1
|
Li Y, Xu H, Chen B, Ding Y, Zhu Y, Wang Y, Chen X, Su H. Local connections enhancement as a neuroprotective strategy against depression recurrence: Insights from structural brain network analysis. J Psychiatr Res 2025; 185:74-83. [PMID: 40163972 DOI: 10.1016/j.jpsychires.2025.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Depression recurrence significantly impacts patients' well-being and presents a major clinical challenge. Identifying the risk of recurrence during remission could enable early intervention and prevent disease progression. METHODS This study included 115 patients in remission from their first depressive episode and 47 healthy controls (HCs). Participants underwent diffusion tensor imaging (DTI), neuropsychological assessments, and follow-up evaluations every three months over a two-year period. Structural brain networks were constructed using deterministic fiber tracking and graph theory analysis. RESULTS Non-recurrence patients exhibited significantly higher baseline local connections compared to the recurrence group (t = 8.148; P < 0.001), which emerged as a robust negative predictor of recurrence (AUC = 0.853 [95 % CI: 0.774-0.912]; OR = 0.594 [95 % CI: 0.489-0.722]; P < 0.001). Rich-club connections were inversely correlated with depression severity (r = -0.510; P < 0.001) and duration (r = -0.221; P = 0.018). Additionally, increases in local connections during remission correlated positively with subsequent rich-club connections (r = 0.540; P < 0.05). CONCLUSION Elevated local connections during remission after the first depressive episode significantly reduce the risk of recurrence. This suggests a compensatory neuroprotective mechanism, where enhanced local connections stabilize rich-club connections, thereby maintaining the integrity of the whole-brain network. These findings highlight local connections as a critical factor in preventing depression recurrence and as a potential target for early clinical intervention.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hu Xu
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Chen
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Ding
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Zhu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Wang
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China
| | - Xingbing Chen
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China.
| | - Hui Su
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
2
|
Conway Kleven BD, Chien LC, Labus B, Cross CL, Ritter A, Randall R, Montes A, Bernick C. Longitudinal Changes in Regional Brain Volumes and Cognition of Professional Fighters With Traumatic Encephalopathy Syndrome. Neurology 2023; 101:e1118-e1126. [PMID: 37380429 PMCID: PMC10513890 DOI: 10.1212/wnl.0000000000207594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Due to current limitations in diagnosing chronic traumatic encephalopathy (CTE) clinically, traumatic encephalopathy syndrome (TES) has been proposed as the clinical presentation of suspected CTE. This study aimed to determine whether there was an association between a clinical diagnosis of TES and subsequent temporal decline in cognitive or MRI volumetric measures. METHODS This was a secondary analysis of the Professional Athletes Brain Health Study (PABHS), inclusive of active and retired professional fighters older than 34 years. All athletes were adjudicated as TES positive (TES+) or TES negative (TES-) based on the 2021 clinical criteria. General linear mixed models were used to compare MRI regional brain volumes and cognitive performance between groups. RESULTS A total of 130 fighters met inclusion criteria for consensus conference. Of them, 52 fighters (40%) were adjudicated as TES+. Athletes with a TES+ diagnosis were older and had significantly lower education. Statistically significant interactions and between-group total mean differences were found in all MRI volumetric measurements among the TES+ group compared with those among the TES- group. The rate of volumetric change indicated a significantly greater increase for lateral (estimate = 5,196.65; 95% CI = 2642.65, 7750.66) and inferior lateral ventricles (estimate = 354.28; 95% CI = 159.90, 548.66) and a decrease for the hippocampus (estimate = -385.04, 95% CI = -580.47, -189.62), subcortical gray matter (estimate = -4,641.08; 95% CI = -6783.98, -2498.18), total gray matter (estimate = -26492.00; 95% CI = -50402.00, -2582.32), and posterior corpus callosum (estimate = -147.98; 95% CI = -222.33, -73.62). Likewise, the rate of cognitive decline was significantly greater for reaction time (estimate = 56.31; 95% CI = 26.17, 86.45) and other standardized cognitive scores in the TES+ group. DISCUSSION The 2021 TES criteria clearly distinguishes group differences in the longitudinal presentation of volumetric loss in select brain regions and cognitive decline among professional fighters 35 years and older. This study suggests that a TES diagnosis may be useful in professional sports beyond football, such as boxing and mixed martial arts. These findings further suggest that the application of TES criteria may be valuable clinically in predicting cognitive decline.
