1
|
Barda T, Schmitz-Koep B, Menegaux A, Bartmann P, Wolke D, Sorg C, Hedderich DM. The impact of socio-environmental factors on brain structure over the early life course of preterm-born individuals - A systematic review. Neurosci Biobehav Rev 2025; 170:106061. [PMID: 39952335 DOI: 10.1016/j.neubiorev.2025.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Approximately 11 % of births worldwide are preterm (<37 weeks). While research traditionally focuses on complications of prematurity and brain development, the role of socio-environmental factors has received less attention. Recent studies indicate these factors significantly influence neurocognitive outcomes and brain development, beyond prematurity alone. This review examines the impact of socio-environmental factors on brain structure and function in preterm-born individuals from birth to early adulthood. METHOD We conducted searches in PubMed, Embase, and Web of Science for studies up to August 28th, 2024, examining socio-environmental effects on brain structure or function in preterm-born individuals using magnetic resonance imaging. From 891 articles screened, 23 met the inclusion criteria. RESULTS Socio-environmental factors, including socioeconomic status, prenatal conditions, hospital environment, and early life experiences, notably affect brain structures in preterm-born individuals. Key impacts were found in limbic and associative cortices (e.g., cingulate gyrus, parieto-temporal cortices), white matter tracts involved in executive functioning (e.g., superior longitudinal fasciculus, cingulum), and overall brain volume. Most studies focused on infancy, with 18 of 23 presenting data from the first year of life. CONCLUSION Socio-environmental factors are associated with changes in grey and white matter in the brain, especially in the limbic system and associative areas. These findings underscore the influence of early environments on preterm-born brain development, but long-term impacts remain unclear due to limited data beyond infancy.
Collapse
Affiliation(s)
- Taylor Barda
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Strasse 2, Munich 82152, Germany.
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; Department of Psychiatry, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
2
|
Thalhammer M, Nimpal M, Schulz J, Meedt V, Menegaux A, Schmitz-Koep B, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Hedderich D, Sorg C. Consistently lower volumes across thalamus nuclei in very premature-born adults. Neuroimage 2024; 297:120732. [PMID: 39004408 DOI: 10.1016/j.neuroimage.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Lasting thalamus volume reduction after preterm birth is a prominent finding. However, whether thalamic nuclei volumes are affected differentially by preterm birth and whether nuclei aberrations are relevant for cognitive functioning remains unknown. Using T1-weighted MR-images of 83 adults born very preterm (≤ 32 weeks' gestation; VP) and/or with very low body weight (≤ 1,500 g; VLBW) as well as of 92 full-term born (≥ 37 weeks' gestation) controls, we compared thalamic nuclei volumes of six subregions (anterior, lateral, ventral, intralaminar, medial, and pulvinar) across groups at the age of 26 years. To characterize the functional relevance of volume aberrations, cognitive performance was assessed by full-scale intelligence quotient using the Wechsler Adult Intelligence Scale and linked to volume reductions using multiple linear regression analyses. Thalamic volumes were significantly lower across all examined nuclei in VP/VLBW adults compared to controls, suggesting an overall rather than focal impairment. Lower nuclei volumes were linked to higher intensity of neonatal treatment, indicating vulnerability to stress exposure after birth. Furthermore, we found that single results for lateral, medial, and pulvinar nuclei volumes were associated with full-scale intelligence quotient in preterm adults, albeit not surviving correction for multiple hypotheses testing. These findings provide evidence that lower thalamic volume in preterm adults is observable across all subregions rather than focused on single nuclei. Data suggest the same mechanisms of aberrant thalamus development across all nuclei after premature birth.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany.
