1
|
Wang S, Li T, Zhao B, Dai W, Yao Y, Li C, Li T, Zhu H, Zhang H. Identification and validation of supervariants reveal novel loci associated with human white matter microstructure. Genome Res 2024; 34:20-33. [PMID: 38190638 PMCID: PMC10904010 DOI: 10.1101/gr.277905.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
As an essential part of the central nervous system, white matter coordinates communications between different brain regions and is related to a wide range of neurodegenerative and neuropsychiatric disorders. Previous genome-wide association studies (GWASs) have uncovered loci associated with white matter microstructure. However, GWASs suffer from limited reproducibility and difficulties in detecting multi-single-nucleotide polymorphism (multi-SNP) and epistatic effects. In this study, we adopt the concept of supervariants, a combination of alleles in multiple loci, to account for potential multi-SNP effects. We perform supervariant identification and validation to identify loci associated with 22 white matter fractional anisotropy phenotypes derived from diffusion tensor imaging. To increase reproducibility, we use United Kingdom (UK) Biobank White British (n = 30,842) data for discovery and internal validation, and UK Biobank White but non-British (n = 1927) data, Europeans from the Adolescent Brain Cognitive Development study (n = 4399) data, and Europeans from the Human Connectome Project (n = 319) data for external validation. We identify 23 novel loci on the discovery set that have not been reported in the previous GWASs on white matter microstructure. Among them, three supervariants on genomic regions 5q35.1, 8p21.2, and 19q13.32 have P-values lower than 0.05 in the meta-analysis of the three independent validation data sets. These supervariants contain genetic variants located in genes that have been related to brain structures, cognitive functions, and neuropsychiatric diseases. Our findings provide a better understanding of the genetic architecture underlying white matter microstructure.
Collapse
Affiliation(s)
- Shiying Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Ting Li
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-1686, USA
| | - Wei Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Yisha Yao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Heping Zhang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA;
| |
Collapse
|
2
|
Hendrikse C, Lückhoff HK, Fouché JP, van den Heuvel LL, Emsley R, Seedat S, du Plessis S. Fronto-limbic white matter microstructural changes in psychiatrically healthy adults with childhood trauma. J Neurosci Res 2024; 102:e25308. [PMID: 38361421 DOI: 10.1002/jnr.25308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Childhood trauma (CT) may influence brain white matter microstructure; however, few studies have examined the differential impact of distinct CT types on white matter microstructure in psychiatrically healthy adults living in a developing country. In adults without significant medical or psychiatric disorders, we investigated the association(s) between CT, including abuse and neglect, and fractional anisotropy (FA) of limbic tracts previously shown to be associated with CT. Participants underwent diffusion tensor imaging and completed the Childhood Trauma Questionnaire. Multivariate analysis of variance models were used to test the effects of total overall CT, as well as CT subtypes, on FA in six fronto-limbic tracts, adjusting for age, sex, and educational level. The final sample included 69 adults (age 47 ± 17 years; 70% female). Overall, CT had a significant main effect on FA for tracts of interest (p < .001). Greater CT severity was associated with lower FA for the bilateral and left stria terminalis (uncorrected) as well as the bilateral, left, and right anterior limb of the internal capsule (ALIC; corrected). Exposure to total non-violent/deprivational trauma specifically was associated with lower FA of the bilateral, left, and right ALIC, suggesting that distinct types of CT are associated with differential white matter changes in apparently healthy adults. The ALIC predominantly carries fibers connecting the thalamus with prefrontal cortical regions. Microstructural alterations in the ALIC may be associated with functional brain changes, which may be adaptive or increase the risk of accelerated age-related cognitive decline, maladaptive behaviors, and subsyndromal psychiatric symptoms.