Collapse
Affiliation(s)
- Brooke D Conway Kleven
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV.
| | - Lung-Chang Chien
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV
| | - Brian Labus
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV
| | - Chad L Cross
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV
| | - Aaron Ritter
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV
| | - Rebekah Randall
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV
| | - Arturo Montes
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV
| | - Charles Bernick
- From the School of Public Health (B.D.C.K., L.-C.C., B.L., C.L.C., A.M.), University of Nevada, Las Vegas; and Cleveland Clinic Lou Ruvo Center for Brain Health (A.R., R.R., A.M., C.B.), Las Vegas, NV
| |
Collapse
|
3
|
Kirk C, Childs C. Combat Sports as a Model for Measuring the Effects of Repeated Head Impacts on Autonomic Brain Function: A Brief Report of Pilot Data. Vision (Basel) 2023; 7:vision7020039. [PMID: 37218957 DOI: 10.3390/vision7020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Automated pupil light reflex (PLR) is a valid indicator of dysfunctional autonomic brain function following traumatic brain injury. PLR's use in identifying disturbed autonomic brain function following repeated head impacts without outwardly visible symptoms has not yet been examined. As a combat sport featuring repeated 'sub-concussive' head impacts, mixed martial arts (MMA) sparring may provide a model to understand such changes. The aim of this pilot study was to explore which, if any, PLR variables are affected by MMA sparring. A cohort of n = 7 MMA athletes (age = 24 ± 3 years; mass = 76.5 ± 9 kg; stature = 176.4 ± 8.5 cm) took part in their regular sparring sessions (eight rounds × 3 min: 1 min recovery). PLR of both eyes was measured immediately pre- and post-sparring using a Neuroptic NPi-200. Bayesian paired samples t-tests (BF10 ≥ 3) revealed decreased maximum pupil size (BF10 = 3), decreased minimum pupil size (BF10 = 4) and reduced PLR latency (BF10 = 3) post-sparring. Anisocoria was present prior to sparring and increased post-sparring, with both eyes having different minimum and maximum pupil sizes (BF10 = 3-4) and constriction velocities post-sparring (BF10 = 3). These pilot data suggest repeated head impacts may cause disturbances to autonomic brain function in the absence of outwardly visible symptoms. These results provide direction for cohort-controlled studies to formally investigate the potential changes observed.
Collapse
Affiliation(s)
- Christopher Kirk
- Health Research Institute, Sheffield Hallam University, Sheffield S10 2NA, UK
| | - Charmaine Childs
- Health Research Institute, Sheffield Hallam University, Sheffield S10 2NA, UK
| |
Collapse
|
4
|
Zhuang X, Bennett L, Nandy R, Cordes D, Bernick C, Ritter A. Longitudinal Changes in Cognitive Functioning and Brain Structure in Professional Boxers and Mixed Martial Artists After They Stop Fighting. Neurology 2022; 99:e2275-e2284. [PMID: 36104283 PMCID: PMC9694836 DOI: 10.1212/wnl.0000000000201158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study compares longitudinal changes in cognitive functioning and brain structures in male fighters who transitioned to an inactive fighting status without any further exposure to repetitive head impacts (RHIs) and fighters remaining active with continual exposure to RHIs. METHODS Participants were recruited from the Professional Fighters Brain Health Study. At time point (TP)1, all fighters were active, with continual exposure to RHIs. At TP2, fighters were considered "transitioned" if they had no sanctioned professional fights and had not been sparring for the past 2 years. Fighters were considered "active" if they continued to train and compete. All fighters underwent cognitive testing and 3T MRI at both TPs. A subset of our fighters (50%) underwent blood sampling for the characterization of neurofilament light (NfL) levels at both TPs. Linear mixed-effect models were applied to investigate the potentially different longitudinal trajectories (interaction effect between group and time) of cognitive function measures, NfL levels, and regional thickness measures (derived from structural MRI) between transitioned and active