1
|
Barton JJS, Albonico A, Starrfelt R. The lateralization of reading. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:301-325. [PMID: 40074404 DOI: 10.1016/b978-0-443-15646-5.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Reports in the 1890s described reading disorders from left hemisphere damage. Subsequent work converging from a variety of research approaches have confirmed a strong dependence of reading on the left ventral occipitotemporal cortex, though there is also evidence for some reading capacity of the right hemisphere. The development of this leftward bias parallels reading acquisition in children and adults and is blunted in developmental dyslexia. Several structural and functional hypotheses have been advanced to explain why reading lateralizes to the left. In the second half of this review we explore the extension of these findings to other forms of reading. Most reading studies used the alphabetic scripts of Europe but there are many writing systems. Comparisons with logographic scripts such as Chinese and kanji have revealed subtle differences. Also, while we often think of reading as the extraction of verbal language from written text, it can be broadened to other types of information extraction from symbols. Reading can occur with visual stimuli that are not written text, as with sign language in the deaf and lip-reading, and with non-visual stimuli that are textual, as with Braille. Musical notation and number reading are other text-based visual forms of reading that do not involve words. Overall, most studies show that the left ventral occipitotemporal cortex is involved in processing these diverse types of reading, with variable contributions from the right hemisphere.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Andrea Albonico
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Randi Starrfelt
- Department of Psychology, Center for Visual Cognition, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
2
|
Papatzalas C, Papathanasiou I. Exploring tumor-related language disorders: Pretreatment and post-treatment considerations. Asia Pac J Oncol Nurs 2024; 11:100526. [PMID: 39040223 PMCID: PMC11261801 DOI: 10.1016/j.apjon.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Christos Papatzalas
- Department of Speech and Language Therapy, University of the Peloponnese, Kalamata, Greece
| | - Ilias Papathanasiou
- Department of Speech and Language Therapy, University of Patras, Patras, Greece
- Medical School, National Kapodistreian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Traficante D, Luzzatti C, Friedmann N. Multiple Types of Developmental Dyslexias in a Shallow Orthography: Principles for Diagnostic Screening in Italian. Brain Sci 2024; 14:743. [PMID: 39199438 PMCID: PMC11352963 DOI: 10.3390/brainsci14080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 09/01/2024] Open
Abstract
A new dyslexia screening test for Italian, Tiltan-IT, is presented. The test was developed based on an integrated dual-route model of reading, which describes in detail specific mechanisms underpinning early visual processes as well as the lexical and the sublexical routes. The principle according to which the test was developed is that each dyslexia type is manifested in different kinds of errors and in different kinds of stimuli, and we therefore included stimuli sensitive to each dyslexia type in the test. Tiltan-IT is a reading aloud test that includes word, nonword, and word pair lists. The test was administered to 618 Italian-speaking children (2nd-8th grade). Each error produced by the children was classified through the coding scheme developed to detect the different types of dyslexias described by the reading model. The Tiltan-IT was able to identify 110 children with dyslexia. The identified dyslexia types included letter position dyslexia, attentional dyslexia, letter identity dyslexia, surface dyslexia, vowel dyslexia, consonant conversion dyslexia, multi-letter phonological dyslexia, voicing dyslexia. The results confirm that the selection of items in the Tiltan-IT enabled the detection of the wide variety of dyslexias in Italian, some of them for the first time, adding evidence for the cross-linguistic validity of multiple types of developmental dyslexias and for the dual-route model of reading.