Collapse
Affiliation(s)
- Chanellé Hendrikse
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | | | - Jean-Paul Fouché
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, South African Medical Research Council/Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, South African Medical Research Council/Stellenbosch University, Cape Town, South Africa
| | - Robin Emsley
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, South African Medical Research Council/Stellenbosch University, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, South African Medical Research Council/Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Elmer S, Schmitt R, Giroud N, Meyer M. The neuroanatomical hallmarks of chronic tinnitus in comorbidity with pure-tone hearing loss. Brain Struct Funct 2023; 228:1511-1534. [PMID: 37349539 PMCID: PMC10335971 DOI: 10.1007/s00429-023-02669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Tinnitus is one of the main hearing impairments often associated with pure-tone hearing loss, and typically manifested in the perception of phantom sounds. Nevertheless, tinnitus has traditionally been studied in isolation without necessarily considering auditory ghosting and hearing loss as part of the same syndrome. Hence, in the present neuroanatomical study, we attempted to pave the way toward a better understanding of the tinnitus syndrome, and compared two groups of almost perfectly matched individuals with (TIHL) and without (NTHL) pure-tone tinnitus, but both characterized by pure-tone hearing loss. The two groups were homogenized in terms of sample size, age, gender, handedness, education, and hearing loss. Furthermore, since the assessment of pure-tone hearing thresholds alone is not sufficient to describe the full spectrum of hearing abilities, the two groups were also harmonized for supra-threshold hearing estimates which were collected using temporal compression, frequency selectivity und speech-in-noise tasks. Regions-of-interest (ROI) analyses based on key brain structures identified in previous neuroimaging studies showed that the TIHL group exhibited increased cortical volume (CV) and surface area (CSA) of the right supramarginal gyrus and posterior planum temporale (PT) as well as CSA of the left middle-anterior part of the superior temporal sulcus (STS). The TIHL group also demonstrated larger volumes of the left amygdala and of the left head and body of the hippocampus. Notably, vertex-wise multiple linear regression analyses additionally brought to light that CSA of a specific cluster, which was located in the left middle-anterior part of the STS and overlapped with the one found to be significant in the between-group analyses, was positively associated with tinnitus distress level. Furthermore, distress also positively correlated with CSA of gray matter vertices in the right dorsal prefrontal cortex and the right posterior STS, whereas tinnitus duration was positively associated with CSA and CV of the right angular gyrus (AG) and posterior part of the STS. These results provide new insights into the critical gray matter architecture of the tinnitus syndrome matrix responsible for the emergence, maintenance and distress of auditory phantom sensations.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Raffael Schmitt
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Cognitive Psychology Unit, Alpen-Adria University, Klagenfurt, Austria
| |
Collapse
|
4
|
Kamali A, Milosavljevic S, Gandhi A, Lano KR, Shobeiri P, Sherbaf FG, Sair HI, Riascos RF, Hasan KM. The Cortico-Limbo-Thalamo-Cortical Circuits: An Update to the Original Papez Circuit of the Human Limbic System. Brain Topogr 2023; 36:371-389. [PMID: 37148369 PMCID: PMC10164017 DOI: 10.1007/s10548-023-00955-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/06/2023] [Indexed: 05/08/2023]
Abstract
The Papez circuit, first proposed by James Papez in 1937, is a circuit believed to control memory and emotions, composed of the cingulate cortex, entorhinal cortex, parahippocampal gyrus, hippocampus, hypothalamus, and thalamus. Pursuant to James Papez, Paul Yakovlev and Paul MacLean incorporated the prefrontal/orbitofrontal cortex, septum, amygdalae, and anterior temporal lobes into the limbic system. Over the past few years, diffusion-weighted tractography techniques revealed additional limbic fiber connectivity, which incorporates multiple circuits to the already known complex limbic network. In the current review, we aimed to comprehensively summarize the anatomy of the limbic system and elaborate on the anatomical connectivity of the limbic circuits based on the published literature as an update to the original Papez circuit.