| | - Mehul Nimpal
- Faculty of Biology, Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Veronica Meedt
- Faculty of Biology, Ludwig Maximilian University of Munich
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Marcel Daamen
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany; Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Dennis Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany; Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| |
Collapse
|
3
|
McCall DM, Homayouni R, Yu Q, Raz S, Ofen N. Meta-Analysis of Hippocampal Volume and Episodic Memory in Preterm and Term Born Individuals. Neuropsychol Rev 2024; 34:478-495. [PMID: 37060422 DOI: 10.1007/s11065-023-09583-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2022] [Indexed: 04/16/2023]
Abstract
Preterm birth (< 37 weeks gestation) has been associated with memory deficits, which has prompted investigation of possible alterations in hippocampal volume in this population. However, existing literature reports varying effects of premature birth on hippocampal volume. Specifically, it is unclear whether smaller hippocampal volume in preterm-born individuals is merely reflective of smaller total brain volume. Further, it is not clear if hippocampal volume is associated with episodic memory functioning in preterm-born individuals. Meta-analysis was used to investigate the effects of premature birth on hippocampal volume and episodic memory from early development to young adulthood (birth to 26). PubMed, PsychINFO, and Web of Science were searched for English peer-reviewed articles that included hippocampal volume of preterm and term-born individuals. Thirty articles met the inclusion criteria. Separate meta-analyses were used to evaluate standardized mean differences between preterm and term-born individuals in uncorrected and corrected hippocampal volume, as well as verbal and visual episodic memory. Both uncorrected and corrected hippocampal volume were smaller in preterm-born compared to term-born individuals. Although preterm-born individuals had lower episodic memory performance than term-born individuals, the limited number of studies only permitted a qualitative review of the association between episodic memory performance and hippocampal volume. Tested moderators included mean age, pre/post-surfactant era, birth weight, gestational age, demarcation method, magnet strength, and slice thickness. With this meta-analysis, we provide novel evidence of the effects of premature birth on hippocampal volume.
Collapse
Affiliation(s)
- Dana M McCall
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.
- Department of Neuropsychology, Gundersen Health System, La Crosse, WI, USA.
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Sarah Raz
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
White TA, Miller SL, Sutherland AE, Allison BJ, Camm EJ. Perinatal compromise affects development, form, and function of the hippocampus part one; clinical studies. Pediatr Res 2024; 95:1698-1708. [PMID: 38519794 PMCID: PMC11245394 DOI: 10.1038/s41390-024-03105-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/25/2024]
Abstract
The hippocampus is a neuron-rich specialised brain structure that plays a central role in the regulation of emotions, learning and memory, cognition, spatial navigation, and motivational processes. In human fetal development, hippocampal neurogenesis is principally complete by mid-gestation, with subsequent maturation comprising dendritogenesis and synaptogenesis in the third trimester of pregnancy and infancy. Dendritogenesis and synaptogenesis underpin connectivity. Hippocampal development is exquisitely sensitive to perturbations during pregnancy and at birth. Clinical investigations demonstrate that preterm birth, fetal growth restriction (FGR), and acute hypoxic-ischaemic encephalopathy (HIE) are common perinatal complications that alter hippocampal development. In turn, deficits in hippocampal development and structure mediate a range of neurodevelopmental disorders, including cognitive and learning problems, autism, and Attention-Deficit/Hyperactivity Disorder (ADHD). In this review, we summarise the developmental profile of the hippocampus during fetal and neonatal life and examine the hippocampal deficits observed following common human pregnancy complications. IMPACT: The review provides a comprehensive summary of the developmental profile of the hippocampus in normal fetal and neonatal life. We address a significant knowledge gap in paediatric research by providing a comprehensive summary of the relationship between pregnancy complications and subsequent hippocampal damage, shedding new light on this critical aspect of early neurodevelopment.