Collapse
Affiliation(s)
- Daniela Traficante
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
- Scientific Institute, IRCCS E. Medea—Bosisio Parini, 23842 Lecco, Italy
| | - Claudio Luzzatti
- NeuroMI—Milan Center for Neuroscience, 20126 Milan, Italy
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Naama Friedmann
- Language and Brain Lab, School of Education and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| |
Collapse
|
4
|
Junker FB, Schlaffke L, Lange J, Schmidt-Wilcke T. The angular gyrus serves as an interface between the non-lexical reading network and the semantic system: evidence from dynamic causal modeling. Brain Struct Funct 2024; 229:561-575. [PMID: 36905417 PMCID: PMC10978681 DOI: 10.1007/s00429-023-02624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Understanding encoded language, such as written words, requires multiple cognitive processes that act in a parallel and interactive fashion. These processes and their interactions, however, are not fully understood. Various conceptual and methodical approaches including computational modeling and neuroimaging have been applied to better understand the neural underpinnings of these complex processes in the human brain. In this study, we tested different predictions of cortical interactions that derived from computational models for reading using dynamic causal modeling. Morse code was used as a model for non-lexical decoding followed by a lexical-decision during a functional magnetic resonance examination. Our results suggest that individual letters are first converted into phonemes within the left supramarginal gyrus, followed by a phoneme assembly to reconstruct word phonology, involving the left inferior frontal cortex. To allow the identification and comprehension of known words, the inferior frontal cortex then interacts with the semantic system via the left angular gyrus. As such, the left angular gyrus is likely to host phonological and semantic representations and serves as a bidirectional interface between the networks involved in language perception and word comprehension.
Collapse
Affiliation(s)
- Frederick Benjamin Junker
- Department of Neuropsychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Lara Schlaffke
- Department for Neurology, Professional Association Berufsgenossenschaft-University Hospital Bergmannsheil, Bürkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tobias Schmidt-Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Neurological Center Mainkofen, Mainkofen A 3, 94469, Deggendorf, Germany
| |
Collapse
|
5
|
van Ierschot FC, Veenstra W, Miozzo A, Santini B, Jeltema HR, Spena G, Miceli G. Written language preservation in glioma patients undergoing awake surgery: The value of tailored intra-operative assessment. J Neuropsychol 2024; 18 Suppl 1:205-229. [PMID: 37840529 DOI: 10.1111/jnp.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Written language is increasingly important, as contemporary society strongly relies on text-based communication. Nonetheless, in neurosurgical practice, language preservation has classically focused on spoken language. The current study aimed to evaluate the potential role of intra-operative assessments in the preservation of written language skills in glioma patients undergoing awake surgery. It is the first feasibility study to use a standardized and detailed Written language battery in glioma patients undergoing awakening surgery. Reading and spelling were assessed pre- and post-operatively in eleven patients. Intra-operatively, 7 cases underwent written language assessment in addition to spoken object naming. Results show that reading and spelling deficits may arise before and after glioma surgery and that written language may be differently affected than spoken language. In our case series, task-specific preservation of function was obtained in all cases when a specific written language skill was monitored intra-operatively. However, the benefits of intra-operative testing did not always generalize, and non-monitored written language tasks may not be preserved. Hence, when a specific written language skill needs to be preserved, to facilitate return to work and maintain quality of life, results indicate that intra-operative assessment of that skill is advised. An illustrative case report demonstrates how profile analyses can be used pre-operatively to identify cognitive components at risk and intra-operatively to preserve written language abilities in clinical practice.
Collapse
Affiliation(s)
- Fleur Céline van Ierschot
- Center for Mind/Brain Sciences (CiMeC), University of Trento, Rovereto, Italy
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), Universities of Trento, Groningen, Newcastle, Potsdam and Macquarie University, Trento, Groningen, Newcastle, Potsdam, Sydney, Italy, Netherlands, Australia, Germany, Australia
| | - Wencke Veenstra
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
- Department of Rehabilitation Medicine, Center for Rehabilitation, University Medical Center Groningen, Groningen, The Netherlands
| | - Antonio Miozzo
- Centre for Aging Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Barbara Santini
- Department of Neuroscience, Neurosurgery Clinic, University of Verona, Verona, Italy
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Giannantonio Spena
- Centre for Aging Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CiMeC), University of Trento, Rovereto, Italy
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), Universities of Trento, Groningen, Newcastle, Potsdam and Macquarie University, Trento, Groningen, Newcastle, Potsdam, Sydney, Italy, Netherlands, Australia, Germany, Australia
| |
Collapse
|
6
|
van der Molen MW, Snellings P, Aravena S, Fraga González G, Zeguers MHT, Verwimp C, Tijms J. Dyslexia, the Amsterdam Way. Behav Sci (Basel) 2024; 14:72. [PMID: 38275355 PMCID: PMC10813111 DOI: 10.3390/bs14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
The current aim is to illustrate our research on dyslexia conducted at the Developmental Psychology section of the Department of Psychology, University of Amsterdam, in collaboration with the nationwide IWAL institute for learning disabilities (now RID). The collaborative efforts are institutionalized in the Rudolf Berlin Center. The first series of studies aimed at furthering the understanding of dyslexia using a gamified tool based on an artificial script. Behavioral measures were augmented with diffusion modeling in one study, and indices derived from the electroencephalogram were used in others. Next, we illustrated a series of studies aiming to assess individuals who struggle with reading and spelling using similar research strategies. In one study, we used methodology derived from the machine learning literature. The third series of studies involved intervention targeting the phonics of language. These studies included a network analysis that is now rapidly gaining prominence in the psychopathology literature. Collectively, the studies demonstrate the importance of letter-speech sound mapping and word decoding in the acquisition of reading. It was demonstrated that focusing on these abilities may inform the prediction, classification, and intervention of reading difficulties and their neural underpinnings. A final section examined dyslexia, conceived as a neurobiological disorder. This analysis converged on the conclusion that recent developments in the psychopathology literature inspired by the focus on research domain criteria and network analysis might further the field by staying away from longstanding debates in the dyslexia literature (single vs. a multiple deficit, category vs. dimension, disorder vs. lack of skill).