Collapse
Affiliation(s)
- Arash Kamali
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| | | | - Anusha Gandhi
- Baylor College of Medicine Medical School, Houston, TX, USA
| | - Kinsey R Lano
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Parnian Shobeiri
- Faculty of Medicine, Tehran University Medical School, Tehran, Iran
| | - Farzaneh Ghazi Sherbaf
- Department of Radiology and Radiological Science, Division of Neuroradiology, The Russell H. Morgan, Johns Hopkins University, Baltimore, MD, USA
| | - Haris I Sair
- Department of Radiology and Radiological Science, Division of Neuroradiology, The Russell H. Morgan, Johns Hopkins University, Baltimore, MD, USA
| | - Roy F Riascos
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Jin S, Liu W, Hu Y, Liu Z, Xia Y, Zhang X, Ding Y, Zhang L, Xie S, Ma C, Kang Y, Hu Z, Cheng W, Yang Z. Aberrant functional connectivity of the bed nucleus of the stria terminalis and its age dependence in children and adolescents with social anxiety disorder. Asian J Psychiatr 2023; 82:103498. [PMID: 36758449 DOI: 10.1016/j.ajp.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Social anxiety disorder (SAD) is a prevalent and impairing mental disorder among children and adolescents. The bed nucleus of the stria terminalis (BNST) plays a critical role in anxiety disorders, including valence surveillance and hypervigilance for potential threats. However, the role of BNST and its related functional network in children and adolescents with SAD has not been fully investigated. This study examined the aberration of BNST's functional connectivity and its age dependence in adolescents with SAD. METHODS Using a sample of 75 SAD patients and 75 healthy controls (HCs) children aged 9-18 years old, we delineated the group-by-age interaction of BNST-seeded functional connectivity (FC) during resting state and movie-watching. The relationships between BNST-seeded FC and clinical scores were also examined. RESULTS During movie viewing, the FC between the right BNST and the left amygdala, bilateral posterior cingulate cortex (PCC), bilateral superior temporal cortex, and right pericalcarine cortex showed a diagnostic group-by-age interaction. Compared to HCs, SAD patients showed a significant enhancement of the above FC at younger ages. Meanwhile, they showed an age-dependent decrease in FC between the right BNST and left amygdala. Furthermore, for SAD patients, FC between the right BNST and left amygdala during movie viewing was positively correlated with separation anxiety scores. CONCLUSIONS The right BNST plays an essential role in the aberrant brain functioning in children and adolescents with SAD. The atypicality of BNST's FC has remarkable age dependence in SAD, suggesting an association of SAD with neurodevelopmental traits.
Collapse
Affiliation(s)
- Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yufeng Xia
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhishan Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Pae C, Kim HJ, Bang M, Lee SH. Prediction of prognosis in patients with panic disorder using pre-treatment brain white matter features. J Affect Disord 2022; 313:214-221. [PMID: 35780964 DOI: 10.1016/j.jad.2022.06.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The early identification of patients with panic disorder (PD) with a poor prognosis is important for improving treatment outcomes; however, it is challenging due to a lack of objective biomarkers. We investigated the reliability of characterizing structural white matter (WM) connectivity and its ability to predict PD prognosis after pharmacotherapy. METHODS A total of 138 patients (59 men) with PD and 153 healthy controls (HCs; 73 men) participated in this study. PD symptom severity was measured using the Panic Disorder Severity Scale (PDSS) at baseline and follow-up periods of 8 weeks, 6 months, and 1 year. The least absolute shrinkage and selection operator (Lasso) was utilized to identify prognosis-related WM regions on diffusion imaging features. RESULTS Lasso identified seven prognosis-related WM regions: the bilateral posterior corona radiata, bilateral posterior limb of the internal capsule, the left retrolenticular part of the internal capsule, the left sagittal stratum, and the right fornix/stria terminalis. Some of these regions showed lower mean fractional anisotropy (FA) values in patients with PD than in HCs. The predicted PDSS scores using FA from these regions consistently correlated with the actual prognosis in all periods. LIMITATIONS This study had limited ability to evaluate individual longitudinal changes in detail owing to the data acquisition time and brain atlas resolution. CONCLUSIONS Our findings suggest the possibility of using structural WM connectivity as a biomarker for the clinical characterization of PD. Our findings will expand our understanding of the neurobiology of PD and improve biomarker-based prognosis prediction in clinical practice.
