1
|
Thornton C, Panagiotopoulou M, Chowdhury FA, Diehl B, Duncan JS, Gascoigne SJ, Besne G, McEvoy AW, Miserocchi A, Smith BC, de Tisi J, Taylor PN, Wang Y. Diminished circadian and ultradian rhythms of human brain activity in pathological tissue in vivo. Nat Commun 2024; 15:8527. [PMID: 39358327 PMCID: PMC11447262 DOI: 10.1038/s41467-024-52769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Chronobiological rhythms, such as the circadian rhythm, have long been linked to neurological disorders, but it is currently unknown how pathological processes affect the expression of biological rhythms in the brain. Here, we use the unique opportunity of long-term, continuous intracranially recorded EEG from 38 patients (totalling 6338 hours) to delineate circadian (daily) and ultradian (minute to hourly) rhythms in different brain regions. We show that functional circadian and ultradian rhythms are diminished in pathological tissue, independent of regional variations. We further demonstrate that these diminished rhythms are persistent in time, regardless of load or occurrence of pathological events. These findings provide evidence that brain pathology is functionally associated with persistently diminished chronobiological rhythms in vivo in humans, independent of regional variations or pathological events. Future work interacting with, and restoring, these modulatory chronobiological rhythms may allow for novel therapies.
Collapse
Affiliation(s)
| | | | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
| | | | - Sarah J Gascoigne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Guillermo Besne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Billy C Smith
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, London, UK
| | - Peter N Taylor
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Queen Square Institute of Neurology, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yujiang Wang
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
- UCL Queen Square Institute of Neurology, London, UK.
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Samfira IMA, Galanopoulou AS, Nariai H, Gursky JM, Moshé SL, Bardakjian BL. EEG-based spatiotemporal dynamics of fast ripple networks and hubs in infantile epileptic spasms. Epilepsia Open 2024; 9:122-137. [PMID: 37743321 PMCID: PMC10839371 DOI: 10.1002/epi4.12831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE Infantile epileptic spasms (IS) are epileptic seizures that are associated with increased risk for developmental impairments, adult epilepsies, and mortality. Here, we investigated coherence-based network dynamics in scalp EEG of infants with IS to identify frequency-dependent networks associated with spasms. We hypothesized that there is a network of increased fast ripple connectivity during the electrographic onset of clinical spasms, which is distinct from controls. METHODS We retrospectively analyzed peri-ictal and interictal EEG recordings of 14 IS patients. The data was compared with 9 age-matched controls. Wavelet phase coherence (WPC) was computed between 0.2 and 400 Hz. Frequency- and time-dependent brain networks were constructed using this coherence as the strength of connection between two EEG channels, based on graph theory principles. Connectivity was evaluated through global efficiency (GE) and channel-based closeness centrality (CC), over frequency and time. RESULTS GE in the fast ripple band (251-400 Hz) was significantly greater following the onset of spasms in all patients (P < 0.05). Fast ripple networks during the first 10s from spasm onset show enhanced anteroposterior gradient in connectivity (posterior > central > anterior, Kruskal-Wallis P < 0.001), with maximum CC over the centroparietal channels in 10/14 patients. Additionally, this anteroposterior gradient in CC connectivity is observed during spasms but not during the interictal awake or asleep states of infants with IS. In controls, anteroposterior gradient in fast ripple CC was noted during arousals and wakefulness but not during sleep. There was also a simultaneous decrease in GE in the 5-8 Hz range after the onset of spasms (P < 0.05), of unclear biological significance. SIGNIFICANCE We identified an anteroposterior gradient in the CC connectivity of fast ripple hubs during spasms. This anteroposterior gradient observed during spasms is similar to the anteroposterior gradient in the CC connectivity observed in wakefulness or arousals in controls, suggesting that this state change is related to arousal networks.