Collapse
Affiliation(s)
- Maurits W. van der Molen
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Patrick Snellings
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | | | | | - Maaike H. T. Zeguers
- Samenwerkingsverband VO Amsterdam-Diemen, Bijlmermeerdreef 1289, 1103 TV Amsterdam, The Netherlands
| | - Cara Verwimp
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Jurgen Tijms
- Developmental Psychology, Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Rudolf Berlin Center for Learning Disabilities, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| |
Collapse
|
7
|
Junker FB, Schmidt‐Wilcke T, Schnitzler A, Lange J. Temporal dynamics of oscillatory activity during nonlexical language decoding: Evidence from Morse code and magnetoencephalography. Hum Brain Mapp 2023; 44:6185-6197. [PMID: 37792277 PMCID: PMC10619365 DOI: 10.1002/hbm.26505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Understanding encoded languages, such as written script or Morse code, requires nonlexical and lexical processing components that act in a parallel and interactive fashion. Decoding written script-as for example in reading-is typically very fast, making the investigation of the lexical and nonlexical components and their underlying neural mechanisms challenging. In the current study, we aimed to accomplish this problem by using Morse code as a model for language decoding. The decoding of Morse code is slower and thus allows a better and more fine-grained investigation of the lexical and nonlexical components of language decoding. In the current study, we investigated the impact of various components of nonlexical decoding of Morse code using magnetoencephalography. For this purpose, we reconstructed the time-frequency responses below 40 Hz in brain regions significantly involved in Morse code decoding and word comprehension that were identified in a previous study. Event-related reduction in beta- and alpha-band power were found in left inferior frontal cortex and angular gyrus, respectively, while event-related theta-band power increase was found at frontal midline. These induced oscillations reflect working-memory encoding, long-term memory retrieval as well as demanding cognitive control, respectively. In sum, by using Morse code and MEG, we were able to identify a cortical network underlying language decoding in a time- and frequency-resolved manner.
Collapse
Affiliation(s)
- Frederick Benjamin Junker
- Institute of Clinical Neuroscience and Medical Psychology, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Tobias Schmidt‐Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Neurological Center MainkofenDeggendorfGermany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
8
|
Kearney E, Brownsett SLE, Copland DA, Drummond KJ, Jeffree RL, Olson S, Murton E, Ong B, Robinson GA, Tolkacheva V, McMahon KL, de Zubicaray GI. Relationships between reading performance and regional spontaneous brain activity following surgical removal of primary left-hemisphere tumors: A resting-state fMRI study. Neuropsychologia 2023; 188:108631. [PMID: 37356540 DOI: 10.1016/j.neuropsychologia.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Left-hemisphere intraparenchymal primary brain tumor patients are at risk of developing reading difficulties that may be stable, improve or deteriorate after surgery. Previous studies examining language organization in brain tumor patients have provided insights into neural plasticity supporting recovery. Only a single study, however, has examined the role of white matter tracts in preserving reading ability post-surgery and none have examined the functional reading network. The current study aimed to investigate the regional spontaneous brain activity associated with reading performance in a group of 36 adult patients 6-24 months following left-hemisphere tumor resection. Spontaneous brain activity was assessed using resting-state fMRI (rs-fMRI) regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF) metrics, which measure local functional connectivity and activity, respectively. ReHo in the left occipito-temporal and right superior parietal regions was negatively correlated with reading performance. fALFF in the putamen bilaterally and the left cerebellum was negatively correlated with reading performance, and positively correlated in the right superior parietal gyrus. These findings are broadly consistent with reading networks reported in healthy participants, indicating that reading ability following brain tumor surgery might not involve substantial functional re-organization.