Collapse
Affiliation(s)
- Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Duerden EG, Guo T, Chau C, Chau V, Synnes A, Grunau RE, Miller SP. Association of Neonatal Midazolam Exposure With Hippocampal Growth and Working Memory Performance in Children Born Preterm. Neurology 2023; 101:e1863-e1872. [PMID: 37748888 PMCID: PMC10663014 DOI: 10.1212/wnl.0000000000207817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/26/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Early exposure to analgesics and sedatives is a key concern for later learning disorders in children. The hippocampus, a key region for learning and memory, may be selectively affected by exposure to benzodiazepines that are commonly used for sedation, particularly in the neonatal period. In this prospective cohort study, the long-term association of neonatal midazolam exposure, a widely used benzodiazepine in neonatal intensive care, with school age hippocampal growth was examined. Higher-order cognitive function in preterm born children was assessed in relation to hippocampal volumes. METHODS Very preterm born children underwent MRI to characterize the hippocampus and its subfields and neuropsychological testing. Generalized linear models were used to determine the predictors of 8-year hippocampal volumes. Children were assessed on the Wechsler Abbreviated Scales of Intelligence, Second Edition, and the Wechsler Intelligence Scales for Children, Fifth Edition (WISC-V). RESULTS A total of 140 preterm children who were 8 years of age participated, and 25 (18%) were exposed to midazolam as neonates. Reduced hippocampal volumes at age 8 years were associated with neonatal midazolam exposure (B = -400.2, 95% CI -14.37 to -786.03, p = 0.04), adjusting for neonatal clinical care factors. Boys exposed to higher doses of midazolam as neonates had smaller hippocampal volumes (χ2 = 14.4, p = 0.002) compared with nonexposed boys and girls (both, p < 0.03). Analysis of the hippocampal subfields in relation to neonatal midazolam dose revealed that higher doses were associated with smaller volumes of the subiculum (p = 0.008), a hippocampal-cortical relay region implicated in memory processes. Furthermore, smaller school age subiculum volumes predicted significantly lower working memory scores on the WISC-V (B = 0.04, 95% CI 0.01-0.07, p = 0.017). DISCUSSION Early midazolam exposure and the association with impaired hippocampal growth seem long-lasting and are most apparent in boys. Alterations in subiculum volumes may underlie hippocampus-dependent memory formation processes in preterm born children exposed to midazolam as neonates.
Collapse
Affiliation(s)
- Emma G Duerden
- From the Western University (E.G.D.), London; Hospital for Sick Children (T.G.), Toronto, Ontario; University of British Columbia (C.C., A.S., R.E.G., S.P.M.), Vancouver; and The Hospital for Sick Children and University of Toronto (V.C.), Ontario, Canada.
| | - Ting Guo
- From the Western University (E.G.D.), London; Hospital for Sick Children (T.G.), Toronto, Ontario; University of British Columbia (C.C., A.S., R.E.G., S.P.M.), Vancouver; and The Hospital for Sick Children and University of Toronto (V.C.), Ontario, Canada
| | - Cecil Chau
- From the Western University (E.G.D.), London; Hospital for Sick Children (T.G.), Toronto, Ontario; University of British Columbia (C.C., A.S., R.E.G., S.P.M.), Vancouver; and The Hospital for Sick Children and University of Toronto (V.C.), Ontario, Canada
| | - Vann Chau
- From the Western University (E.G.D.), London; Hospital for Sick Children (T.G.), Toronto, Ontario; University of British Columbia (C.C., A.S., R.E.G., S.P.M.), Vancouver; and The Hospital for Sick Children and University of Toronto (V.C.), Ontario, Canada
| | - Anne Synnes
- From the Western University (E.G.D.), London; Hospital for Sick Children (T.G.), Toronto, Ontario; University of British Columbia (C.C., A.S., R.E.G., S.P.M.), Vancouver; and The Hospital for Sick Children and University of Toronto (V.C.), Ontario, Canada
| | - Ruth E Grunau
- From the Western University (E.G.D.), London; Hospital for Sick Children (T.G.), Toronto, Ontario; University of British Columbia (C.C., A.S., R.E.G., S.P.M.), Vancouver; and The Hospital for Sick Children and University of Toronto (V.C.), Ontario, Canada
| | - Steven P Miller
- From the Western University (E.G.D.), London; Hospital for Sick Children (T.G.), Toronto, Ontario; University of British Columbia (C.C., A.S., R.E.G., S.P.M.), Vancouver; and The Hospital for Sick Children and University of Toronto (V.C.), Ontario, Canada
| |
Collapse
|
6
|
Schmitz‐Koep B, Menegaux A, Zimmermann J, Thalhammer M, Neubauer A, Wendt J, Schinz D, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered gray-to-white matter tissue contrast in preterm-born adults. CNS Neurosci Ther 2023; 29:3199-3211. [PMID: 37365964 PMCID: PMC10580354 DOI: 10.1111/cns.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
