1
|
Lin Q, Jin S, Yin G, Li J, Asgher U, Qiu S, Wang J. Cortical Morphological Networks Differ Between Gyri and Sulci. Neurosci Bull 2025; 41:46-60. [PMID: 39044060 PMCID: PMC11748734 DOI: 10.1007/s12264-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 07/25/2024] Open
Abstract
This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.
Collapse
Affiliation(s)
- Qingchun Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Umer Asgher
- Department of Air Transport, Faculty of Transportation Sciences, Czech Technical University in Prague (CTU), Prague, 128 00, Czech Republic
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Li J, Jin S, Li Z, Zeng X, Yang Y, Luo Z, Xu X, Cui Z, Liu Y, Wang J. Morphological Brain Networks of White Matter: Mapping, Evaluation, Characterization, and Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400061. [PMID: 39005232 PMCID: PMC11425219 DOI: 10.1002/advs.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.
Collapse
Affiliation(s)
- Junle Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Suhui Jin
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhen Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiangli Zeng
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Yuping Yang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhenzhen Luo
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiaoyu Xu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100875China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Zaixu Cui
- Chinese Institute for Brain ResearchBeijing102206China
| | - Yaou Liu
- Department of RadiologyBeijing Tiantan HospitalBeijing100070China
| | - Jinhui Wang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationGuangzhou510631China
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhou510631China
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
3
|
Ma X, Li J, Yang Y, Qiu X, Sheng J, Han N, Wu C, Xu G, Jiang G, Tian J, Weng X, Wang J. Enhanced cerebral blood flow similarity of the somatomotor network in chronic insomnia: Transcriptomic decoding, gut microbial signatures and phenotypic roles. Neuroimage 2024; 297:120762. [PMID: 39089603 DOI: 10.1016/j.neuroimage.2024.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic insomnia (CI) is a complex disease involving multiple factors including genetics, gut microbiota, and brain structure and function. However, there lacks a unified framework to elucidate how these factors interact in CI. By combining data of clinical assessment, sleep behavior recording, cognitive test, multimodal MRI (structural, functional, and perfusion), gene, and gut microbiota, this study demonstrated that enhanced cerebral blood flow (CBF) similarities of the somatomotor network (SMN) acted as a key mediator to link multiple factors in CI. Specifically, we first demonstrated that only CBF but not morphological or functional networks exhibited alterations in patients with CI, characterized by increases within the SMN and between the SMN and higher-order associative networks. Moreover, these findings were highly reproducible and the CBF similarity method was test-retest reliable. Further, we showed that transcriptional profiles explained 60.4 % variance of the pattern of the increased CBF similarities with the most correlated genes enriched in regulation of cellular and protein localization and material transport, and gut microbiota explained 69.7 % inter-individual variance in the increased CBF similarities with the most contributions from Negativicutes and Lactobacillales. Finally, we found that the increased CBF similarities were correlated with clinical variables, accounted for sleep behaviors and cognitive deficits, and contributed the most to the patient-control classification (accuracy = 84.4 %). Altogether, our findings have important implications for understanding the neuropathology of CI and may inform ways of developing new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jintao Sheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ningke Han
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junzhang Tian
- Department of Nuclear Medicine, Jinan University Affiliated Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Wang Y, Li J, Jin S, Wang J, Lv Y, Zou Q, Wang J. Mapping morphological cortical networks with joint probability distributions from multiple morphological features. Neuroimage 2024; 296:120673. [PMID: 38851550 DOI: 10.1016/j.neuroimage.2024.120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Morphological features sourced from structural magnetic resonance imaging can be used to infer human brain connectivity. Although integrating different morphological features may theoretically be beneficial for obtaining more precise morphological connectivity networks (MCNs), the empirical evidence to support this supposition is scarce. Moreover, the incorporation of different morphological features remains an open question. In this study, we proposed a method to construct cortical MCNs based on multiple morphological features. Specifically, we adopted a multi-dimensional kernel density estimation algorithm to fit regional joint probability distributions (PDs) from different combinations of four morphological features, and estimated inter-regional similarity in the joint PDs via Jensen-Shannon divergence. We evaluated the method by comparing the resultant MCNs with those built based on different single morphological features in terms of topological organization, test-retest reliability, biological plausibility, and behavioral and cognitive relevance. We found that, compared to MCNs built based on different single morphological features, MCNs derived from multiple morphological features displayed less segregated, but more integrated network architecture and different hubs, had higher test-retest reliability, encompassed larger proportions of inter-hemispheric edges and edges between brain regions within the same cytoarchitectonic class, and explained more inter-individual variance in behavior and cognition. These findings were largely reproducible when different brain atlases were used for cortical parcellation. Further analysis of macaque MCNs revealed weak, but significant correlations with axonal connectivity from tract-tracing, independent of the number of morphological features. Altogether, this paper proposes a new method for integrating different morphological features, which will be beneficial for constructing MCNs.