Collapse
Affiliation(s)
- Elaine Kearney
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, 4059, Australia.
| | - Sonia L E Brownsett
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072, Australia; Surgical Treatment and Rehabilitation Service (STARS), Education and Research Alliance, University of Queensland and Metro North Health, Queensland, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - David A Copland
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, 4072, Australia; Surgical Treatment and Rehabilitation Service (STARS), Education and Research Alliance, University of Queensland and Metro North Health, Queensland, Australia; Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, 3050, Australia; Department of Surgery, University of Melbourne, Parkville, 3052, Australia
| | | | - Sarah Olson
- Princess Alexandra Hospital, Brisbane, 4102, Australia
| | - Emma Murton
- Department of Speech Pathology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Benjamin Ong
- Princess Alexandra Hospital, Brisbane, 4102, Australia
| | - Gail A Robinson
- Queensland Brain Institute and School of Psychology, University of Queensland, Brisbane, 4072, Australia
| | - Valeriya Tolkacheva
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, 4059, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia; Herston Imaging Research Facility, Royal Brisbane & Women's Hospital, Brisbane, 4029, Australia
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, 4059, Australia
| |
Collapse
|
9
|
Boissonneau S, Lemaître AL, Herbet G, Ng S, Duffau H, Moritz-Gasser S. Evidence for a critical role of the left inferior parietal lobule and underlying white matter connectivity in proficient text reading. J Neurosurg 2022; 138:1433-1442. [PMID: 36057115 DOI: 10.3171/2022.7.jns22236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Reading proficiency is an important skill for personal and socio-professional daily life. Neurocognitive models underlie a dual-route organization for word reading, in which information is processed by both a dorsal phonological "assembled phonology route" and a ventral lexical-semantic "addressed phonology route." Because proficient reading should not be reduced to the ability to read words one after another, the current study was designed to shed light on the neural bases specifically underpinning text reading and the relative contributions of each route to this skill. METHODS Twenty-two patients with left-sided, diffuse, low-grade glioma who underwent operations while awake were included. They were divided into 3 groups on the basis of tumor location: the inferior parietal lobule (IPL) group (n = 6), inferior temporal gyrus (Tinf) group (n = 6), and fronto-insular (control) group (n = 10). Spoken language and reading abilities were tested in all patients the day before surgery, during surgery, and 3 months after surgery, and cognitive functioning was evaluated before and 3 months after surgery. Text-reading scores obtained before and 3 months after surgery were compared within each group and between groups, correlations between reading scores and both spoken language and cognitive scores were calculated, postoperative cortical-subcortical resection location was estimated, and multiple regression analysis was conducted to examine the relationship between reading proficiency and lesion location. RESULTS The results indicated that only the patients in the IPL group showed a significant decrease in text-reading scores between periods, which was not associated with lower scores in naming or verbal fluency; patients in the Tinf group showed a slight nonsignificant decrease in text reading between periods, which was associated with a clear decrease in naming and semantic verbal fluency; and patients in the control group showed no differences between preoperative and postoperative reading and spoken language scores. The results of the analysis of these behavioral results and anatomical data (resection cavities and white matter damage) suggest critical roles for the left inferior parietal lobule and underlying white matter connectivity, especially the posterior segment of the arcuate fasciculus, in proficient text reading. CONCLUSIONS Text-reading proficiency may depend on not only the integrity of both processing routes but also their capacity for interaction, with critical roles for the left inferior parietal lobule and posterior arcuate fasciculus. These findings have fundamental as well as clinical implications.