fighters. RESULTS Forty-five male transitioned fighters (aged 31.69 ± 6.27 years [TP1]; 22 boxers, 22 mixed martial artists, and 1 martial artist) and 45 demographically matched male active fighters (aged 30.24 ± 5.44 years [TP1]; 17 boxers, 27 mixed martial artists, and 1 martial artist) were included in the analyses. Significantly different longitudinal trajectories between transitioned and active fighters were observed in verbal memory (p FDR = 4.73E-04), psychomotor speed (p FDR = 4.73E-04), processing speed (p FDR = 3.90E-02), and NfL levels (p = 0.02). Transitioned fighters demonstrated longitudinally improved cognitive functioning and decreased NfL levels, and active fighters demonstrated declines in cognitive performance and stable NfL levels. Of 68 cortical regions inspected, 54 regions demonstrated a consistently changing trajectory, with thickness measures stabilizing on a group level for transitioned fighters and subtly declining over time for active fighters. DISCUSSION After fighters' cessation of RHI exposure, cognitive function and brain thickness measures may stabilize and blood NfL levels may decline. This study could be a starting point to identify potential predictors of individuals who are at a higher risk of RHI-related long-term neurologic conditions.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Lauren Bennett
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Rajesh Nandy
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Dietmar Cordes
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Charles Bernick
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle
| | - Aaron Ritter
- From the Lou Ruvo Center for Brain Health (X.Z., D.C., C.B., A.R.), Cleveland Clinic, Las Vegas; Interdisciplinary Neuroscience PhD Program (X.Z.), University of Nevada, Las Vegas; Pickup Family Neurosciences Institute (L.B.), Hoag Memorial Hospital Presbyterian, Newport Beach, CA; Department of Biostatistics & Epidemiology (R.N.), School of Public Health, University of North Texas Health Science Center, Fort Worth; University of Colorado Boulder (D.C.); and UW Medicine (C.B.), Seattle.
| |
Collapse
|
5
|
Li F, Liu Y, Lu L, Shang S, Chen H, Haidari NA, Wang P, Yin X, Chen YC. Rich-club reorganization of functional brain networks in acute mild traumatic brain injury with cognitive impairment. Quant Imaging Med Surg 2022; 12:3932-3946. [PMID: 35782237 PMCID: PMC9246720 DOI: 10.21037/qims-21-915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/30/2022] [Indexed: 06/12/2024]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is typically characterized by temporally limited cognitive impairment and regarded as a brain connectome disorder. Recent findings have suggested that a higher level of organization named the "rich-club" may play a central role in enabling the integration of information and efficient communication across different systems of the brain. However, the alterations in rich-club organization and hub topology in mTBI and its relationship with cognitive impairment after mTBI have been scarcely elucidated. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 88 patients with mTBI and 85 matched healthy controls (HCs). Large-scale functional brain networks were established for each participant. Rich-club organizations and network properties were assessed and analyzed between groups. Finally, we analyzed the correlations between the cognitive performance and changes in rich-club organization and network properties. RESULTS Both mTBI and HCs groups showed significant rich-club organization. Meanwhile, the rich-club organization was aberrant, with enhanced functional connectivity (FC) among rich-club nodes and peripheral regions in acute mTBI. In addition, significant differences in partial global and local network topological property measures were found between mTBI patients and HCs (P<0.01). In patients with mTBI, changes in rich-club organization and network properties were found to be related to early cognitive impairment after mTBI (P<0.05). CONCLUSIONS Our findings suggest that such patterns of disruption and reorganization will provide the basic functional architecture for cognitive function, which may subsequently be used as an earlier biomarker for cognitive impairment after mTBI.