Collapse
Affiliation(s)
- Yuqi Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
5
|
Gu SY, Shi FC, Wang S, Wang CY, Yao XX, Sun YF, Luo CX, Liu WT, Hu JB, Chen F, Pan PL, Li WH. Altered cortical thickness and structural covariance networks in chronic low back pain. Brain Res Bull 2024; 212:110968. [PMID: 38679110 DOI: 10.1016/j.brainresbull.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Despite regional brain structural changes having been reported in patients with chronic low back pain (CLBP), the topological properties of structural covariance networks (SCNs), which refer to the organization of the SCNs, remain unclear. This study applied graph theoretical analysis to explore the alterations of the topological properties of SCNs, aiming to comprehend the integration and separation of SCNs in patients with CLBP. METHODS A total of 38 patients with CLBP and 38 healthy controls (HCs), balanced for age and sex, were scanned using three-dimensional T1-weighted magnetic resonance imaging. The cortical thickness was extracted from 68 brain regions, according to the Desikan-Killiany atlas, and used to reconstruct the SCNs. Subsequently, graph theoretical analysis was employed to evaluate the alterations of the topological properties in the SCNs of patients with CLBP. RESULTS In comparison to HCs, patients with CLBP had less cortical thickness in the left superior frontal cortex. Additionally, the cortical thickness of the left superior frontal cortex was negatively correlated with the Visual Analogue Scale scores of patients with CLBP. Furthermore, patients with CLBP, relative to HCs, exhibited lower global efficiency and small-worldness, as well as a longer characteristic path length. This indicates a decline in the brain's capacity to transmit and process information, potentially impacting the processing of pain signals in patients with CLBP and contributing to the development of CLBP. In contrast, there were no significant differences in the clustering coefficient, local efficiency, nodal efficiency, nodal betweenness centrality, or nodal degree between the two groups. CONCLUSIONS From the regional cortical thickness to the complex brain network level, our study demonstrated changes in the cortical thickness and topological properties of the SCNs in patients with CLBP, thus aiding in a better understanding of the pathophysiological mechanisms of CLBP.
Collapse
Affiliation(s)
- Si-Yu Gu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Feng-Chao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Shu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Cheng-Yu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xin-Xin Yao
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yi-Fan Sun
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Chuan-Xu Luo
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wan-Ting Liu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Ping-Lei Pan
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wen-Hui Li
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China; The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, PR China.
| |
Collapse
|
6
|
Qiu X, Yang J, Hu X, Li J, Zhao M, Ren F, Weng X, Edden RAE, Gao F, Wang J. Association between hearing ability and cortical morphology in the elderly: multiparametric mapping, cognitive relevance, and neurobiological underpinnings. EBioMedicine 2024; 104:105160. [PMID: 38788630 PMCID: PMC11140565 DOI: 10.1016/j.ebiom.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Hearing impairment is a common condition in the elderly. However, a comprehensive understanding of its neural correlates is still lacking. METHODS We recruited 284 elderly adults who underwent structural MRI, magnetic resonance spectroscopy, audiometry, and cognitive assessments. Individual hearing abilities indexed by pure tone average (PTA) were correlated with multiple structural MRI-derived cortical morphological indices. For regions showing significant correlations, mediation analyses were performed to examine their role in the relationship between hearing ability and cognitive function. Finally, the correlation maps between hearing ability and cortical morphology were linked with publicly available connectomic gradient, transcriptomic, and neurotransmitter maps. FINDINGS Poorer hearing was related to cortical thickness (CT) reductions in widespread regions and gyrification index (GI) reductions in the right Area 52 and Insular Granular Complex. The GI in the right Area 52 mediated the relationship between hearing ability and executive function. This mediating effect was further modulated by glutamate and N-acetylaspartate levels in the right auditory region. The PTA-CT correlation map followed microstructural connectomic hierarchy, were related to genes involved in certain biological processes (e.g., glutamate metabolic process), cell types (e.g., excitatory neurons and astrocytes), and developmental stages (i.e., childhood to young adulthood), and covaried with dopamine receptor 1, dopamine transporter, and fluorodopa. The PTA-GI correlation map was related to 5-hydroxytryptamine receptor 2a. INTERPRETATION Poorer hearing is associated with cortical thinning and folding reductions, which may be engaged in the relationship between hearing impairment and cognitive decline in the elderly and have different neurobiological substrates. FUNDING See the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China.