Collapse
Affiliation(s)
- Sébastien Boissonneau
- 1Department of Neurosurgery, APHM, CHU Timone, Marseille, France.,2Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille University, Marseille, France
| | - Anne-Laure Lemaître
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and
| | - Guillaume Herbet
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and.,5Department of Speech-Language Therapy, Faculty of Medicine, University of Montpellier, France
| | - Sam Ng
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and
| | - Hugues Duffau
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and.,5Department of Speech-Language Therapy, Faculty of Medicine, University of Montpellier, France
| | - Sylvie Moritz-Gasser
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and.,5Department of Speech-Language Therapy, Faculty of Medicine, University of Montpellier, France
| |
Collapse
|
10
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
11
|
Woolnough O, Donos C, Curtis A, Rollo PS, Roccaforte ZJ, Dehaene S, Fischer-Baum S, Tandon N. A Spatiotemporal Map of Reading Aloud. J Neurosci 2022; 42:5438-5450. [PMID: 35641189 PMCID: PMC9270918 DOI: 10.1523/jneurosci.2324-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 01/09/2023] Open
Abstract
Reading words aloud is a fundamental aspect of literacy. The rapid rate at which multiple distributed neural substrates are engaged in this process can only be probed via techniques with high spatiotemporal resolution. We probed this with direct intracranial recordings covering most of the left hemisphere in 46 humans (26 male, 20 female) as they read aloud regular, exception and pseudo-words. We used this to create a spatiotemporal map of word processing and to derive how broadband γ activity varies with multiple word attributes critical to reading speed: lexicality, word frequency, and orthographic neighborhood. We found that lexicality is encoded earliest in mid-fusiform (mFus) cortex, and precentral sulcus, and is represented reliably enough to allow single-trial lexicality decoding. Word frequency is first represented in mFus and later in the inferior frontal gyrus (IFG) and inferior parietal sulcus (IPS), while orthographic neighborhood sensitivity resides solely in IPS. We thus isolate the neural correlates of the distributed reading network involving mFus, IFG, IPS, precentral sulcus, and motor cortex and provide direct evidence for parallel processes via the lexical route from mFus to IFG, and the sublexical route from IPS and precentral sulcus to anterior IFG.SIGNIFICANCE STATEMENT Reading aloud depends on multiple complex cerebral computations: mapping from a written letter string on a page to a sequence of spoken sound representations. Here, we used direct intracranial recordings in a large cohort while they read aloud known and novel words, to track, across space and time, the progression of neural representations of behaviorally relevant factors that govern reading speed. We find, concordant with cognitive models of reading, that known and novel words are differentially processed through a lexical route, sensitive to frequency of occurrence of known words in natural language, and a sublexical route, performing letter-by-letter construction of novel words.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Cristian Donos
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Faculty of Physics, University of Bucharest, Bucharest, 050663, Romania
| | - Aidan Curtis
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Zachary J Roccaforte
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit CEA, Institut National de la Santé et de la Recherche Médicale, NeuroSpin Center, Université Paris-Sud and Université Paris-Saclay, Gif-sur-Yvette, 91191, France
- Collège de France, Paris, 75005, France
| | - Simon Fischer-Baum
- Department of Psychological Sciences, Rice University, Houston, Texas 77005
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, Texas 77030
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Memorial Hermann Hospital, Texas Medical Center, Houston, Texas 77030
| |
Collapse
|
12
|
Vanova M, Aldridge-Waddon L, Norbury R, Jennings B, Puzzo I, Kumari V. Distinct neural signatures of schizotypy and psychopathy during visual word-nonword recognition. Hum Brain Mapp 2022; 43:3620-3632. [PMID: 35434889 PMCID: PMC9294305 DOI: 10.1002/hbm.25872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/10/2022] Open
Abstract
Previous behavioural data indicate lower word-nonword recognition accuracy in association with a high level of positive schizotypy, psychopathy, or motor impulsivity traits, each with some unique contribution, in the general population. This study aimed to examine the neural underpinnings of these associations using functional magnetic resonance imaging (fMRI) in a volunteer sample. Twenty-two healthy English-speaking adults completed self-report measures of schizotypy (Oxford-Liverpool Inventory of Feelings and Experiences [O-LIFE]), psychopathy (Triarchic Psychopathy Measure [TriPM]), and impulsivity (Barratt Impulsiveness Scale [BIS-11]) and underwent whole-brain fMRI while performing a lexical decision task (LDT) featuring high and low-frequency words, real nonwords, and pseudohomophones. Higher positive schizotypy (Unusual Experiences) was associated with lower cerebellum activity during identification of low-frequency words (over real nonwords). Higher Boldness (fearless dominance) and Meanness (callous aggression) facets of psychopathy were associated with lower striatal and posterior cingulate activity when identifying nonwords over words. Higher Motor Impulsivity was associated with lower activity in the fusiform (bilaterally), inferior frontal (right-sided), and temporal gyri (bilaterally) across all stimuli-types over resting baseline. Positive schizotypy, psychopathy, and impulsivity traits influence word-nonword recognition through distinct neurocognitive mechanisms. Positive schizotypy and psychopathy appear to influence LDT performance through brain areas that play only a supportive (cerebellum) or indirect role in reading-related skills. The negative association between Motor Impulsivity and activations typically found for phonological processing and automatic word identification indicates a reduced bilateral integration of the meaning and sound of mental word representations, and inability to select the appropriate outputs, in impulsive individuals.