AIMS To investigate cortical organization in brain magnetic resonance imaging (MRI) of preterm-born adults using percent contrast of gray-to-white matter signal intensities (GWPC), which is an in vivo proxy measure for cortical microstructure. METHODS Using structural MRI, we analyzed GWPC at different percentile fractions across the cortex (0%, 10%, 20%, 30%, 40%, 50%, and 60%) in a large and prospectively collected cohort of 86 very preterm-born (<32 weeks of gestation and/or birth weight <1500 g, VP/VLBW) adults and 103 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. RESULTS GWPC was significantly decreased in VP/VLBW adults in frontal, parietal, and temporal associative cortices, predominantly in the right hemisphere. Differences were pronounced at 20%, 30%, and 40%, hence, in middle cortical layers. GWPC was significantly increased in right paracentral lobule in VP/VLBW adults. GWPC in frontal and temporal cortices was positively correlated with birth weight, and negatively with duration of ventilation (p < 0.05). Furthermore, GWPC in right paracentral lobule was negatively correlated with IQ (p < 0.05). CONCLUSIONS Widespread aberrant gray-to-white matter contrast suggests lastingly altered cortical microstructure after preterm birth, mainly in middle cortical layers, with differential effects on associative and primary cortices.
Collapse
Affiliation(s)
- Benita Schmitz‐Koep
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Antonia Neubauer
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Jil Wendt
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - David Schinz
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Marcel Daamen
- Department of Diagnostic and Interventional RadiologyUniversity Hospital Bonn, Clinical Functional Imaging GroupBonnGermany
- Department of Neonatology and Pediatric Intensive CareUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Department of Diagnostic and Interventional RadiologyUniversity Hospital Bonn, Clinical Functional Imaging GroupBonnGermany
| | - Claus Zimmer
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Josef Priller
- Department of PsychiatryTechnical University of Munich, School of MedicineMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive CareUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
- Department of PsychiatryTechnical University of Munich, School of MedicineMunichGermany
| | - Dennis M. Hedderich
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| |
Collapse
|
7
|
Sharma DR, Cheng B, Sahu R, Zhang X, Mehdizadeh R, Singh D, Iacobas D, Ballabh P. Oestrogen treatment restores dentate gyrus development in premature newborns by IGF1 regulation. J Cell Mol Med 2023; 27:2467-2481. [PMID: 37594177 PMCID: PMC10468667 DOI: 10.1111/jcmm.17816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 08/19/2023] Open
Abstract
Prematurely-born infants cared for in the neonatal units suffer from memory and learning deficits. Prematurity diminishes neurogenesis and synaptogenesis in the hippocampal dentate gyrus (DG). This dysmaturation of neurons is attributed to elevated PSD95, NMDR2A, and IGF1 levels. Since oestrogen treatment plays key roles in the development and plasticity of DG, we hypothesized that 17β-estradiol (E2) treatment would ameliorate neurogenesis and synaptogenesis in the DG, reversing cognitive deficits in premature newborns. Additionally, E2-induced recovery would be mediated by IGF1 signalling. These hypotheses were tested in a rabbit model of prematurity and nonmaternal care, in which premature kits were gavage-fed and reared by laboratory personnel. We compared E2- and vehicle-treated preterm kits for morphological, molecular, and behavioural parameters. We also treated kits with oestrogen degrader, RAD1901, and assessed IGF1 signalling. We found that E2 treatment increased the number of Tbr2+ and DCX+ neuronal progenitors and increased the density of glutamatergic synapses in the DG. E2 treatment restored PSD95 and NMDAR2A levels and cognitive function in preterm kits. Transcriptomic analyses showed that E2 treatment contributed to recovery by influencing interactions between IGF1R and neurodegenerative, as well as glutamatergic genes. ERα expression was reduced on completion of E2 treatment at D7, followed by D30 elevation. E2-induced fluctuation in ERα levels was associated with a reciprocal elevation in IGF1/2 expression at D7 and reduction at D30. ERα degradation by RAD1901 treatment enhanced IGF1 levels, suggesting ERα inhibits IGF1 expression. E2 treatment alleviates the prematurity-induced maldevelopment of DG and cognitive dysfunctions by regulating ERα and IGF1 levels.