| |
Collapse
|
7
|
Wang J, He Y. Toward individualized connectomes of brain morphology. Trends Neurosci 2024; 47:106-119. [PMID: 38142204 DOI: 10.1016/j.tins.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The morphological brain connectome (MBC) delineates the coordinated patterns of local morphological features (such as cortical thickness) across brain regions. While classically constructed using population-based approaches, there is a growing trend toward individualized modeling. Currently, the methods for individualized MBCs are varied, posing challenges for method selection and cross-study comparisons. Here, we summarize how individualized MBCs are modeled through low-order methods (correlation-, divergence-, distance-, and deviation-based methods) describing relations in brain morphology, as well as high-order methods capturing similarities in these low-order relations. We discuss the merits and limitations of different methods, examining them in the context of robustness, reproducibility, and reliability. We highlight the importance of elucidating the cellular and molecular mechanisms underlying the individualized connectome, and establishing normative benchmarks to assess individual variation in development, aging, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Li Z, Li J, Wang N, Lv Y, Zou Q, Wang J. Single-subject cortical morphological brain networks: Phenotypic associations and neurobiological substrates. Neuroimage 2023; 283:120434. [PMID: 37907157 DOI: 10.1016/j.neuroimage.2023.120434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023] Open
Abstract
Although single-subject morphological brain networks provide an important way for human connectome studies, their roles and origins are poorly understood. Combining cross-sectional and repeated structural magnetic resonance imaging scans from adults, children and twins with behavioral and cognitive measures and brain-wide transcriptomic, cytoarchitectonic and chemoarchitectonic data, this study examined phenotypic associations and neurobiological substrates of single-subject morphological brain networks. We found that single-subject morphological brain networks explained inter-individual variance and predicted individual outcomes in Motor and Cognition domains, and distinguished individuals from each other. The performance can be further improved by integrating different morphological indices for network construction. Low-moderate heritability was observed for single-subject morphological brain networks with the highest heritability for sulcal depth-derived networks and higher heritability for inter-module connections. Furthermore, differential roles of genetic, cytoarchitectonic and chemoarchitectonic factors were observed for single-subject morphological brain networks. Cortical thickness-derived networks were related to the three factors with contributions from genes enriched in membrane and transport related functions, genes preferentially located in supragranular and granular layers, overall thickness in the molecular layer and thickness of wall in the infragranular layers, and metabotropic glutamate receptor 5 and dopamine transporter; fractal dimension-, gyrification index- and sulcal depth-derived networks were only associated with the chemoarchitectonic factor with contributions from different sets of neurotransmitter receptors. Most results were reproducible across different parcellation schemes and datasets. Altogether, this study demonstrates phenotypic associations and neurobiological substrates of single-subject morphological brain networks, which provide intermediate endophenotypes to link molecular and cellular architecture and behavior and cognition.