Collapse
Affiliation(s)
- Ioana M. A. Samfira
- Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology and Comprehensive Einstein/Montefiore Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Hiroki Nariai
- Department of PediatricsUCLA Mattel Children's HospitalLos AngelesCaliforniaUSA
| | - Jonathan M. Gursky
- Saul R. Korey Department of Neurology and Comprehensive Einstein/Montefiore Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology and Comprehensive Einstein/Montefiore Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of PediatricsEinstein College of MedicineBronxNew YorkUSA
| | - Berj L. Bardakjian
- Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Andrzejak RG, Zaveri HP, Schulze‐Bonhage A, Leguia MG, Stacey WC, Richardson MP, Kuhlmann L, Lehnertz K. Seizure forecasting: Where do we stand? Epilepsia 2023; 64 Suppl 3:S62-S71. [PMID: 36780237 PMCID: PMC10423299 DOI: 10.1111/epi.17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/14/2023]
Abstract
A lot of mileage has been made recently on the long and winding road toward seizure forecasting. Here we briefly review some selected milestones passed along the way, which were discussed at the International Conference for Technology and Analysis of Seizures-ICTALS 2022-convened at the University of Bern, Switzerland. Major impetus was gained recently from wearable and implantable devices that record not only electroencephalography, but also data on motor behavior, acoustic signals, and various signals of the autonomic nervous system. This multimodal monitoring can be performed for ultralong timescales covering months or years. Accordingly, features and metrics extracted from these data now assess seizure dynamics with a greater degree of completeness. Most prominently, this has allowed the confirmation of the long-suspected cyclical nature of interictal epileptiform activity, seizure risk, and seizures. The timescales cover daily, multi-day, and yearly cycles. Progress has also been fueled by approaches originating from the interdisciplinary field of network science. Considering epilepsy as a large-scale network disorder yielded novel perspectives on the pre-ictal dynamics of the evolving epileptic brain. In addition to discrete predictions that a seizure will take place in a specified prediction horizon, the community broadened the scope to probabilistic forecasts of a seizure risk evolving continuously in time. This shift of gears triggered the incorporation of additional metrics to quantify the performance of forecasting algorithms, which should be compared to the chance performance of constrained stochastic null models. An imminent task of utmost importance is to find optimal ways to communicate the output of seizure-forecasting algorithms to patients, caretakers, and clinicians, so that they can have socioeconomic impact and improve patients' well-being.
Collapse
Grants
- NIH NS109062 NIH HHS
- MR/N026063/1 Medical Research Council
- R01 NS109062 NINDS NIH HHS
- R01 NS094399 NINDS NIH HHS
- NIH NS094399 NIH HHS
- Medical Research Council Centre for Neurodevelopmental Disorders
- National Health and Medical Research Council
- National Institutes of Health
- University of Bern, the Inselspital, University Hospital Bern, the Alliance for Epilepsy Research, the Swiss National Science Foundation, UCB, FHC, the Wyss Center for bio‐ and neuro‐engineering, the American Epilepsy Society (AES), the CURE epilepsy Foundation, Ripple neuro, Sintetica, DIXI medical, UNEEG medical and NeuroPace.
Collapse
Affiliation(s)
- Ralph G. Andrzejak
- Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | | | - Andreas Schulze‐Bonhage
- Epilepsy Center, NeurocenterUniversity Medical Center, University of FreiburgFreiburgGermany
| | - Marc G. Leguia
- Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - William C. Stacey
- Department of Neurology, Department of Biomedical EngineeringBioInterfaces Institute, University of MichiganAnn ArborMichiganUSA
- Division of NeurologyVA Ann Arbor Medical CenterAnn ArborMichiganUSA
| | - Mark P. Richardson
- School of NeuroscienceInstitute of Psychiatry Psychology and Neuroscience, King's College LondonLondonUK
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of Information TechnologyMonash UniversityClaytonVictoriaAustralia
| | - Klaus Lehnertz
- Department of EpileptologyUniversity of Bonn Medical CentreBonnGermany
- Helmholtz Institute for Radiation and Nuclear PhysicsUniversity of BonnBonnGermany
- Interdisciplinary Center for Complex SystemsUniversity of BonnBonnGermany
| |
Collapse
|
5
|
