1
|
Javidi SS, He X, Ankeeta A, Zhang Q, Citro S, Sperling MR, Tracy JI. Edge-wise analysis reveals white matter connectivity associated with focal to bilateral tonic-clonic seizures. Epilepsia 2024; 65:1756-1767. [PMID: 38517477 PMCID: PMC11166520 DOI: 10.1111/epi.17960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Focal to bilateral tonic-clonic seizures (FBTCS) represent a challenging subtype of focal temporal lobe epilepsy (TLE) in terms of both severity and treatment response. Most studies have focused on regional brain analysis that is agnostic to the distribution of white matter (WM) pathways associated with a node. We implemented a more selective, edge-wise approach that allowed for identification of the individual connections unique to FBTCS. METHODS T1-weighted and diffusion-weighted images were obtained from 22 patients with solely focal seizures (FS), 43 FBTCS patients, and 65 age/sex-matched healthy participants (HPs), yielding streamline (STR) connectome matrices. We used diffusion tensor-derived STRs in an edge-wise approach to determine specific structural connectivity changes associated with seizure generalization in FBTCS compared to matched FS and HPs. Graph theory metrics were computed on both node- and edge-based connectivity matrices. RESULTS Edge-wise analyses demonstrated that all significantly abnormal cross-hemispheric connections belonged to the FBTCS group. Abnormal connections associated with FBTCS were mostly housed in the contralateral hemisphere, with graph metric values generally decreased compared to HPs. In FBTCS, the contralateral amygdala showed selective decreases in the structural connection pathways to the contralateral frontal lobe. Abnormal connections in TLE involved the amygdala, with the ipsilateral side showing increases and the contralateral decreases. All the FS findings indicated higher graph metrics for connections involving the ipsilateral amygdala. Data also showed that some FBTCS connectivity effects are moderated by aging, recent seizure frequency, and longer illness duration. SIGNIFICANCE Data showed that not all STR pathways are equally affected by the seizure propagation of FBTCS. We demonstrated two key biases, one indicating a large role for the amygdala in the propagation of seizures, the other pointing to the prominent role of cross-hemispheric and contralateral hemisphere connections in FBTCS. We demonstrated topographic reorganization in FBTCS, pointing to the specific WM tracts involved.
Collapse
Affiliation(s)
- Sam S Javidi
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Xiaosong He
- University of Science and Technology of China, Department of Psychology, Hefei, Anhui, P.R. China
| | - A Ankeeta
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Qirui Zhang
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Salvatore Citro
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michael R Sperling
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Joseph I Tracy
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
2
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
3
|
Doss DJ, Johnson GW, Englot DJ. Imaging and Stereotactic Electroencephalography Functional Networks to Guide Epilepsy Surgery. Neurosurg Clin N Am 2024; 35:61-72. [PMID: 38000842 PMCID: PMC10676462 DOI: 10.1016/j.nec.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Epilepsy surgery is a potentially curative treatment of drug-resistant epilepsy that has remained underutilized both due to inadequate referrals and incomplete localization hypotheses. The complexity of patients evaluated for epilepsy surgery has increased, thus new approaches are necessary to treat these patients. The paradigm of epilepsy surgery has evolved to match this challenge, now considering the entire seizure network with the goal of disrupting it through resection, ablation, neuromodulation, or a combination. The network paradigm has the potential to aid in identification of the seizure network as well as treatment selection.