Collapse
Affiliation(s)
- Deep R. Sharma
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Bokun Cheng
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Rauhin Sahu
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Xusheng Zhang
- Computational Genomics CoreAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Rana Mehdizadeh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Divya Singh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Dumitru Iacobas
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Personalized Genomics Laboratory, Texas Undergraduate Medical AcademyPrairie View A&M UniversityPrairie ViewTexasUSA
| | - Praveen Ballabh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
8
|
Sharma DR, Cheng B, Jaiswal MK, Zhang X, Kumar A, Parikh N, Singh D, Sheth H, Varghese M, Dobrenis K, Zhang X, Hof PR, Stanton PK, Ballabh P. Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns. Cereb Cortex 2023; 33:6449-6464. [PMID: 36646459 PMCID: PMC10183730 DOI: 10.1093/cercor/bhac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Prematurely born infants are deprived of maternal hormones and cared for in the stressful environment of Neonatal Intensive Care Units (NICUs). They suffer from long-lasting deficits in learning and memory. Here, we show that prematurity and associated neonatal stress disrupt dentate gyrus (DG) development and induce long-term cognitive deficits and that these effects are mediated by insulin growth factor-1 (IGF1). Nonmaternal care of premature rabbits increased the number of granule cells and interneurons and reduced neurogenesis, suggesting accelerated premature maturation of DG. However, the density of glutamatergic synapses, mature dendritic spines, and synaptic transmission were reduced in preterm kits compared with full-term controls, indicating that premature synaptic maturation was abnormal. These findings were consistent with cognitive deficits observed in premature rabbits and appeared to be driven by transcriptomic changes in the granule cells. Preterm kits displayed reduced weight, elevated serum cortisol and growth hormone, and higher IGF1 expression in the liver and DG relative to full-term controls. Importantly, blocking IGF-1 receptor in premature kits restored cognitive deficits, increased the density of glutamatergic puncta, and rescued NR2B and PSD95 levels in the DG. Hence, IGF1 inhibition alleviates prematurity-induced cognitive dysfunction and synaptic changes in the DG through modulation of NR2B and PSD95. The study identifies a novel strategy to potentially rescue DG maldevelopment and cognitive dysfunction in premature infants under stress in NICUs.
Collapse
Affiliation(s)
- Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Manoj Kumar Jaiswal
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nirzar Parikh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Divya Singh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patric K Stanton
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Schmitz-Koep B, Menegaux A, Gaser C, Brandes E, Schinz D, Thalhammer M, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:495-504. [PMID: 35276405 DOI: 10.1016/j.bpsc.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Departments of Psychiatry, University Hospital Jena, Jena, Germany; Departments of Neurology, University Hospital Jena, Jena, Germany
| | - Elin Brandes
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Berlin, Germany; UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Kelly CE, Shaul M, Thompson DK, Mainzer RM, Yang JY, Dhollander T, Cheong JL, Inder TE, Doyle LW, Anderson PJ. Long-lasting effects of very preterm birth on brain structure in adulthood: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 147:105082. [PMID: 36775083 DOI: 10.1016/j.neubiorev.2023.105082] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Early life experiences, such as very preterm (VP) birth, can affect brain and cognitive development. Several prior studies investigated brain structure in adults born VP; synthesising these studies may help to provide a clearer understanding of long-term effects of VP birth on the brain. We systematically searched Medline and Embase for articles that investigated brain structure using MRI in adulthood in individuals born VP (<32 weeks' gestation) or with very low birth weight (VLBW; <1500 g), and controls born at term or with normal birth weight. In total, 77 studies met the review inclusion criteria, of which 28 studies were eligible for meta-analyses, including data from up to 797 VP/VLBW participants and 518 controls, aged 18-33 years. VP/VLBW adults exhibited volumetric, morphologic and microstructural alterations in subcortical and temporal cortical regions compared with controls, with pooled standardised mean differences up to - 1.0 (95% confidence interval: -1.2, -0.8). This study suggests there is a persisting neurological impact of VP birth, which may provide developmental neurobiological insights for adult cognition in high-risk populations.