Bröhl T, von Wrede R, Lehnertz K. Impact of biological rhythms on the importance hierarchy of constituents in time-dependent functional brain networks. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1237004. [PMID: 37705698 PMCID: PMC10497113 DOI: 10.3389/fnetp.2023.1237004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Biological rhythms are natural, endogenous cycles with period lengths ranging from less than 24 h (ultradian rhythms) to more than 24 h (infradian rhythms). The impact of the circadian rhythm (approximately 24 h) and ultradian rhythms on spectral characteristics of electroencephalographic (EEG) signals has been investigated for more than half a century. Yet, only little is known on how biological rhythms influence the properties of EEG-derived evolving functional brain networks. Here, we derive such networks from multiday, multichannel EEG recordings and use different centrality concepts to assess the time-varying importance hierarchy of the networks' vertices and edges as well as the various aspects of their structural integration in the network. We observe strong circadian and ultradian influences that highlight distinct subnetworks in the evolving functional brain networks. Our findings indicate the existence of a vital and fundamental subnetwork that is rather generally involved in ongoing brain activities during wakefulness and sleep.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Wang Y, Schroeder GM, Horsley JJ, Panagiotopoulou M, Chowdhury FA, Diehl B, Duncan JS, McEvoy AW, Miserocchi A, de Tisi J, Taylor PN. Temporal stability of intracranial electroencephalographic abnormality maps for localizing epileptogenic tissue. Epilepsia 2023; 64:2070-2080. [PMID: 37226553 PMCID: PMC10962550 DOI: 10.1111/epi.17663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Identifying abnormalities on interictal intracranial electroencephalogram (iEEG), by comparing patient data to a normative map, has shown promise for the localization of epileptogenic tissue and prediction of outcome. The approach typically uses short interictal segments of approximately 1 min. However, the temporal stability of findings has not been established. METHODS Here, we generated a normative map of iEEG in nonpathological brain tissue from 249 patients. We computed regional band power abnormalities in a separate cohort of 39 patients for the duration of their monitoring period (.92-8.62 days of iEEG data, mean = 4.58 days per patient, >4800 hours recording). To assess the localizing value of band power abnormality, we computedD RS -a measure of how different the surgically resected and spared tissue was in terms of band power abnormalities-over time. RESULTS In each patient, theD RS value was relatively consistent over time. The medianD RS of the entire recording period separated seizure-free (International League Against Epilepsy [ILAE] = 1) and not-seizure-free (ILAE> 1) patients well (area under the curve [AUC] = .69). This effect was similar interictally (AUC = .69) and peri-ictally (AUC = .71). SIGNIFICANCE Our results suggest that band power abnormality D_RS, as a predictor of outcomes from epilepsy surgery, is a relatively robust metric over time. These findings add further support for abnormality mapping of neurophysiology data during presurgical evaluation.
Collapse
Affiliation(s)
- Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Gabrielle M. Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Jonathan J. Horsley
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Mariella Panagiotopoulou
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | | | - Beate Diehl
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - John S. Duncan
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | | | | | - Jane de Tisi
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| |
Collapse
|
7
|
Schroeder GM, Karoly PJ, Maturana M, Panagiotopoulou M, Taylor PN, Cook MJ, Wang Y. Chronic intracranial EEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states. Brain Commun 2023; 5:fcad205. [PMID: 37693811 PMCID: PMC10484289 DOI: 10.1093/braincomms/fcad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterized the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states. We then compared seizure network state occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. In most patients, the occurrence or duration of at least one seizure network state was associated with the time since implantation. Some patients had one or more seizure network states that were associated with phases of circadian and/or multidien spike rate cycles. A given seizure network state's occurrence and duration were usually not associated with the same timescale. Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a seizure network state's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures and similar principles likely apply to other neurological conditions.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Philippa J Karoly
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matias Maturana
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- Research Department, Seer Medical Pty Ltd., Melbourne, Victoria 3000, Australia
| | - Mariella Panagiotopoulou
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark J Cook
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
8
|