Collapse
Affiliation(s)
- Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Avenue South, Medical Center North AA-1105, Nashville, TN 37232, USA; Vanderbilt Institute for Surgery and Engineering (VISE), 1161 21st Avenue South, MCN S2323, Nashville, TN 37232, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, 1161 21st Avenue South, T4224 Medical Center North, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, PMB 351824, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Department of Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Sun D, Schaft EV, van Stempvoort BM, Gebbink TA, van ‘t Klooster M, van Eijsden P, van der Salm SMA, Willem Dankbaar J, Zijlmans M, Robe PA. Intraoperative mapping of epileptogenic foci and tumor infiltration in neuro-oncology patients with epilepsy. Neurooncol Adv 2024; 6:vdae125. [PMID: 39156617 PMCID: PMC11327616 DOI: 10.1093/noajnl/vdae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Background Epileptogenesis and glioma growth have a bidirectional relationship. We hypothesized people with gliomas can benefit from the removal of epileptic tissue and that tumor-related epileptic activity may signify tumor infiltration in peritumoral regions. We investigated whether intraoperative electrocorticography (ioECoG) could improve seizure outcomes in oncological glioma surgery, and vice versa, what epileptic activity (EA) tells about tumor infiltration. Methods We prospectively included patients who underwent (awake) ioECoG-assisted diffuse-glioma resection through the oncological trajectory. The IoECoG-tailoring strategy relied on ictal and interictal EA (spikes and sharp waves). Brain tissue, where EA was recorded, was assigned for histopathological examination separate from the rest of the tumor. Weibull regression was performed to assess how residual EA and extent of resection (EOR) related to the time-to-seizure recurrence, and we investigated which type of EA predicted tumor infiltration. Results Fifty-two patients were included. Residual spikes after resection were associated with seizure recurrence in patients with isocitrate dehydrogenase (IDH) mutant astrocytoma or oligodendroglioma (HR = 7.6[1.4-40.0], P-value = .01), independent from the EOR. This was not observed in IDH-wildtype tumors. All tissue samples resected based on interictal spikes were infiltrated by tumor, even if the MRI did not show abnormalities. Conclusions Complete resection of epileptogenic foci in ioECoG may promote seizure control in IDH-mutant gliomas. The cohort size of IDH-wildtype tumors was too limited to draw definitive conclusions. Interictal spikes may indicate tumor infiltration even when this area appears normal on MRI. Integrating electrophysiology guidance into oncological tumor surgery could contribute to improved seizure outcomes and precise guidance for radical tumor resection.
Collapse
Affiliation(s)
- Dongqing Sun
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eline V Schaft
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bibi M van Stempvoort
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tineke A Gebbink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maryse van ‘t Klooster
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra M A van der Salm
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Willem Dankbaar
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland, The Netherlands
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Hall GR, Hutchings F, Horsley J, Simpson CM, Wang Y, de Tisi J, Miserocchi A, McEvoy AW, Vos SB, Winston GP, Duncan JS, Taylor PN. Epileptogenic networks in extra temporal lobe epilepsy. Netw Neurosci 2023; 7:1351-1362. [PMID: 38144694 PMCID: PMC10631792 DOI: 10.1162/netn_a_00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/22/2023] [Indexed: 12/26/2023] Open
Abstract
Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre- and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < -1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery.
Collapse
Affiliation(s)
- Gerard R. Hall
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances Hutchings
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jonathan Horsley
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Callum M. Simpson
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane de Tisi
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL/UCLH NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Anna Miserocchi
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew W. McEvoy
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sjoerd B. Vos
- Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Nedlands, Australia
| | - Gavin P. Winston
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Medicine, Division of Neurology, Queen’s University, Kingston, Canada
| | - John S. Duncan
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL/UCLH NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Baciu M, O'Sullivan L, Torlay L, Banjac S. New insights for predicting surgery outcome in patients with temporal lobe epilepsy. A systematic review. Rev Neurol (Paris) 2023:S0035-3787(23)00884-6. [PMID: 37003897 DOI: 10.1016/j.neurol.2023.02.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Resective surgery is the treatment of choice for one-third of adult patients with focal, drug-resistant epilepsy. This procedure is associated with substantial clinical and cognitive risks. In clinical practice, there is no validated model for epilepsy surgery outcome prediction (ESOP). Meta-analyses on ESOP studies assessing prognostic factors report discrepancies in terms of study design. Our review aims to systematically investigate methodological and analytical aspects of studies predicting clinical and cognitive outcomes after temporal lobe epilepsy surgery. A systematic review of ESOP studies published between 2000 and 2022 from three databases (MEDLINE, Web of Science, and PsycINFO) was completed by following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. It yielded 4867 articles. Among them, 21 corresponded to our inclusion criteria and were therefore retained in the final review. The risk of bias was assessed using A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies (PROBAST). Data extracted from the 21 studies were analyzed using narrative synthesis and descriptive statistics. Our findings show an increase in the use of multimodal datasets and machine learning analyses in recent ESOP studies, although regression remained the most frequently used approach. We also identified a more frequent use of network notions in recent ESOP studies. Nevertheless, several methodological issues were noted, such as small sample sizes, lack of information on the follow-up period, variability in seizure outcome, and the definition of neuropsychological postoperative change. Of 21 studies, only one provided a clinical tool to anticipate the cognitive outcome after epilepsy surgery. We conclude that methodological issues should be overcome before we move towards more complete models to better predict clinical and cognitive outcomes after epilepsy surgery. Recommendations for future studies to harness the possibilities of multimodal datasets and data fusion, are provided. A stronger bridge between fundamental and clinical research may result in developing accessible clinical tools.