Collapse
Affiliation(s)
- Claire E Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Michelle Shaul
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Deakin University, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Rheanna M Mainzer
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Clinical Epidemiology and Biostatistics Unit, Population Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Joseph Ym Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatrics, Children's Hospital of Orange County, University of California Irvine, CA, USA
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
11
|
Solis-Urra P, Esteban-Cornejo I, Mora-Gonzalez J, Stillman C, Contreras-Rodriguez O, Erickson KI, Catena A, Ortega FB. Early life factors and hippocampal functional connectivity in children with overweight/obesity. Pediatr Obes 2023; 18:e12998. [PMID: 36573637 PMCID: PMC11225616 DOI: 10.1111/ijpo.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We investigated the association of anthropometric neonatal data (birth length and birth weight) and breastfeeding practices (exclusive and any breastfeeding) with hippocampal functional connectivity and its academic implication in children with overweight/obesity. METHODS Ninety six children with overweight/obesity aged 8-11 years (10.01 ± 1.14), from the ActiveBrains project were included in this cross-sectional study. Anthropometric neonatal data were collected from birth records, whereas breastfeeding practices were reported by parents. A 3.0 Tesla Siemens Magnetom Tim Trio system was used to acquire T1-weighted and resting-state functional magnetic resonance images. Academic performance was assessed by the Woodcock-Muñoz standardized test. Hippocampal seed-based methods with post-hoc regression analyses were performed. Analyses were considered significant when surpassing Family-Wise Error corrections. RESULTS Birth weight showed a positive association with the connectivity between the hippocampus and the pre- and postcentral gyri, and the cerebellum. In addition, breastfeeding was negatively associated with the connectivity between the hippocampus and the primary motor cortex and the angular gyrus. Any breastfeeding, in turn, showed a positive association with the connectivity between the hippocampus and the middle temporal gyrus. None of the connectivity outcomes related to early life factors was coupled with better academic abilities (all p > 0.05). CONCLUSIONS Our findings suggest that birth weight at birth and breastfeeding are associated with hippocampal connectivity in children with overweight/obesity. Despite this, how the results relate to academic performance remains a matter of speculation. Our findings suggest that clinicians should recognize the importance early life factors for potentially avoiding consequences on offspring's brain development.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Nuclear Medicine Services, “Virgen de Las Nieves”, University Hospital, Granada, Spain
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile
| | - Irene Esteban-Cornejo
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Mora-Gonzalez
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Chelsea Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oren Contreras-Rodriguez
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), and CIBERSAM, Girona, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Kirk I. Erickson
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- AdventHealth Research Institute, Orlando, Florida, USA
| | - Andrés Catena
- School of Psychology, University of Granada, Granada, Spain
| | - Francisco B. Ortega
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
12
|
Schmitz-Koep B, Menegaux A, Zimmermann J, Thalhammer M, Neubauer A, Wendt J, Schinz D, Wachinger C, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Aberrant allometric scaling of cortical folding in preterm-born adults. Brain Commun 2022; 5:fcac341. [PMID: 36632185 PMCID: PMC9830984 DOI: 10.1093/braincomms/fcac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
A universal allometric scaling law has been proposed to describe cortical folding of the mammalian brain as a function of the product of cortical surface area and the square root of cortical thickness across different mammalian species, including humans. Since these cortical properties are vulnerable to developmental disturbances caused by preterm birth in humans and since these alterations are related to cognitive impairments, we tested (i) whether cortical folding in preterm-born adults follows this cortical scaling law and (ii) the functional relevance of potential scaling aberrances. We analysed the cortical scaling relationship in a large and prospectively collected cohort of 91 very premature-born adults (<32 weeks of gestation and/or birthweight <1500 g, very preterm and/or very low birth weight) and 105 full-term controls at 26 years of age based on the total surface area, exposed surface