Nogales A, García-Tejedor ÁJ, Chazarra P, Ugalde-Canitrot A. Discriminating and understanding brain states in children with epileptic spasms using deep learning and graph metrics analysis of brain connectivity. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 232:107427. [PMID: 36870168 DOI: 10.1016/j.cmpb.2023.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is a brain disorder consisting of abnormal electrical discharges of neurons resulting in epileptic seizures. The nature and spatial distribution of these electrical signals make epilepsy a field for the analysis of brain connectivity using artificial intelligence and network analysis techniques since their study requires large amounts of data over large spatial and temporal scales. For example, to discriminate states that would otherwise be indistinguishable from the human eye. This paper aims to identify the different brain states that appear concerning the intriguing seizure type of epileptic spasms. Once these states have been differentiated, an attempt is made to understand their corresponding brain activity. METHODS The representation of brain connectivity can be done by graphing the topology and intensity of brain activations. Graph images from different instants within and outside the actual seizure are used as input to a deep learning model for classification purposes. This work uses convolutional neural networks to discriminate the different states of the epileptic brain based on the appearance of these graphs at different times. Next, we apply several graph metrics as an aid to interpret what happens in the brain regions during and around the seizure. RESULTS Results show that the model consistently finds distinctive brain states in children with epilepsy with focal onset epileptic spasms that are indistinguishable under the expert visual inspection of EEG traces. Furthermore, differences are found in brain connectivity and network measures in each of the different states. CONCLUSIONS Computer-assisted discrimination using this model can detect subtle differences in the various brain states of children with epileptic spasms. The research reveals previously undisclosed information regarding brain connectivity and networks, allowing for a better understanding of the pathophysiology and evolving characteristics of this particular seizure type. From our data, we speculate that the prefrontal, premotor, and motor cortices could be more involved in a hypersynchronized state occurring in the few seconds immediately preceding the visually evident EEG and clinical ictal features of the first spasm in a cluster. On the other hand, a disconnection in centro-parietal areas seems a relevant feature in the predisposition and repetitive generation of epileptic spasms within clusters.
Collapse
Affiliation(s)
- Alberto Nogales
- CEIEC Research Institute, Universidad Francisco de Vitoria, Ctra. M-515 Pozuelo-Majadahonda km. 1,800, Pozuelo de Alarcón 28223, Spain.
| | - Álvaro J García-Tejedor
- CEIEC Research Institute, Universidad Francisco de Vitoria, Ctra. M-515 Pozuelo-Majadahonda km. 1,800, Pozuelo de Alarcón 28223, Spain
| | - Pedro Chazarra
- CEIEC Research Institute, Universidad Francisco de Vitoria, Ctra. M-515 Pozuelo-Majadahonda km. 1,800, Pozuelo de Alarcón 28223, Spain
| | - Arturo Ugalde-Canitrot
- School of Medicine. Universidad Francisco de Vitoria, Ctra. M-515 Pozuelo-Majadahonda km. 1,800. Pozuelo de Alarcón 28223, Spain; Epilepsy Unit, Neurology and Clinical Neurophysiology Service, Hospital Universitario La Paz, Paseo de la Castellana, 261, Madrid 28046, Spain
| |
Collapse
|
9
|
Lehnertz K, Bröhl T, Wrede RV. Epileptic-network-based prediction and control of seizures in humans. Neurobiol Dis 2023; 181:106098. [PMID: 36997129 DOI: 10.1016/j.nbd.2023.106098] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Epilepsy is now conceptualized as a network disease. The epileptic brain network comprises structurally and functionally connected cortical and subcortical brain regions - spanning lobes and hemispheres -, whose connections and dynamics evolve in time. With this concept, focal and generalized seizures as well as other related pathophysiological phenomena are thought to emerge from, spread via, and be terminated by network vertices and edges that also generate and sustain normal, physiological brain dynamics. Research over the last years has advanced concepts and techniques to identify and characterize the evolving epileptic brain network and its constituents on various spatial and temporal scales. Network-based approaches further our understanding of how seizures emerge from the evolving epileptic brain network, and they provide both novel insights into pre-seizure dynamics and important clues for success or failure of measures for network-based seizure control and prevention. In this review, we summarize the current state of knowledge and address several important challenges that would need to be addressed to move network-based prediction and control of seizures closer to clinical translation.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany.