Collapse
Affiliation(s)
- Zhen Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
9
|
Ruan J, Wang N, Li J, Wang J, Zou Q, Lv Y, Zhang H, Wang J. Single-subject cortical morphological brain networks across the adult lifespan. Hum Brain Mapp 2023; 44:5429-5449. [PMID: 37578334 PMCID: PMC10543107 DOI: 10.1002/hbm.26450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related changes in focal cortical morphology have been well documented in previous literature; however, how interregional coordination patterns of the focal cortical morphology reorganize with advancing age is not well established. In this study, we performed a comprehensive analysis of the topological changes in single-subject morphological brain networks across the adult lifespan. Specifically, we constructed four types of single-subject morphological brain networks for 650 participants (aged from 18 to 88 years old), and characterized their topological organization using graph-based network measures. Age-related changes in the network measures were examined via linear, quadratic, and cubic models. We found profound age-related changes in global small-world attributes and efficiency, local nodal centralities, and interregional similarities of the single-subject morphological brain networks. The age-related changes were mainly embodied in cortical thickness networks, involved in frontal regions and highly connected hubs, concentrated on short-range connections, characterized by linear changes, and susceptible to connections between limbic, frontoparietal, and ventral attention networks. Intriguingly, nonlinear (i.e., quadratic or cubic) age-related changes were frequently found in the insula and limbic regions, and age-related cubic changes preferred long-range morphological connections. Finally, we demonstrated that the morphological similarity in cortical thickness between two frontal regions mediated the relationship between age and cognition measured by Cattell scores. Taken together, these findings deepen our understanding of adaptive changes of the human brain with advancing age, which may account for interindividual variations in behaviors and cognition.
Collapse
Affiliation(s)
- Jingxuan Ruan
- School of Electronics and Information TechnologySouth China Normal UniversityFoshanChina
| | - Ningkai Wang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Junle Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Jing Wang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Yating Lv
- Institute of Psychological SciencesHangzhou Normal UniversityZhejiangHangzhouChina
| | - Han Zhang
- School of Electronics and Information TechnologySouth China Normal UniversityFoshanChina
| | - Jinhui Wang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
- Key Laboratory of Brain, Cognition and Education SciencesMinistry of EducationBeijingChina
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhouChina
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
10
|
Qiu X, Li J, Pan F, Yang Y, Zhou W, Chen J, Wei N, Lu S, Weng X, Huang M, Wang J. Aberrant single-subject morphological brain networks in first-episode, treatment-naive adolescents with major depressive disorder. PSYCHORADIOLOGY 2023; 3:kkad017. [PMID: 38666133 PMCID: PMC10939346 DOI: 10.1093/psyrad/kkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 04/28/2024]
Abstract
Background Neuroimaging-based connectome studies have indicated that major depressive disorder (MDD) is associated with disrupted topological organization of large-scale brain networks. However, the disruptions and their clinical and cognitive relevance are not well established for morphological brain networks in adolescent MDD. Objective To investigate the topological alterations of single-subject morphological brain networks in adolescent MDD. Methods Twenty-five first-episode, treatment-naive adolescents with MDD and 19 healthy controls (HCs) underwent T1-weighted magnetic resonance imaging and a battery of neuropsychological tests. Single-subject morphological brain networks were constructed separately based on cortical thickness, fractal dimension, gyrification index, and sulcus depth, and topologically characterized by graph-based approaches. Between-group differences were inferred by permutation testing. For significant alterations, partial correlations were used to examine their associations with clinical and neuropsychological variables in the patients. Finally, a support vector machine was used to classify the patients from controls. Results Compared with the HCs, the patients exhibited topological alterations only in cortical thickness-based networks characterized by higher nodal centralities in parietal (left primary sensory cortex) but lower nodal centralities in temporal (left parabelt complex, right perirhinal ectorhinal cortex, right area PHT and right ventral visual complex) regions. Moreover, decreased nodal centralities of some temporal regions were correlated with cognitive dysfunction and clinical characteristics of the patients. These results were largely reproducible for binary and weighted network analyses. Finally, topological properties of the cortical thickness-based networks were able to distinguish the MDD adolescents from HCs with 87.6% accuracy. Conclusion Adolescent MDD is associated with disrupted topological organization of morphological brain networks, and the disruptions provide potential biomarkers for diagnosing and monitoring the disease.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Fen Pan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Weihua Zhou
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Jinkai Chen
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Ning Wei
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| |
Collapse
|
11
|
Yin G, Li T, Jin S, Wang N, Li J, Wu C, He H, Wang J. A comprehensive evaluation of multicentric reliability of single-subject cortical morphological networks on traveling subjects. Cereb Cortex 2023:7169131. [PMID: 37197789 DOI: 10.1093/cercor/bhad178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Despite the prevalence of research on single-subject cerebral morphological networks in recent years, whether they can offer a reliable way for multicentric studies remains largely unknown. Using two multicentric datasets of traveling subjects, this work systematically examined the inter-site test-retest (TRT) reliabilities of single-subject cerebral morphological networks, and further evaluated the effects of several key factors. We found that most graph-based network measures exhibited fair to excellent reliabilities regardless of different analytical pipelines. Nevertheless, the reliabilities were affected by choices of morphological index (fractal dimension > sulcal depth > gyrification index > cortical thickness), brain parcellation (high-resolution > low-resolution), thresholding method (proportional > absolute), and network type (binarized > weighted). For the factor of similarity measure, its effects depended on the thresholding method used (absolute: Kullback-Leibler divergence > Jensen-Shannon divergence; proportional: Jensen-Shannon divergence > Kullback-Leibler divergence). Furthermore, longer data acquisition intervals and different scanner software versions significantly reduced the reliabilities. Finally, we showed that inter-site reliabilities were significantly lower than intra-site reliabilities for single-subject cerebral morphological networks. Altogether, our findings propose single-subject cerebral morphological networks as a promising approach for multicentric human connectome studies, and offer recommendations on how to determine analytical pipelines and scanning protocols for obtaining reliable results.