area and average cortical thickness measured with structural magnetic resonance imaging and surface-based morphometry. We found that the slope of the log-transformed cortical scaling relationship was significantly altered in adults (very preterm and/or very low birth weight: 1.24, full-term: 1.14, P = 0.018). More specifically, the slope was significantly altered in male adults (very preterm and/or very low birth weight: 1.24, full-term: 1.00, P = 0.031), while there was no significant difference in the slope of female adults (very preterm and/or very low birth weight: 1.27, full-term: 1.12, P = 0.225). Furthermore, offset was significantly lower compared with full-term controls in both male (very preterm and/or very low birth weight: -0.546, full-term: -0.538, P = 0.001) and female adults (very preterm and/or very low birth weight: -0.545, full-term: -0.538, P = 0.023), indicating a systematic shift of the regression line after preterm birth. Gestational age had a significant effect on the slope in very preterm and/or very low birth weight adults and more specifically in male very preterm and/or very low birth weight adults, indicating that the difference in slope is specifically related to preterm birth. The shape or tension term of the scaling law had no significant effect on cognitive performance, while the size of the cortex did. Results demonstrate altered scaling of cortical surface and cortical thickness in very premature-born adults. Data suggest altered mechanical forces acting on the cortex after preterm birth.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Correspondence to: Benita Schmitz-Koep, MD Department of Diagnostic and Interventional Neuroradiology Technical University of Munich, School of Medicine Klinikum rechts der Isar, Ismaninger Strasse 22 81675 Munich, Germany E-mail:
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Christian Wachinger
- Lab for Artificial Intelligence in Medical Imaging, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Josef Priller
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry CV4 7AL, UK
- Warwick Medical School, University of Warwick, University Road, Coventry CV4 7AL, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Street 22, 81675 Munich, Germany
| |
Collapse
|
13
|
Hedderich DM, Menegaux A, Li H, Schmitz-Koep B, Stämpfli P, Bäuml JG, Berndt MT, Bäuerlein FJB, Grothe MJ, Dyrba M, Avram M, Boecker H, Daamen M, Zimmer C, Bartmann P, Wolke D, Sorg C. Aberrant Claustrum Microstructure in Humans after Premature Birth. Cereb Cortex 2021; 31:5549-5559. [PMID: 34171095 DOI: 10.1093/cercor/bhab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hongwei Li
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Stämpfli
- MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, 8032 Zurich, Switzerland
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany
| | - Mihai Avram
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, 23538 Lübeck, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany.,Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, CV4 7AL, Coventry, UK.,Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
14
|
Schmitz-Koep B, Zimmermann J, Menegaux A, Nuttall R, Bäuml JG, Schneider SC, Daamen M, Boecker H, Zimmer C, Wolke D, Bartmann P, Hedderich DM, Sorg C. Within amygdala: Basolateral parts are selectively impaired in premature-born adults. Neuroimage Clin 2021; 31:102780. [PMID: 34391140 PMCID: PMC8374486 DOI: 10.1016/j.nicl.2021.102780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
While it is known that whole amygdala volume is lastingly reduced after premature birth, it is unknown whether different amygdala nuclei are distinctively affected by prematurity. This question is motivated by two points: First, the observation that developmental trajectories of superficial, centromedial and basolateral amygdala nuclei are different. And second, the expectation that these different developmental pathways are distinctively affected by prematurity. Furthermore, we stated the question whether alterations in amygdala nuclei are associated with increased adults' anxiety traits after premature birth. We investigated 101 very premature-born adults (<32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls of a prospectively and longitudinally collected cohort at 26 years of age using automated amygdala nuclei segmentation based on structural MRI. We found selectively reduced volumes of bilateral accessory basal nuclei (pertaining to the basolateral amygdala of claustral developmental trajectory) adjusted for whole amygdala volume. Volumes of bilateral accessory basal nuclei were positively associated with gestational age and negatively associated with duration of ventilation. Furthermore, structural covariance within the basolateral amygdala was increased in premature-born adults. We did not find an association between reduced volumes of basolateral amygdala and increased social anxiety in the prematurity group. These results demonstrate specifically altered basolateral amygdala structure in premature-born adults. Data suggest that prematurity has distinct effects on amygdala nuclei.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Josef G Bäuml