Collapse
Affiliation(s)
- Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
7
|
Ge Y, Su R, Liang Z, Luo J, Tian S, Shen X, Wu H, Liu C. Transcranial Direct Current Stimulation Over the Right Temporal Parietal Junction Facilitates Spontaneous Micro-Expression Recognition. Front Hum Neurosci 2022; 16:933831. [PMID: 35874155 PMCID: PMC9305610 DOI: 10.3389/fnhum.2022.933831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Micro-expressions are fleeting and subtle emotional expressions. As they are spontaneous and uncontrollable by one's mind, micro-expressions are considered an indicator of genuine emotions. Their accurate recognition and interpretation promote interpersonal interaction and social communication. Therefore, enhancing the ability to recognize micro-expressions has captured much attention. In the current study, we investigated the effects of training on micro-expression recognition with a Chinese version of the Micro-Expression Training Tool (METT). Our goal was to confirm whether the recognition accuracy of spontaneous micro-expressions could be improved through training and brain stimulation. Since the right temporal parietal junction (rTPJ) has been shown to be involved in the explicit process of facial emotion recognition, we hypothesized that the rTPJ would play a role in facilitating the recognition of micro-expressions. The results showed that anodal transcranial direct-current stimulation (tDCS) of the rTPJ indeed improved the recognition of spontaneous micro-expressions, especially for those associated with fear. The improved accuracy of recognizing fear spontaneous micro-expressions was positively correlated with personal distress in the anodal group but not in the sham group. Our study supports that the combined use of tDCS and METT can be a viable way to train and enhance micro-expression recognition.
Collapse
Affiliation(s)
- Yue Ge
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Beijing Institute of Biomedicine, Beijing, China
| | - Rui Su
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Zilu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jing Luo
- Beijing Institute of Biomedicine, Beijing, China
| | - Suizi Tian
- School of Psychology, Beijing Normal University, Beijing, China
| | - Xunbing Shen
- College of Humanities, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Puccetti NA, Villano WJ, Fadok JP, Heller AS. Temporal dynamics of affect in the brain: Evidence from human imaging and animal models. Neurosci Biobehav Rev 2022; 133:104491. [PMID: 34902442 PMCID: PMC8792368 DOI: 10.1016/j.neubiorev.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Emotions are time-varying internal states that promote survival in the face of dynamic environments and shifting homeostatic needs. Research in non-human organisms has recently afforded specific insights into the neural mechanisms that support the emergence, persistence, and decay of affective states. Concurrently, a separate affective neuroscience literature has begun to dissect the neural bases of affective dynamics in humans. However, the circuit-level mechanisms identified in animals lack a clear mapping to the human neuroscience literature. As a result, critical questions pertaining to the neural bases of affective dynamics in humans remain unanswered. To address these shortcomings, the present review integrates findings from humans and non-human organisms to highlight the neural mechanisms that govern the temporal features of emotional states. Using the theory of affective chronometry as an organizing framework, we describe the specific neural mechanisms and modulatory factors that arbitrate the rise-time, intensity, and duration of emotional states.