Collapse
Affiliation(s)
- Martina Vanova
- Division of Psychology, Department of Life Sciences, & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Luke Aldridge-Waddon
- Division of Psychology, Department of Life Sciences, & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Ray Norbury
- Division of Psychology, Department of Life Sciences, & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Ben Jennings
- Division of Psychology, Department of Life Sciences, & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Ignazio Puzzo
- Division of Psychology, Department of Life Sciences, & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Veena Kumari
- Division of Psychology, Department of Life Sciences, & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| |
Collapse
|
13
|
Sefcikova V, Sporrer JK, Juvekar P, Golby A, Samandouras G. Converting sounds to meaning with ventral semantic language networks: integration of interdisciplinary data on brain connectivity, direct electrical stimulation and clinical disconnection syndromes. Brain Struct Funct 2022; 227:1545-1564. [PMID: 35267079 PMCID: PMC9098557 DOI: 10.1007/s00429-021-02438-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Numerous traditional linguistic theories propose that semantic language pathways convert sounds to meaningful concepts, generating interpretations ranging from simple object descriptions to communicating complex, analytical thinking. Although the dual-stream model of Hickok and Poeppel is widely employed, proposing a dorsal stream, mapping speech sounds to articulatory/phonological networks, and a ventral stream, mapping speech sounds to semantic representations, other language models have been proposed. Indeed, despite seemingly congruent models of semantic language pathways, research outputs from varied specialisms contain only partially congruent data, secondary to the diversity of applied disciplines, ranging from fibre dissection, tract tracing, and functional neuroimaging to neuropsychiatry, stroke neurology, and intraoperative direct electrical stimulation. The current review presents a comprehensive, interdisciplinary synthesis of the ventral, semantic connectivity pathways consisting of the uncinate, middle longitudinal, inferior longitudinal, and inferior fronto-occipital fasciculi, with special reference to areas of controversies or consensus. This is achieved by describing, for each tract, historical concept evolution, terminations, lateralisation, and segmentation models. Clinical implications are presented in three forms: (a) functional considerations derived from normal subject investigations, (b) outputs of direct electrical stimulation during awake brain surgery, and (c) results of disconnection syndromes following disease-related lesioning. The current review unifies interpretation of related specialisms and serves as a framework/thinking model for additional research on language data acquisition and integration.