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany
| |
Collapse
|
10
|
Jiang L, He J, Pan H, Wu D, Jiang T, Liu J. Seizure detection algorithm based on improved functional brain network structure feature extraction. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Schroeder GM, Chowdhury FA, Cook MJ, Diehl B, Duncan JS, Karoly PJ, Taylor PN, Wang Y. Multiple mechanisms shape the relationship between pathway and duration of focal seizures. Brain Commun 2022; 4:fcac173. [PMID: 35855481 PMCID: PMC9280328 DOI: 10.1093/braincomms/fcac173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/18/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022] Open
Abstract
A seizure's electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical 'pathway', and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were 'truncated' versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations ('elasticity'), or had similar durations, but followed different pathways ('semblance'). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Mark J Cook
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - John S Duncan
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Philippa J Karoly
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
12
|
Panagiotopoulou M, Papasavvas CA, Schroeder GM, Thomas RH, Taylor PN, Wang Y. Fluctuations in EEG band power at subject-specific timescales over minutes to days explain changes in seizure evolutions. Hum Brain Mapp 2022; 43:2460-2477. [PMID: 35119173 PMCID: PMC9057101 DOI: 10.1002/hbm.25796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 01/14/2023] Open
Abstract
Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously recorded interictaliEEG features can capture signatures of these modulations over different timescales. In this study, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to 12 days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally detect other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future study can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration or severity and therefore the clinical impact of seizures.
Collapse
Affiliation(s)
- Mariella Panagiotopoulou
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Christoforos A. Papasavvas
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Gabrielle M. Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Rhys H. Thomas
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
- UCL Queen Square Institute of Neurology, Queen SquareLondon
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
- UCL Queen Square Institute of Neurology, Queen SquareLondon
| |
Collapse
|
13
|
Zhang J, Villringer A, Nikulin VV. Dopaminergic Modulation of Local Non-oscillatory Activity and Global-Network Properties in Parkinson's Disease: An EEG Study. Front Aging Neurosci 2022; 14:846017. [PMID: 35572144 PMCID: PMC9106139 DOI: 10.3389/fnagi.2022.846017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit. However, the non-oscillatory component of the neuronal activity, potentially indicating a state of excitation/inhibition balance, has not yet been investigated and previous studies have shown inconsistent changes of cortico-cortical connectivity as a response to dopaminergic medication. To further elucidate changes of regional non-oscillatory component of the neuronal power spectra, FC, and to determine which aspects of network organization obtained with graph theory respond to dopaminergic medication, we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD patients during OFF and ON medication conditions. We found that the spectral slope, typically used to quantify the broadband non-oscillatory component of power spectra, steepened particularly in the left central region in the ON compared to OFF condition. In addition, using lagged coherence as a FC measure, we found that the FC in the beta frequency range between centro-parietal and frontal regions was enhanced in the ON compared to the OFF condition. After applying graph theory analysis, we observed that at the lower level of topology the node degree was increased, particularly in the centro-parietal area. Yet, results showed no significant difference in global topological organization between the two conditions: either in global efficiency or clustering coefficient for measuring global and local integration, respectively. Interestingly, we found a close association between local/global spectral slope and functional network global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory dynamics in forming the functional global integration which characterizes PD. These results provide further evidence and a more complete picture for the engagement of multiple cortical regions at various levels in response to dopaminergic medication in PD.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Papasavvas C, Taylor PN, Wang Y. Long-term changes in functional connectivity improve prediction of responses to intracranial stimulation of the human brain. J Neural Eng 2022; 19. [PMID: 35168208 DOI: 10.1088/1741-2552/ac5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Targeted electrical stimulation of the brain perturbs neural networks and modulates their rhythmic activity both at the site of stimulation and at remote brain regions. Understanding, or even predicting, this neuromodulatory effect is crucial for any therapeutic use of brain stimulation. The objective of this study was to investigate if brain network properties prior to stimulation sessions hold associative and predictive value in understanding the neuromodulatory effect of electrical stimulation in a clinical context. APPROACH We analysed the stimulation responses in 131 stimulation sessions across 66 patients with focal epilepsy recorded through intracranial electroencephalogram (iEEG). We considered functional and structural connectivity features as predictors of the response at every iEEG contact. Taking advantage of multiple recordings over days, we also investigated how slow changes in interictal functional connectivity (FC) ahead of the stimulation, representing the long-term variability of FC, relate to stimulation responses. MAIN RESULTS The long-term variability of FC exhibits strong association with the stimulation-induced increases in delta and theta band power. Furthermore, we show through cross-validation that long-term variability of FC improves prediction of responses above the performance of spatial predictors alone. SIGNIFICANCE This study highlights the importance of the slow dynamics of functional connectivity in the prediction of brain stimulation responses. Furthermore, these findings can enhance the patient-specific design of effective neuromodulatory protocols for therapeutic interventions.