Collapse
Affiliation(s)
- Nikki A Puccetti
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA
| | - William J Villano
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA
| | - Jonathan P Fadok
- Department of Psychology and Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Aaron S Heller
- Department of Psychology, University of Miami, Coral Gables, FL, 33146, USA.
| |
Collapse
|
9
|
Li W, Lei D, Tallman MJ, Patino LR, Gong Q, Strawn JR, DelBello MP, McNamara RK. Emotion-Related Network Reorganization Following Fish Oil Supplementation in Depressed Bipolar Offspring: An fMRI Graph-Based Connectome Analysis. J Affect Disord 2021; 292:319-327. [PMID: 34139404 PMCID: PMC8282765 DOI: 10.1016/j.jad.2021.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Mood disorders are associated with fronto-limbic structural and functional abnormalities and deficits in omega-3 polyunsaturated fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Emerging evidence also suggests that n-3 PUFA, which are enriched in fish oil, promote cortical plasticity and connectivity. The present study performed a graph-based connectome analysis to investigate the role of n-3 PUFA in emotion-related network organization in medication-free depressed adolescent bipolar offspring. METHODS At baseline patients (n = 53) were compared with healthy controls (n = 53), and patients were then randomized to 12-week double-blind treatment with placebo or fish oil. At baseline and endpoint, erythrocyte EPA+DHA levels were measured and fMRI scans (4 Tesla) were obtained while performing a continuous performance task with emotional and neutral distractors (CPT-END). Graph-based analysis was used to characterize topological properties of large-scale brain network organization. RESULTS Compared with healthy controls, patients exhibited lower erythrocyte EPA+DHA levels (p = 0.0001), lower network clustering coefficients (p = 0.029), global efficiency (p = 0.042), and lower node centrality and connectivity strengths in frontal-limbic regions (p<0.05). Compared with placebo, 12-week fish oil supplementation increased erythrocyte EPA+DHA levels (p<0.001), network clustering coefficient (p = 0.005), global (p = 0.047) and local (p = 0.023) efficiency, and node centralities mainly in temporal regions (p<0.05). LIMITATIONS The duration of fish oil supplementation was relatively short and the sample size was relatively small. CONCLUSIONS These findings provide preliminary evidence that abnormalities in emotion-related network organization observed in depressed high-risk youth may be amenable to modification through fish oil supplementation.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267,Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Maxwell J. Tallman
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - L. Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Qiyong Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Robert K. McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
10
|
Tsai CJ, Lin HY, Tseng IWY, Gau SSF. White matter microstructural integrity correlates of emotion dysregulation in children with ADHD: A diffusion imaging tractography study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110325. [PMID: 33857524 DOI: 10.1016/j.pnpbp.2021.110325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Emotion dysregulation (ED) is prevalent in youths with attention-deficit hyperactivity disorder (ADHD) and causes more social impairment and poor adaptive function. Alterations in the integrity of white matter (WM) tracts might have important implications for affective processing related to ED. However, little is known about the WM correlates underpinning ED in ADHD. METHODS Using diffusion spectrum image tractography, we obtained generalized fractional anisotropy (GFA) values of 76 WM tracts in 77 children with ADHD and 105 typically developing controls (TDC). ED severity was defined by the dysregulation profile from the child behavior checklist. Canonical correlation analysis (CCA) was performed to identify modes that relate WM microstructural property to ED severity and cognitive measures. RESULTS The application of CCA identified one significant mode (r = 0.638, FWE-corrected p = 0.046) of interdependencies between WM property patterns and diagnosis, ADHD total symptom levels, dysregulation by diagnosis interaction, and full-scale intellectual quotient (FIQ). GFA values of 19 WM tracts that were linked to affective-processing, sensory-processing and integration, and cognitive control circuitry were positively correlated with ED severity in TDC but negatively correlated with ED severity in ADHD. ADHD symptom severity and diagnosis were negatively associated with the GFA patterns of this set of tract bundles. In contrast, FIQ was positively correlated with this set of tract bundles. CONCLUSIONS This study used the CCA to show that children with ADHD and TDC had distinct multivariate associations between ED severity (diagnosis by ED interaction) and microstructural property in a set of WM tracts. These tracts interconnect the cortical regions that are principally involved in emotion processing, integration, and cognitive control in multiple brain systems. The WM microstructure integrity impairment might be an essential correlate of emotion dysregulation in ADHD.