Collapse
Affiliation(s)
| | | | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song’an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nasir Ahmad Haidari
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
6
|
Cao M, Luo Y, Wu Z, Mazzola CA, Catania L, Alvarez TL, Halperin JM, Biswal B, Li X. Topological Aberrance of Structural Brain Network Provides Quantitative Substrates of Post-Traumatic Brain Injury Attention Deficits in Children. Brain Connect 2021; 11:651-662. [PMID: 33765837 DOI: 10.1089/brain.2020.0866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Traumatic brain injury (TBI)-induced attention deficits are among the most common long-term cognitive consequences in children. Most of the existing studies attempting to understand the neuropathological underpinnings of cognitive and behavioral impairments in TBI have utilized heterogeneous samples and resulted in inconsistent findings. The current research proposed to investigate topological properties of the structural brain network in children with TBI and their relationship with post-TBI attention problems in a more homogeneous subgroup of children who had severe post-TBI attention deficits (TBI-A). Materials and Methods: A total of 31 children with TBI-A and 35 group-matched controls were involved in the study. Diffusion tensor imaging-based probabilistic tractography and graph theoretical techniques were used to construct the structural brain network in each subject. Network topological properties were calculated in both global level and regional (nodal) level. Between-group comparisons among the topological network measures and analyses for searching brain-behavioral were all corrected for multiple comparisons using Bonferroni method. Results: Compared with controls, the TBI-A group showed significantly higher nodal local efficiency and nodal clustering coefficient in left inferior frontal gyrus and right transverse temporal gyrus, whereas significantly lower nodal clustering coefficient in left supramarginal gyrus and lower nodal local efficiency in left parahippocampal gyrus. The temporal lobe topological alterations were significantly associated with the post-TBI inattentive and hyperactive symptoms in the TBI-A group. Conclusion: The results suggest that TBI-related structural re-modularity in the white matter subnetworks associated with temporal lobe may play a critical role in the onset of severe post-TBI attention deficits in children. These findings provide valuable input for understanding the neurobiological substrates of post-TBI attention deficits, and have the potential to serve as quantitatively measurable criteria guiding the development of more timely and tailored strategies for diagnoses and treatments to the affected individuals. Impact statement This study provides a new insight into the neurobiological substrates associated with post-traumatic brain injury attention deficits (TBI-A) in children, by evaluating topological alterations of the structural brain network. The results demonstrated that relative to group-matched controls, the children with TBI-A had significantly altered nodal local efficiency and nodal clustering coefficient in temporal lobe, which strongly linked to elevated inattentive and hyperactive symptoms in the TBI-A group. These findings suggested that white matter structural re-modularity in subnetworks associated with temporal lobe may serve as quantitatively measurable biomarkers for early prediction and diagnosis of post-TBI attention deficits in children.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Yuyang Luo
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ziyan Wu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | | | - Lori Catania
- North Jersey Neurodevelopmental Center, North Haledon, New Jersey, USA
| | - Tara L Alvarez
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jeffrey M Halperin
- Department of Psychology, Queens College, City University of New York, New York, New York, USA
| | - Bharat Biswal
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Xiaobo Li
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA.,Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
7
|
Zhuang X, Mishra V, Nandy R, Yang Z, Sreenivasan K, Bennett L, Bernick C, Cordes D. Resting-State Static and Dynamic Functional Abnormalities in Active Professional Fighters With Repetitive Head Trauma and With Neuropsychological Impairments. Front Neurol 2020; 11:602586. [PMID: 33362704 PMCID: PMC7758536 DOI: 10.3389/fneur.2020.602586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Previous neuroimaging studies have identified structural brain abnormalities in active professional fighters with repetitive head trauma and correlated these changes with fighters' neuropsychological impairments. However, functional brain changes in these fighters derived using neuroimaging techniques remain unclear. In this study, both static and dynamic functional connectivity alterations were investigated (1) between healthy normal control subjects (NC) and fighters and (2) between non-impaired and impaired fighters. Resting-state fMRI data were collected on 35 NC and 133 active professional fighters, including 68 impaired fighters and 65 non-impaired fighters, from the Professional Fighters Brain Health Study at our center. Impaired fighters performed worse on processing speed (PSS) tasks with visual-attention and working-memory demands. The static functional connectivity (sFC) matrix was estimated for every pair of regions of interest (ROI) using a subject-specific parcellation. The dynamic functional connectivity (dFC) was estimated using a sliding-window method, where the variability of each ROI pair across all windows represented the temporal dynamics. A linear regression model was fitted for all 168 subjects, and different t-contrast vectors were used for between-group comparisons. An association analysis was further conducted to evaluate FC changes associated with PSS task performances without creating artificial impairment group-divisions in fighters. Following corrections for multiple comparisons using network-based statistics, our study identified significantly reduced long-range frontal-temporal, frontal-occipital, temporal-occipital, and parietal-occipital sFC strengths in fighters than in NCs, corroborating with previously observed structural damages in corresponding white matter tracts in subjects experiencing repetitive head trauma. In impaired fighters, significantly decreased sFC strengths were found among key regions involved in visual-attention, executive and cognitive process, as compared to non-impaired fighters. Association analysis further reveals similar sFC deficits to worse PSS task performances in all 133 fighters. With our choice of dFC indices, we were not able to observe any significant dFC changes beyond a trend-level increased temporal variability among similar regions with weaker sFC strengths in impaired fighters. Collectively, our functional brain findings supplement previously reported structural brain abnormalities in fighters and are important to comprehensively understand brain changes in fighters with repetitive head trauma.