Collapse
Affiliation(s)
- Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Cognition and Education Sciences, Ministry of Education, Beijing 100816, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510000, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510000, China
| |
Collapse
|
12
|
Li N, Li C, Xie X, Liu G, Wang K, Zhang W, Fan J. Impairment of attention network function in posterior circulation ischemia-evidence from the Attention Network Test. Front Hum Neurosci 2023; 16:1001500. [PMID: 36684832 PMCID: PMC9853055 DOI: 10.3389/fnhum.2022.1001500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Objective This study aimed to investigate the effect of posterior circulation ischemia (PCI) on attention network function and to determine whether PCI is holistic or selective attention network deficit and which attention network is affected. Methods Thirty-six PCI patients aged 30 to 75 were assessed using the Attention Network Test and the Mini-Mental State Examination (MMSE). There were no significant differences in age, sex, and education between PCI group and the control group (n = 32). All data were statistically analyzed by SPSS 23.0 software. Result There were no significant difference in the MMSE scores between the two groups. Compared with the control group, the PCI group had significantly shorter response time for alerting and orienting network. The executive control network response time was significantly longer in PCI group than in the control group. The overall mean response time was also significantly longer in PCI group than in normal control group. There was no significant difference in mean accuracy between the two groups. Conclusion The alerting, orienting, and executive control networks were significantly less efficient in PCI group than in the control group (P < 0.01). This indicates impaired attention network in PCI patients. Since transient nerve seizures caused by vertebrobasilar ischemia may precede posterior circulation stroke, early assessment of cognitive function in patients with PCI is particularly important, and ANT is an excellent tool for this assessment.
Collapse
Affiliation(s)
- Na Li
- The Third Department of Encephalopathy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuanjin Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohui Xie
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Gang Liu
- The Third Department of Encephalopathy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wendong Zhang
- Department of Encephalopathy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jin Fan
- Department of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
13
|
Hao Z, Song Y, Shi Y, Xi H, Zhang H, Zhao M, Yu J, Huang L, Li H. Altered Effective Connectivity of the Primary Motor Cortex in Transient Ischemic Attack. Neural Plast 2022; 2022:2219993. [PMID: 36437903 PMCID: PMC9699783 DOI: 10.1155/2022/2219993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective This study is aimed at exploring alteration in motor-related effective connectivity in individuals with transient ischemic attack (TIA). Methods A total of 48 individuals with TIA and 41 age-matched and sex-matched healthy controls (HCs) were recruited for this study. The participants were scanned using MRI, and their clinical characteristics were collected. To investigate motor-related effective connectivity differences between individuals with TIA and HCs, the bilateral primary motor cortex (M1) was used as the regions of interest (ROIs) to perform a whole-brain Granger causality analysis (GCA). Furthermore, partial correlation was used to evaluate the relationship between GCA values and the clinical characteristics of individuals with TIA. Results Compared with HCs, individuals with TIA demonstrated alterations in the effective connectivity between M1 and widely distributed brain regions involved in motor, visual, auditory, and sensory integration. In addition, GCA values were significantly correlated with high- and low-density lipoprotein cholesterols in individuals with TIA. Conclusion This study provides important evidence for the alteration of motor-related effective connectivity in TIA, which reflects the abnormal information flow between different brain regions. This could help further elucidate the pathological mechanisms of motor impairment in individuals with TIA and provide a new perspective for future early diagnosis and intervention for TIA.