Collapse
Affiliation(s)
- Chia-Jui Tsai
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Isaac Wen-Yih Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Susan Shur-Fen Gau
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences and Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Banihashemi L, Peng CW, Verstynen T, Wallace ML, Lamont DN, Alkhars HM, Yeh FC, Beeney JE, Aizenstein HJ, Germain A. Opposing relationships of childhood threat and deprivation with stria terminalis white matter. Hum Brain Mapp 2021; 42:2445-2460. [PMID: 33739544 PMCID: PMC8090789 DOI: 10.1002/hbm.25378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
While stress may be a potential mechanism by which childhood threat and deprivation influence mental health, few studies have considered specific stress‐related white matter pathways, such as the stria terminalis (ST) and medial forebrain bundle (MFB). Our goal was to examine the relationships between childhood adversity and ST and MFB structural integrity and whether these pathways may provide a link between childhood adversity and affective symptoms and disorders. Participants were young adults (n = 100) with a full distribution of maltreatment history and affective symptom severity. Threat was determined by measures of childhood abuse and repeated traumatic events. Socioeconomic deprivation (SED) was determined by a measure of childhood socioeconomic status (parental education). Participants underwent diffusion spectrum imaging. Human Connectome Project data was used to perform ST and MFB tractography; these tracts were used as ROIs to extract generalized fractional anisotropy (gFA) from each participant. Childhood threat was associated with ST gFA, such that greater threat was associated with less ST gFA. SED was also associated with ST gFA, however, conversely to threat, greater SED was associated with greater ST gFA. Additionally, threat was negatively associated with MFB gFA, and MFB gFA was negatively associated with post‐traumatic stress symptoms. Our results suggest that childhood threat and deprivation have opposing influences on ST structural integrity, providing new evidence that the context of childhood adversity may have an important influence on its neurobiological effects, even on the same structure. Further, the MFB may provide a novel link between childhood threat and affective symptoms.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christine W Peng
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Meredith L Wallace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel N Lamont
- Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hussain M Alkhars
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fang-Cheng Yeh
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph E Beeney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Li C, Qiao K, Mu Y, Jiang L. Large-Scale Morphological Network Efficiency of Human Brain: Cognitive Intelligence and Emotional Intelligence. Front Aging Neurosci 2021; 13:605158. [PMID: 33732136 PMCID: PMC7959829 DOI: 10.3389/fnagi.2021.605158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Network efficiency characterizes how information flows within a network, and it has been used to study the neural basis of cognitive intelligence in adolescence, young adults, and elderly adults, in terms of the white matter in the human brain and functional connectivity networks. However, there were few studies investigating whether the human brain at different ages exhibited different underpins of cognitive and emotional intelligence (EI) from young adults to the middle-aged group, especially in terms of the morphological similarity networks in the human brain. In this study, we used 65 datasets (aging 18–64), including sMRI and behavioral measurements, to study the associations of network efficiency with cognitive intelligence and EI in young adults and the middle-aged group. We proposed a new method of defining the human brain morphological networks using the morphological distribution similarity (including cortical volume, surface area, and thickness). Our results showed inverted age × network efficiency interactions in the relationship of surface-area network efficiency with cognitive intelligence and EI: a negative age × global efficiency (nodal efficiency) interaction in cognitive intelligence, while a positive age × global efficiency (nodal efficiency) interaction in EI. In summary, this study not only proposed a new method of morphological similarity network but also emphasized the developmental effects on the brain mechanisms of intelligence from young adult to middle-aged groups and may promote mental health study on the middle-aged group in the future.