Collapse
Affiliation(s)
- M Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - L O'Sullivan
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - L Torlay
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - S Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France.
| |
Collapse
|
7
|
Azeem A, von Ellenrieder N, Royer J, Frauscher B, Bernhardt B, Gotman J. Integration of white matter architecture to stereo-EEG better describes epileptic spike propagation. Clin Neurophysiol 2023; 146:135-146. [PMID: 36379837 DOI: 10.1016/j.clinph.2022.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereo-electroencephalography (SEEG)-derived epilepsy networks are used to better understand a patient's epilepsy; however, a unimodal approach provides an incomplete picture. We combine tractography and SEEG to determine the relationship between spike propagation and the white matter architecture and to improve our understanding of spike propagation mechanisms. METHODS Probablistic tractography from diffusion imaging (dMRI) of matched subjects from the Human Connectome Project (HCP) was combined with patient-specific SEEG-derived spike propagation networks. Two regions-of-interest (ROIs) with a significant spike propagation relationship constituted a Propagation Pair. RESULTS In 56 of 59 patients, Propagation Pairs were more often tract-connected as compared to all ROI pairs (p < 0.01; d = -1.91). The degree of spike propagation between tract-connected ROIs was greater (39 ± 21%) compared to tract-unconnected ROIs (31 ± 18%; p < 0.0001). Within the same network, ROIs receiving propagation earlier were more often tract-connected to the source (59.7%) as compared to late receivers (25.4%; p < 0.0001). CONCLUSIONS Brain regions involved in spike propagation are more likely to be connected by white matter tracts. Between nodes, presence of tracts suggests a direct course of propagation, whereas the absence of tracts suggests an indirect course of propagation. SIGNIFICANCE We demonstrate a logical and consistent relationship between spike propagation and the white matter architecture.
Collapse
Affiliation(s)
- Abdullah Azeem
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Nicolás von Ellenrieder
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jessica Royer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Birgit Frauscher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology & Neurosurgery, Montreal Neurological Hospital, Montréal, QC, Canada
| | - Boris Bernhardt
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jean Gotman
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Sinha N, Johnson GW, Davis KA, Englot DJ. Integrating Network Neuroscience Into Epilepsy Care: Progress, Barriers, and Next Steps. Epilepsy Curr 2022; 22:272-278. [PMID: 36285209 PMCID: PMC9549227 DOI: 10.1177/15357597221101271] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drug resistant epilepsy is a disorder involving widespread brain network
alterations. Recently, many groups have reported neuroimaging and
electrophysiology network analysis techniques to aid medical
management, support presurgical planning, and understand postsurgical
seizure persistence. While these approaches may supplement standard
tests to improve care, they are not yet used clinically or influencing
medical or surgical decisions. When will this change? Which approaches
have shown the most promise? What are the barriers to translating them
into clinical use? How do we facilitate this transition? In this
review, we will discuss progress, barriers, and next steps regarding
the integration of brain network analysis into the medical and
presurgical pipeline.
Collapse
Affiliation(s)
- Nishant Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Graham W. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathryn A. Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Mansour L S, Seguin C, Smith RE, Zalesky A. Connectome spatial smoothing (CSS): Concepts, methods, and evaluation. Neuroimage 2022; 250:118930. [PMID: 35077853 DOI: 10.1016/j.neuroimage.2022.118930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022] Open
Abstract
Structural connectomes are increasingly mapped at high spatial resolutions comprising many hundreds-if not thousands-of network nodes. However, high-resolution connectomes are particularly susceptible to image registration misalignment, tractography artifacts, and noise, all of which can lead to reductions in connectome accuracy and test-retest reliability. We investigate a network analogue of image smoothing to address these key challenges. Connectome Spatial Smoothing (CSS) involves jointly applying a carefully chosen smoothing kernel to the two endpoints of each tractography streamline, yielding a spatially smoothed connectivity matrix. We develop computationally efficient methods to perform CSS using a matrix congruence transformation and evaluate a range of different smoothing kernel choices on CSS performance. We find that smoothing substantially improves the identifiability, sensitivity, and test-retest reliability of high-resolution connectivity maps, though at a cost of increasing storage burden. For atlas-based connectomes (i.e. low-resolution connectivity maps), we show that CSS marginally improves the statistical power to detect associations between connectivity and cognitive performance, particularly for connectomes mapped using probabilistic tractography. CSS was also found to enable more reliable statistical inference compared to connectomes without any smoothing. We provide recommendations for optimal smoothing kernel parameters for connectomes mapped using both deterministic and probabilistic tractography. We conclude that spatial smoothing is particularly important for the reliability of high-resolution connectomes, but can also provide benefits at lower parcellation resolutions. We hope that our work enables computationally efficient integration of spatial smoothing into established structural connectome mapping pipelines.