Collapse
Affiliation(s)
- Christoforos Papasavvas
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Peter Neal Taylor
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yujiang Wang
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
15
|
Tufa U, Gravitis A, Zukotynski K, Chinvarun Y, Devinsky O, Wennberg R, Carlen PL, Bardakjian BL. A Peri-Ictal EEG-Based Biomarker for Sudden Unexpected Death in Epilepsy (SUDEP) Derived From Brain Network Analysis. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:866540. [PMID: 36926093 PMCID: PMC10013055 DOI: 10.3389/fnetp.2022.866540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading seizure-related cause of death in epilepsy patients. There are no validated biomarkers of SUDEP risk. Here, we explored peri-ictal differences in topological brain network properties from scalp EEG recordings of SUDEP victims. Functional connectivity networks were constructed and examined as directed graphs derived from undirected delta and high frequency oscillation (HFO) EEG coherence networks in eight SUDEP and 14 non-SUDEP epileptic patients. These networks were proxies for information flow at different spatiotemporal scales, where low frequency oscillations coordinate large-scale activity driving local HFOs. The clustering coefficient and global efficiency of the network were higher in the SUDEP group pre-ictally, ictally and post-ictally (p < 0.0001 to p < 0.001), with features characteristic of small-world networks. These results suggest that cross-frequency functional connectivity network topology may be a non-invasive biomarker of SUDEP risk.
Collapse
Affiliation(s)
- Uilki Tufa
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Adam Gravitis
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Katherine Zukotynski
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.,Department of Radiology and Medicine, McMaster University, Hamilton, ON, Canada
| | - Yotin Chinvarun
- Comprehensive Epilepsy Program and Neurology Unit, Phramongkutklao Hospital, Bangkok, Thailand
| | - Orrin Devinsky
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, Toronto, ON, Canada
| | - Peter L Carlen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Department of Neurology, New York University School of Medicine, New York, NY, United States.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Berj L Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Lehnertz K, Rings T, Bröhl T. Time in Brain: How Biological Rhythms Impact on EEG Signals and on EEG-Derived Brain Networks. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:755016. [PMID: 36925573 PMCID: PMC10013076 DOI: 10.3389/fnetp.2021.755016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022]
Abstract
Electroencephalography (EEG) is a widely employed tool for exploring brain dynamics and is used extensively in various domains, ranging from clinical diagnosis via neuroscience, cognitive science, cognitive psychology, psychophysiology, neuromarketing, neurolinguistics, and pharmacology to research on brain computer interfaces. EEG is the only technique that enables the continuous recording of brain dynamics over periods of time that range from a few seconds to hours and days and beyond. When taking long-term recordings, various endogenous and exogenous biological rhythms may impinge on characteristics of EEG signals. While the impact of the circadian rhythm and of ultradian rhythms on spectral characteristics of EEG signals has been investigated for more than half a century, only little is known on how biological rhythms influence characteristics of brain dynamics assessed with modern EEG analysis techniques. At the example of multiday, multichannel non-invasive and invasive EEG recordings, we here discuss the impact of biological rhythms on temporal changes of various characteristics of human brain dynamics: higher-order statistical moments and interaction properties of multichannel EEG signals as well as local and global characteristics of EEG-derived evolving functional brain networks. Our findings emphasize the need to take into account the impact of biological rhythms in order to avoid erroneous statements about brain dynamics and about evolving functional brain networks.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Li H, Zhang Q, Lin Z, Gao F. Prediction of Epilepsy Based on Tensor Decomposition and Functional Brain Network. Brain Sci 2021; 11:1066. [PMID: 34439685 PMCID: PMC8392428 DOI: 10.3390/brainsci11081066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is a chronic neurological disorder which can affect 65 million patients worldwide. Recently, network based analyses have been of great help in the investigation of seizures. Now graph theory is commonly applied to analyze functional brain networks, but functional brain networks are dynamic. Methods based on graph theory find it difficult to reflect the dynamic changes of functional brain network. In this paper, an approach to extracting features from brain functional networks is presented. Dynamic functional brain networks can be obtained by stacking multiple functional brain networks on the time axis. Then, a tensor decomposition method is used to extract features, and an ELM classifier is introduced to complete epilepsy prediction. In the prediction of epilepsy, the accuracy and F1 score of the feature extracted by tensor decomposition are higher than the degree and clustering coefficient. The features extracted from the dynamic functional brain network by tensor decomposition show better and more comprehensive performance than degree and clustering coefficient in epilepsy prediction.