Collapse
Affiliation(s)
- Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Yuyu Shi
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Hongyu Xi
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Mengqi Zhao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Jiahao Yu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
14
|
Zhang L, Shen Q, Liao H, Li J, Wang T, Zi Y, Zhou F, Song C, Mao Z, Wang M, Cai S, Tan C. Aberrant Changes in Cortical Complexity in Right-Onset Versus Left-Onset Parkinson's Disease in Early-Stage. Front Aging Neurosci 2021; 13:749606. [PMID: 34819848 PMCID: PMC8606890 DOI: 10.3389/fnagi.2021.749606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence to show that motor symptom lateralization in Parkinson’s disease (PD) is linked to non-motor features, progression, and prognosis of the disease. However, few studies have reported the difference in cortical complexity between patients with left-onset of PD (LPD) and right-onset of PD (RPD). This study aimed to investigate the differences in the cortical complexity between early-stage LPD and RPD. High-resolution T1-weighted magnetic resonance images of the brain were acquired in 24 patients with LPD, 34 patients with RPD, and 37 age- and sex-matched healthy controls (HCs). Cortical complexity including gyrification index, fractal dimension (FD), and sulcal depth was analyzed using surface-based morphometry via CAT12/SPM12. Familywise error (FWE) peak-level correction at p < 0.05 was performed for significance testing. In patients with RPD, we found decreased mean FD and mean sulcal depth in the banks of the left superior temporal sulcus (STS) compared with LPD and HCs. The mean FD in the left superior temporal gyrus (STG) was decreased in RPD compared with HCs. However, in patients with LPD, we did not identify significantly abnormal cortical complex change compared with HCs. Moreover, we observed that the mean FD in STG was negatively correlated with the 17-item Hamilton Depression Scale (HAMD) among the three groups. Our findings support the specific influence of asymmetrical motor symptoms in cortical complexity in early-stage PD and reveal that the banks of left STS and left STG might play a crucial role in RPD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Lv Y, Wei W, Han X, Song Y, Han Y, Zhou C, Zhou D, Zhang F, Wu X, Liu J, Zhao L, Zhang C, Wang N, Wang J. Multiparametric and multilevel characterization of morphological alterations in patients with transient ischemic attack. Hum Brain Mapp 2021; 42:2045-2060. [PMID: 33463862 PMCID: PMC8046078 DOI: 10.1002/hbm.25344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 01/07/2021] [Indexed: 11/07/2022] Open
Abstract
Transient ischemic attack (TIA), an important risk factor for stroke, is associated with widespread disruptions of functional brain architecture. However, TIA-related structural alterations are not well established. By analyzing structural MRI data from 50 TIA patients versus 40 healthy controls (HCs), here we systematically investigated TIA-related morphological alterations in multiple cortical surface-based indices (cortical thickness [CT], fractal dimension [FD], gyrification index [GI], and sulcal depth [SD]) at multiple levels (local topography, interregional connectivity and whole-brain network topology). For the observed alterations, their associations with clinical risk factors and abilities as diagnostic and prognostic biomarkers were further examined. We found that compared with the HCs, the TIA patients showed widespread morphological alterations and the alterations depended on choices of morphological index and analytical level. Specifically, the patients exhibited: (a) regional CT decreases in the transverse temporal gyrus and lateral sulcus; (b) impaired FD- and GI-based connectivity mainly involving visual, somatomotor and ventral attention networks and interhemispheric connections; and (c) altered GI-based whole-brain network efficiency and decreased FD-based nodal centrality in the middle frontal gyrus. Moreover, the impaired morphological connectivity showed high sensitivities and specificities for distinguishing the patients from HCs. Altogether, these findings demonstrate the emergence of morphological index-dependent and analytical level-specific alterations in TIA, which provide novel insights into neurobiological mechanisms underlying TIA and may serve as potential biomarkers to help diagnosis of the disease. Meanwhile, our findings highlight the necessity of using multiparametric and multilevel approaches for a complete mapping of cerebral morphology in health and disease.
Collapse
Affiliation(s)
- Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Zhejiang, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.,Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Zhejiang, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.,Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiujie Han
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yu Han
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Chengshu Zhou
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Dan Zhou
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Fuding Zhang
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Jinling Liu
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Lijuan Zhao
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Cairong Zhang
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|