Collapse
Affiliation(s)
- Viktoria Sefcikova
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Juliana K Sporrer
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Samandouras
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
14
|
Tomasino B, Guarracino I, Ius T, Maieron M, Skrap M. Real-Time Neuropsychological Testing Protocol for Left Temporal Brain Tumor Surgery: A Technical Note and Case Report. Front Hum Neurosci 2021; 15:760569. [PMID: 34924981 PMCID: PMC8678085 DOI: 10.3389/fnhum.2021.760569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background: The risk of surgery in eloquent areas is related to neuropsychological dysfunctions. Maximizing the extent of resection increases the overall survival. The onco-functional balance is mandatory when surgery involves cognitive areas, and maximal information on the cognitive status of patients during awake surgery is needed. This can be achieved using direct cortical stimulation mapping and, in addition to this, a neuropsychological monitoring technique called real-time neuropsychological testing (RTNT). The RTNT includes testing protocols based on the area where the surgery is performed. We reported on tests used for left temporal lobe surgery and our RTNT decision tree. Case Report: We reported our RTNT experience with a 25-year-old right-handed man with 13 years of schooling. He reported daily partial seizures. MRI revealed the presence of a low-grade glioma involving the temporo-insular cortex. The neuropsychological status presurgery which was within the normal range was combined with functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) information. Awake surgery plus RTNT was performed. Direct electrical stimulation during object naming elicited a motor speech arrest. Resection was continuously accompanied by the RTNT. The RTNT provided enriched information to the surgeon. Performance never dropped. A slight decrement in accuracy emerged for pseudoword repetition, short-term memory and working memory, phonological processing, and verbal comprehension. Total resection was performed, and the histological examination confirmed the nature of the lesion. Immediate postsurgery performance was within the normal range as it was the fMRI and DTI assessment. Conclusion: The RTNT provides essential information that can be used online, during surgery, for clinical aims to provide the surgeon with useful feedback on the cognitive status of patients.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Tamara Ius
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Udine, Italy
| | - Marta Maieron
- Fisica Sanitaria, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Udine, Italy
| | - Miran Skrap
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Udine, Italy
| |
Collapse
|
15
|
Dickens JV, DeMarco AT, van der Stelt CM, Snider SF, Lacey EH, Medaglia JD, Friedman RB, Turkeltaub PE. Two types of phonological reading impairment in stroke aphasia. Brain Commun 2021; 3:fcab194. [PMID: 34522884 PMCID: PMC8432944 DOI: 10.1093/braincomms/fcab194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/12/2022] Open
Abstract
Alexia is common in the context of aphasia. It is widely agreed that damage to phonological and semantic systems not specific to reading causes co-morbid alexia and aphasia. Studies of alexia to date have only examined phonology and semantics as singular processes or axes of impairment, typically in the context of stereotyped alexia syndromes. However, phonology, in particular, is known to rely on subprocesses, including sensory-phonological processing, motor-phonological processing, and sensory-motor integration. Moreover, many people with stroke aphasia demonstrate mild or mixed patterns of reading impairment that do not fit neatly with one syndrome. This cross-sectional study tested whether the hallmark symptom of phonological reading impairment, the lexicality effect, emerges from damage to a specific subprocess of phonology in stroke patients not selected for alexia syndromes. Participants were 30 subjects with left-hemispheric stroke and 37 age- and education-matched controls. A logistic mixed-effects model tested whether post-stroke impairments in sensory phonology, motor phonology, or sensory-motor integration modulated the effect of item lexicality on patient accuracy in reading aloud. Support vector regression voxel-based lesion-symptom mapping localized brain regions necessary for reading and non-orthographic phonological processing. Additionally, a novel support vector regression structural connectome-symptom mapping method identified the contribution of both lesioned and spared but disconnected, brain regions to reading accuracy and non-orthographic phonological processing. Specifically, we derived whole-brain structural connectomes using constrained spherical deconvolution-based probabilistic tractography and identified lesioned connections based on comparisons between patients and controls. Logistic mixed-effects regression revealed that only greater motor-phonological impairment related to lower accuracy reading aloud pseudowords versus words. Impaired sensory-motor integration was related to lower overall accuracy in reading aloud. No relationship was identified between sensory-phonological impairment and reading accuracy. Voxel-based and structural connectome lesion-symptom mapping revealed that lesioned and disconnected left ventral precentral gyrus related to both greater motor-phonological impairment and lower sublexical reading accuracy. In contrast, lesioned and disconnected left temporoparietal cortex is related to both impaired sensory-motor integration and reduced overall reading accuracy. These results clarify that at least two dissociable phonological processes contribute to the pattern of reading impairment in aphasia. First, impaired sensory-motor integration, caused by lesions disrupting the left temporoparietal cortex and its structural connections, non-selectively reduces accuracy in reading aloud. Second, impaired motor-phonological processing, caused at least partially by lesions disrupting left ventral premotor cortex and structural connections, selectively reduces sublexical reading accuracy. These results motivate a revised cognitive model of reading aloud that incorporates a sensory-motor phonological circuit.