Collapse
Affiliation(s)
| | - Qizhong Zhang
- Institute of Intelligent Control and Robotics, School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (H.L.); (Z.L.); (F.G.)
| | | | | |
Collapse
|
18
|
Smith RJ, Alipourjeddi E, Garner C, Maser AL, Shrey DW, Lopour BA. Infant functional networks are modulated by state of consciousness and circadian rhythm. Netw Neurosci 2021; 5:614-630. [PMID: 34189380 PMCID: PMC8233111 DOI: 10.1162/netn_a_00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Functional connectivity networks are valuable tools for studying development, cognition, and disease in the infant brain. In adults, such networks are modulated by the state of consciousness and the circadian rhythm; however, it is unknown if infant brain networks exhibit similar variation, given the unique temporal properties of infant sleep and circadian patterning. To address this, we analyzed functional connectivity networks calculated from long-term EEG recordings (average duration 20.8 hr) from 19 healthy infants. Networks were subject specific, as intersubject correlations between weighted adjacency matrices were low. However, within individual subjects, both sleep and wake networks were stable over time, with stronger functional connectivity during sleep than wakefulness. Principal component analysis revealed the presence of two dominant networks; visual sleep scoring confirmed that these corresponded to sleep and wakefulness. Lastly, we found that network strength, degree, clustering coefficient, and path length significantly varied with time of day, when measured in either wakefulness or sleep at the group level. Together, these results suggest that modulation of healthy functional networks occurs over ∼24 hr and is robust and repeatable. Accounting for such temporal periodicities may improve the physiological interpretation and use of functional connectivity analysis to investigate brain function in health and disease.
Collapse
Affiliation(s)
- Rachel J. Smith
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Ehsan Alipourjeddi
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Cristal Garner
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Amy L. Maser
- Department of Psychology, Children’s Hospital of Orange County, Orange, CA, USA
| | - Daniel W. Shrey
- Division of Neurology, Children’s Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Beth A. Lopour
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
19
|
Mitsis GD, Anastasiadou MN, Christodoulakis M, Papathanasiou ES, Papacostas SS, Hadjipapas A. Functional brain networks of patients with epilepsy exhibit pronounced multiscale periodicities, which correlate with seizure onset. Hum Brain Mapp 2020; 41:2059-2076. [PMID: 31977145 PMCID: PMC7268013 DOI: 10.1002/hbm.24930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
Epileptic seizure detection and prediction by using noninvasive measurements such as scalp EEG signals or invasive, intracranial recordings, has been at the heart of epilepsy studies for at least three decades. To this end, the most common approach has been to consider short‐length recordings (several seconds to a few minutes) around a seizure, aiming to identify significant changes that occur before or during seizures. An inherent assumption in this approach is the presence of a relatively constant EEG activity in the interictal period, which is interrupted by seizure occurrence. Here, we examine this assumption by using long‐duration scalp EEG data (21–94 hr) in nine patients with epilepsy, based on which we construct functional brain networks. Our results reveal that these networks vary over time in a periodic fashion, exhibiting multiple peaks at periods ranging between 1 and 24 hr. The effects of seizure onset on the functional brain network properties were found to be considerably smaller in magnitude compared to the changes due to these inherent periodic cycles. Importantly, the properties of the identified network periodic components (instantaneous phase) were found to be strongly correlated to seizure onset, especially for the periodicities around 3 and 5 hr. These correlations were found to be largely absent between EEG signal periodicities and seizure onset, suggesting that higher specificity may be achieved by using network‐based metrics. In turn, this implies that more robust seizure detection and prediction can be achieved if longer term underlying functional brain network periodic variations are taken into account.
Collapse
Affiliation(s)
| | | | | | | | - Savvas S Papacostas
- Neurology Clinic B, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | |
Collapse
|