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Virendra Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Rajesh Nandy
- School of Public Health, University of North Texas, Fort Worth, TX, United States
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Karthik Sreenivasan
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Lauren Bennett
- Pickup Family Neuroscience Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, United States
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- UW Medicine, Seattle, WA, United States
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| |
Collapse
|
8
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Zhao C, Liang Y, Chen T, Zhong Y, Li X, Wei J, Li C, Zhang X. Prediction of cognitive performance in old age from spatial probability maps of white matter lesions. Aging (Albany NY) 2020; 12:4822-4835. [PMID: 32191226 PMCID: PMC7138592 DOI: 10.18632/aging.102901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/05/2020] [Indexed: 01/18/2023]
Abstract
The purposes of this study were to explore the association between cognitive performance and white matter lesions (WMLs), and to investigate whether it is possible to predict cognitive impairment using spatial maps of WMLs. These WML maps were produced for 263 elders from the OASIS-3 dataset, and a relevance vector regression (RVR) model was applied to predict neuropsychological performance based on the maps. The association between the spatial distribution of WMLs and cognitive function was examined using diffusion tensor imaging data. WML burden significantly associated with increasing age (r=0.318, p<0.001) and cognitive decline. Eight of 15 neuropsychological measures could be accurately predicted, and the mini-mental state examination (MMSE) test achieved the highest predictive accuracy (CORR=0.28, p<0.003). WMLs located in bilateral tapetum, posterior corona radiata, and thalamic radiation contributed the most prediction power. Diffusion indexes in these regions associated significantly with cognitive performance (axial diffusivity>radial diffusivity>mean diffusivity>fractional anisotropy). These results show that the combination of the extent and location of WMLs exhibit great potential to serve as a generalizable marker of multidomain neurocognitive decline in the aging population. The results may also shed light on the mechanism underlying white matter changes during the progression of cognitive decline and aging.
Collapse
Affiliation(s)
- Cui Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yihua Zhong
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xianglong Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
11
|
Mishra VR, Sreenivasan KR, Zhuang X, Yang Z, Cordes D, Banks SJ, Bernick C. Understanding white matter structural connectivity differences between cognitively impaired and nonimpaired active professional fighters. Hum Brain Mapp 2019; 40:5108-5122. [PMID: 31403734 DOI: 10.1002/hbm.24761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/20/2019] [Accepted: 07/31/2019] [Indexed: 11/06/2022] Open
Abstract
Long-term traumatic brain injury due to repeated head impacts (RHI) has been shown to be a risk factor for neurodegenerative disorders, characterized by a loss in cognitive performance. Establishing the correlation between changes in the white matter (WM) structural connectivity measures and neuropsychological test scores might help to identify the neural correlates of the scores that are used in daily clinical setting to investigate deficits due to repeated head blows. Hence, in this study, we utilized high angular diffusion MRI (dMRI) of 69 cognitively impaired and 70 nonimpaired active professional fighters from the Professional Fighters Brain Health Study, and constructed structural connectomes to understand: (a) whether there is a difference in the topological WM organization between cognitively impaired and nonimpaired active professional fighters, and (b) whether graph-theoretical measures exhibit correlations with neuropsychological scores in these groups. A dMRI derived structural connectome was constructed for every participant using brain regions defined in AAL atlas as nodes, and the product of fiber number and average fractional anisotropy of the tracts connecting the nodes as edges. Our study identified a topological WM reorganization due to RHI in fighters prone to cognitive decline that was correlated with neuropsychological scores. Furthermore, graph-theoretical measures were correlated differentially with neuropsychological scores between groups. We also found differentiated WM connectivity involving regions of hippocampus, precuneus, and insula within our cohort of cognitively impaired fighters suggesting that there is a discernible WM topological reorganization in fighters prone to cognitive decline.
Collapse
Affiliation(s)
- Virendra R Mishra
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| | | | - Xiaowei Zhuang
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| | - Zhengshi Yang
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| | - Dietmar Cordes
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada.,Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Sarah J Banks
- Department of Neurosciences, University of California at San Diego, San Diego, California
| | - Charles Bernick
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Las Vegas, Nevada
| |
Collapse
|