthy controls (HC) with respect to five groups (ventral and dorsal stream fibers, frontal-striatal fibers, hippocampal-related fibers, and the corpus callosum) of white matter microstructural integrity. Diffusion spectrum imaging was used. The results revealed a progressive reduction in advantage in semantic fluency relative to phonological fluency from HC to single-domain aMCI to multidomain aMCI. Common and dissociative white matter correlations between tests of the two types of fluency were identified. Both types of fluency relied on the corpus callosum and ventral stream fibers, semantic fluency relied on the hippocampal-related fibers, and phonological fluency relied on the dorsal stream and frontal-striatal fibers. The involvement of bilateral tracts of interest as well as the association with the corpus callosum indicate the uniqueness of Chinese-language fluency processing. Dynamic associations were noted between white matter tract involvement and performance on the two fluency tests in four time blocks. Overall, our findings suggest the clinical utility of verbal fluency tests in geriatric populations, and they elucidate both task-specific and language-specific brain-behavior associations.
Collapse
|
33
|
Mulders AEP, Temel Y, Tonge M, Schaper FLWVJ, van Kranen-Mastenbroek V, Ackermans L, Kubben P, Janssen MLF, Duits A. The association between surgical characteristics and cognitive decline following deep brain stimulation of the subthalamic nucleus in Parkinson's disease. Clin Neurol Neurosurg 2020; 200:106341. [PMID: 33160716 DOI: 10.1016/j.clineuro.2020.106341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Despite optimal improvement in motor functioning, both short- and long-term studies have reported small but consistent changes in cognitive functioning following STN-DBS in Parkinson's disease (PD). The aim of the present study was to explore whether surgical characteristics were associated with cognitive decline one year following STN-DBS. METHODS We retrospectively analyzed 49 PD patients who underwent bilateral STN-DBS. Cognitive change scores were related to the number of microelectrode recording (MER) trajectories, the STN length as measured by MER, and cortical entry points. Regression analyses were corrected for age at surgery, disease duration, education and preoperative levodopa responsiveness. Patients were then divided into a cognitive and non-cognitive decline group for each neuropsychological test and compared regarding demographic and surgical characteristics. RESULTS One year postoperatively, significant declines were found in verbal fluency, Stroop Color-Word test and Trail Making Test B (TMT-B). Only changes in TMT-B were associated with the coronal entry point in the right hemisphere. The number of MER trajectories and STN length were not associated with cognitive change scores. When comparing the cognitive decline and non-cognitive decline groups, no significant differences were found in surgical characteristics. CONCLUSIONS The electrode passage through the right prefrontal lobe may contribute to subtle changes in executive function. However, only few patients showed clinically relevant cognitive decline. The use of multiple MER trajectories and a longer STN length were not associated with cognitive decline one year following surgery. From a cognitive point of view, DBS may be considered a relatively safe procedure.
Collapse
Affiliation(s)
- Anne E P Mulders
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mehmet Tonge
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Istanbul Medipol Universit, Istanbul, Turkey
| | - Frédéric L W V J Schaper
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Vivianne van Kranen-Mastenbroek
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Pieter Kubben
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Annelien Duits
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
34
|
Leimbach F, Atkinson-Clement C, Wilkinson L, Cheung C, Jahanshahi M. Dissociable effects of subthalamic nucleus deep brain stimulation surgery and acute stimulation on verbal fluency in Parkinson's disease. Behav Brain Res 2020; 388:112621. [PMID: 32353395 DOI: 10.1016/j.bbr.2020.112621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
OBJECT Verbal fluency (VF) is the cognitive test which shows the most consistent and persistent post-operative decline after subthalamic deep brain stimulation (STN-DBS) in Parkinson's disease (PD). However, the reasons are not completely understood, and the debate has focused on two hypotheses: a surgical effect or an acute STN-DBS effect. METHODS We recruited 3 PD samples: (1) a group assessed before and after STN-DBS surgery (2) a group assessed On vs. Off STN-DBS and (3) an unoperated PD control group. All groups performed letter, category and switching category VF tasks. The total number of correct words generated were noted and measures of clustering and switching were also obtained. RESULTS We found a significant effect of STN-DBS surgery on all VF tasks which was associated with a post-operative decline in the total number of words generated, and a reduction of phonemic switching during the letter and category VF tasks, and a reduction of semantic clustering for category VF. By contrast to the effects of surgery, acute On vs. Off stimulation did not influence the number of words generated on any of the VF tasks. Acute stimulation only produced two effects on the category VF task: increased semantic cluster size and decreased number of semantic switches when STN-DBS was switched On. CONCLUSIONS This study differentiates between the effects of STN-DBS surgery and acute stimulation on VF performance. Our findings indicate that the STN-DBS effect on VF are a surgical and not an acute STN stimulation effect.