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Sebastian C Schneider
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry CV4 7AL, United Kingdom; Warwick Medical School, University of Warwick, University Road, Coventry CV4 7AL, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
15
|
Schmitz-Koep B, Zimmermann J, Menegaux A, Nuttall R, Bäuml JG, Schneider SC, Daamen M, Boecker H, Zimmer C, Wolke D, Bartmann P, Hedderich DM, Sorg C. Decreased amygdala volume in adults after premature birth. Sci Rep 2021; 11:5403. [PMID: 33686187 PMCID: PMC7970879 DOI: 10.1038/s41598-021-84906-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Premature-born infants have impaired amygdala structure, presumably due to increased stress levels of premature birth mediated by the amygdala. However, accounting for lifelong plasticity of amygdala, it is unclear whether such structural changes persist into adulthood. To address this problem, we stated the following questions: first, are whole amygdala volumes reduced in premature-born adults? And second, as adult anxiety traits are often increased after prematurity and linked with amygdala structure, are alterations in amygdala associated with adults' anxiety traits after premature birth? We addressed these questions by automated amygdala segmentation of MRI volumes in 101 very premature-born adults (< 32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls at 26 years of age of a prospectively and longitudinally collected cohort. We found significantly lower whole amygdala volumes in premature-born adults. While premature-born adults had significantly higher T score for avoidant personality reflecting increased social anxiety trait, this trait was not correlated with amygdala volume alterations. Results demonstrate reduced amygdala volumes in premature born adults. Data suggest lasting effects of prematurity on amygdala structure.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Josef G Bäuml
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian C Schneider
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Klinikum Rechts Der Isar, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Psychiatry, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
16
|
Hedderich DM, Avram M, Menegaux A, Nuttall R, Zimmermann J, Schneider SC, Schmitz-Koep B, Daamen M, Scheef L, Boecker H, Zimmer C, Baumann N, Bartmann P, Wolke D, Bäuml JG, Sorg C. Hippocampal subfield volumes are nonspecifically reduced in premature-born adults. Hum Brain Mapp 2020; 41:5215-5227. [PMID: 32845045 PMCID: PMC7670635 DOI: 10.1002/hbm.25187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 01/06/2023] Open
Abstract
Reduced global hippocampus volumes have been demonstrated in premature‐born individuals, from newborns to adults; however, it is unknown whether hippocampus subfield (HCSF) volumes are differentially affected by premature birth and how relevant they are for cognitive performance. To address these questions, we investigated magnetic resonance imaging (MRI)‐derived HCSF volumes in very premature‐born adults, and related them with general cognitive performance in adulthood. We assessed 103 very premature‐born (gestational age [GA] <32 weeks and/or birth weight <1,500 g) and 109 term‐born individuals with cognitive testing and structural MRI at 26 years of age. HCSFs were automatically segmented based on three‐dimensional T1‐ and T2‐weighted sequences and studied both individually and grouped into three functional units, namely hippocampus proper (HP), subicular complex (SC), and dentate gyrus (DG). Cognitive performance was measured using the Wechsler‐Adult‐Intelligence‐Scale (full‐scale intelligence quotient [FS‐IQ]) at 26 years. We observed bilateral volume reductions for almost all HCSF volumes in premature‐born adults and associations with GA and neonatal treatment intensity but not birth weight. Left‐sided HP, SC, and DG volumes were associated with adult FS‐IQ. Furthermore, left DG volume was a mediator of the association between GA and adult FS‐IQ in premature‐born individuals. Results demonstrate nonspecifically reduced HCSF volumes in premature‐born adults; but specific associations with cognitive outcome highlight the importance of the left DG. Data suggest that specific interventions toward hippocampus function might be promising to lower adverse cognitive effects of prematurity.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Sebastian C Schneider
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany.,Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Josef G Bäuml
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Technical University of Munich-NIC Neuroimaging Center, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|