Collapse
Affiliation(s)
- Jonathan Vivian Dickens
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Candace M van der Stelt
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Sarah F Snider
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Elizabeth H Lacey
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - John D Medaglia
- Drexel University, Philadelphia, PA 19104, USA.,University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rhonda B Friedman
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20001, USA
| |
Collapse
|
16
|
Ius T, Somma T, Baiano C, Guarracino I, Pauletto G, Nilo A, Maieron M, Palese F, Skrap M, Tomasino B. Risk Assessment by Pre-surgical Tractography in Left Hemisphere Low-Grade Gliomas. Front Neurol 2021; 12:648432. [PMID: 33679596 PMCID: PMC7928377 DOI: 10.3389/fneur.2021.648432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Tracking the white matter principal tracts is routinely typically included during the pre-surgery planning examinations and has revealed to limit functional resection of low-grade gliomas (LGGs) in eloquent areas. Objective: We examined the integrity of the Superior Longitudinal Fasciculus (SLF) and Inferior Fronto-Occipital Fasciculus (IFOF), both known to be part of the language-related network in patients with LGGs involving the temporo-insular cortex. In a comparative approach, we contrasted the main quantitative fiber tracking values in the tumoral (T) and healthy (H) hemispheres to test whether or not this ratio could discriminate amongst patients with different post-operative outcomes. Methods: Twenty-six patients with LGGs were included. We obtained quantitative fiber tracking values in the tumoral and healthy hemispheres and calculated the ratio (HIFOF–TIFOF)/HIFOF and the ratio (HSLF–TSLF)/HSLF on the number of streamlines. We analyzed how these values varied between patients with and without post-operative neurological outcomes and between patients with different post-operative Engel classes. Results: The ratio for both IFOF and SLF significantly differed between patient with and without post-operative neurological language deficits. No associations were found between white matter structural changes and post-operative seizure outcomes. Conclusions: Calculating the ratio on the number of streamlines and fractional anisotropy between the tumoral and the healthy hemispheres resulted to be a useful approach, which can prove to be useful during the pre-operative planning examination, as it gives a glimpse on the potential clinical outcomes in patients with LGGs involving the left temporo-insular cortex.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cinzia Baiano
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Ilaria Guarracino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Marta Maieron
- Medical Physics, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Barbara Tomasino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| |
Collapse
|
17
|
Tomasino B, Ius T, Skrap M, Luzzatti C. Phonological and surface dyslexia in individuals with brain tumors: Performance pre-, intra-, immediately post-surgery and at follow-up. Hum Brain Mapp 2020; 41:5015-5031. [PMID: 32857483 PMCID: PMC7643394 DOI: 10.1002/hbm.25176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022] Open
Abstract
We address existing controversies regarding neuroanatomical substrates of reading-aloud processes according to the dual-route processing models, in this particular instance in a series of 49 individuals with brain tumors who performed several reading tasks of real-time neuropsychological testing during surgery (low- to high-grade cerebral neoplasms involving the left hemisphere). We explored how reading abilities in individuals with brain tumors evolve during and after surgery for a brain tumor, and we studied the reading performance in a sample of 33 individuals in a 4-month follow-up after surgery. Impaired reading performance was seen pre-surgery in 7 individuals with brain tumors, intra-surgery in 18 individuals, at immediate post-surgery testing in 26 individuals, and at follow-up in 5 individuals. We classified their reading disorders according to operational criteria for either phonological or surface dyslexia. Neuroimaging results are discussed within the theoretical framework of the dual-route model of reading. Lesion-mask subtraction analyses revealed that areas selectively related with phonological dyslexia were located-along with the left hemisphere dorsal stream-in the Rolandic operculum, the inferior frontal gyrus, the precentral gyrus, the supramarginal gyrus, the insula (and/or the underlying external capsule), and parts of the superior longitudinal fasciculus, whereas lesions related to surface dyslexia involved the ventral stream, that is, the left middle and inferior temporal gyrus and parts of the left inferior longitudinal fasciculus.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute, IRCCS "E. Medea,"San Vito al TagliamentoPordenoneItaly
| | - Tamara Ius
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria Integrata S. Maria della MisericordiaUdineItaly
| | - Miran Skrap
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria Integrata S. Maria della MisericordiaUdineItaly
| | - Claudio Luzzatti
- Dipartimento di PsicologiaUniversità di Milano‐Bicocca and Milan Centre for NeuroscienceMilanItaly
| |
Collapse
|