Collapse
Affiliation(s)
- Chunlin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Kaini Qiao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Mu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Jiang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Ciaramelli E, Burianová H, Vallesi A, Cabeza R, Moscovitch M. Functional Interplay Between Posterior Parietal Cortex and Hippocampus During Detection of Memory Targets and Non-targets. Front Neurosci 2020; 14:563768. [PMID: 33224020 PMCID: PMC7670044 DOI: 10.3389/fnins.2020.563768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
Posterior parietal cortex is frequently activated during episodic memory retrieval but its role during retrieval and its interactions with the hippocampus are not yet clear. In this fMRI study, we investigated the neural bases of recognition memory when study repetitions and retrieval goals were manipulated. During encoding participants studied words either once or three times, and during retrieval they were rewarded more to detect either studied words or new words. We found that (1) dorsal parietal cortex (DPC) was more engaged during detection of items studied once compared to three times, whereas regions in the ventral parietal cortex (VPC) responded more to items studied multiple times; (2) DPC, within a network of brain regions functionally connected to the anterior hippocampus, responded more to items consistent with retrieval goals (associated with high reward); (3) VPC, within a network of brain regions functionally connected to the posterior hippocampus, responded more to items not aligned with retrieval goals (i.e., unexpected). These findings support the hypothesis that DPC and VPC regions contribute differentially to top-down vs. bottom-up attention to memory. Moreover, they reveal a dissociation in the functional profile of the anterior and posterior hippocampi.
Collapse
Affiliation(s)
- Elisa Ciaramelli
- Department of Psychology, University of Bologna, Bologna, Italy.,Center for Studies and Research in Cognitive Neuroscience, Cesena, Italy
| | - Hana Burianová
- Department of Psychology, Swansea University, Swansea, United Kingdom.,Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Antonino Vallesi
- Padova Neuroscience Center and Department of Neuroscience, University of Padua, Padua, Italy.,Fondazione Ospedale San Camillo IRCCS, Venezia, Italy
| | - Roberto Cabeza
- Department of Psychology, Duke University, Durham, NC, United States
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Rotman Research Institute, Toronto, ON, Canada
| |
Collapse
|
14
|
Dzafic I, Oestreich L, Martin AK, Mowry B, Burianová H. Stria terminalis, amygdala, and temporoparietal junction networks facilitate efficient emotion processing under expectations. Hum Brain Mapp 2019; 40:5382-5396. [PMID: 31460690 PMCID: PMC6864902 DOI: 10.1002/hbm.24779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/11/2019] [Accepted: 08/18/2019] [Indexed: 01/17/2023] Open
Abstract
Rapid emotion processing is an ecologically essential ability for survival in social environments in which threatening or advantageous encounters dynamically and rapidly occur. Efficient emotion recognition is subserved by different processes, depending on one's expectations; however, the underlying functional and structural circuitry is still poorly understood. In this study, we delineate brain networks that subserve fast recognition of emotion in situations either congruent or incongruent with prior expectations. For this purpose, we used multimodal neuroimaging and investigated performance on a dynamic emotion perception task. We show that the extended amygdala structural and functional networks relate to speed of emotion processing under threatening conditions. Specifically, increased microstructure of the right stria terminalis, an amygdala white-matter pathway, was related to faster detection of emotion during actual presentation of anger or after cueing anger. Moreover, functional connectivity of right amygdala with limbic regions was related to faster detection of anger congruent with cue, suggesting selective attention to threat. On the contrary, we found that faster detection of anger incongruent with cue engaged the ventral attention "reorienting" network. Faster detection of happiness, in either expectancy context, engaged a widespread frontotemporal-subcortical functional network. These findings shed light on the functional and structural circuitries that facilitate speed of emotion recognition and, for the first time, elucidate a role for the stria terminalis in human emotion processing.
Collapse
Affiliation(s)
- Ilvana Dzafic
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionAustralia
| | - Lena Oestreich
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical ResearchBrisbaneAustralia
| | - Andrew K. Martin
- University of Queensland Centre for Clinical ResearchBrisbaneAustralia
- Department of PsychologyDurham UniversityDurhamUK
| | - Bryan Mowry
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- Queensland Centre for Mental Health ResearchBrisbaneAustralia
| | - Hana Burianová
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Department of PsychologySwansea UniversitySwanseaUnited Kingdom
| |
Collapse
|