Collapse
Affiliation(s)
- Friederike Leimbach
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Cyril Atkinson-Clement
- Brain and Spine Institute (ICM), Movement Investigation and Therapeutics Team, Paris, France
| | - Leonora Wilkinson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom; Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-1430, United States
| | - Catherine Cheung
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, and the National Hospital for Neurology & Neurosurgery, London, United Kingdom; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
35
|
Costentin G, Derrey S, Gérardin E, Cruypeninck Y, Pressat-Laffouilhere T, Anouar Y, Wallon D, Le Goff F, Welter ML, Maltête D. White matter tracts lesions and decline of verbal fluency after deep brain stimulation in Parkinson's disease. Hum Brain Mapp 2019; 40:2561-2570. [PMID: 30779251 DOI: 10.1002/hbm.24544] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Decline of verbal fluency (VF) performance is one of the most systematically reported neuropsychological adverse effects after subthalamic nucleus deep brain stimulation (STN-DBS). It has been suggested that this worsening of VF may be related to a microlesion due to the electrode trajectories. We describe the disruption of surrounding white matter tracts following electrode implantation in Parkinson's disease (PD) patients with STN-DBS and assess whether damage of fiber pathways is associated with VF impairment after surgery. We retrospectively analyzed 48 PD patients undergoing bilateral STN DBS. The lesion mask along the electrode trajectory transformed into the MNI 152 coordinate system, was compared with white matter tract atlas in Tractotron software, which provides a probability and proportion of fibers disconnection. Combining tract- and atlas-based analysis reveals that the trajectory of the electrodes intersected successively with the frontal aslant tract, anterior segment of arcuate tract, the long segment of arcuate tract, the inferior longitudinal fasciculus, the superior longitudinal fasciculus, the anterior thalamic radiation, and the fronto striatal tract. We found no association between the proportion fiber disconnection and the severity of VF impairment 6 months after surgery. Our findings demonstrated that microstructural injury associated with electrode trajectories involved white matter bundles implicated in VF networks.
Collapse
Affiliation(s)
- Guillaume Costentin
- Department of Neurology, Rouen University Hospital and University of Rouen, Rouen, France
| | - Stéphane Derrey
- Department of Neurosurgery, Rouen University Hospital and University of Rouen, Rouen, France
| | - Emmanuel Gérardin
- Department of Radiology, Rouen University Hospital and University of Rouen, Rouen, France
| | - Yohann Cruypeninck
- Department of Radiology, Rouen University Hospital and University of Rouen, Rouen, France
| | | | - Youssef Anouar
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
| | - David Wallon
- Department of Neurology, Rouen University Hospital and University of Rouen, Rouen, France
| | - Floriane Le Goff
- Department of Neurology, Rouen University Hospital and University of Rouen, Rouen, France
| | - Marie-Laure Welter
- Department of Neurophysiology, Rouen University Hospital and University of Rouen, Rouen, France
| | - David Maltête
- Department of Neurology, Rouen University Hospital and University of Rouen, Rouen, France.,INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
| |
Collapse
|