Collapse
Affiliation(s)
- Sina Mansour L
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Herbers P, Calvo I, Diaz-Pier S, Robles OD, Mata S, Toharia P, Pastor L, Peyser A, Morrison A, Klijn W. ConGen—A Simulator-Agnostic Visual Language for Definition and Generation of Connectivity in Large and Multiscale Neural Networks. Front Neuroinform 2022; 15:766697. [PMID: 35069166 PMCID: PMC8777257 DOI: 10.3389/fninf.2021.766697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
An open challenge on the road to unraveling the brain's multilevel organization is establishing techniques to research connectivity and dynamics at different scales in time and space, as well as the links between them. This work focuses on the design of a framework that facilitates the generation of multiscale connectivity in large neural networks using a symbolic visual language capable of representing the model at different structural levels—ConGen. This symbolic language allows researchers to create and visually analyze the generated networks independently of the simulator to be used, since the visual model is translated into a simulator-independent language. The simplicity of the front end visual representation, together with the simulator independence provided by the back end translation, combine into a framework to enhance collaboration among scientists with expertise at different scales of abstraction and from different fields. On the basis of two use cases, we introduce the features and possibilities of our proposed visual language and associated workflow. We demonstrate that ConGen enables the creation, editing, and visualization of multiscale biological neural networks and provides a whole workflow to produce simulation scripts from the visual representation of the model.
Collapse
Affiliation(s)
- Patrick Herbers
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Iago Calvo
- Department of Computer Science and Computer Architecture, Lenguajes y Sistemas Informáticos y Estadística e Investigación Operativa, Rey Juan Carlos University, Madrid, Spain
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
- *Correspondence: Wouter Klijn
| | - Oscar D. Robles
- Department of Computer Science and Computer Architecture, Lenguajes y Sistemas Informáticos y Estadística e Investigación Operativa, Rey Juan Carlos University, Madrid, Spain
- Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
| | - Susana Mata
- Department of Computer Science and Computer Architecture, Lenguajes y Sistemas Informáticos y Estadística e Investigación Operativa, Rey Juan Carlos University, Madrid, Spain
- Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pablo Toharia
- Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
- DATSI, ETSIINF, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis Pastor
- Department of Computer Science and Computer Architecture, Lenguajes y Sistemas Informáticos y Estadística e Investigación Operativa, Rey Juan Carlos University, Madrid, Spain
- Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alexander Peyser
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Abigail Morrison
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany
| | - Wouter Klijn
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
- Sandra Diaz-Pier
| |
Collapse
|
11
|
Venkadesh S, Van Horn JD. Integrative Models of Brain Structure and Dynamics: Concepts, Challenges, and Methods. Front Neurosci 2021; 15:752332. [PMID: 34776853 PMCID: PMC8585845 DOI: 10.3389/fnins.2021.752332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
The anatomical architecture of the brain constrains the dynamics of interactions between various regions. On a microscopic scale, neural plasticity regulates the connections between individual neurons. This microstructural adaptation facilitates coordinated dynamics of populations of neurons (mesoscopic scale) and brain regions (macroscopic scale). However, the mechanisms acting on multiple timescales that govern the reciprocal relationship between neural network structure and its intrinsic dynamics are not well understood. Studies empirically investigating such relationships on the whole-brain level rely on macroscopic measurements of structural and functional connectivity estimated from various neuroimaging modalities such as Diffusion-weighted Magnetic Resonance Imaging (dMRI), Electroencephalography (EEG), Magnetoencephalography (MEG), and functional Magnetic Resonance Imaging (fMRI). dMRI measures the anisotropy of water diffusion along axonal fibers, from which structural connections are estimated. EEG and MEG signals measure electrical activity and magnetic fields induced by the electrical activity, respectively, from various brain regions with a high temporal resolution (but limited spatial coverage), whereas fMRI measures regional activations indirectly via blood oxygen level-dependent (BOLD) signals with a high spatial resolution (but limited temporal resolution). There are several studies in the neuroimaging literature reporting statistical associations between macroscopic structural and functional connectivity. On the other hand, models of large-scale oscillatory dynamics conditioned on network structure (such as the one estimated from dMRI connectivity) provide a platform to probe into the structure-dynamics relationship at the mesoscopic level. Such investigations promise to uncover the theoretical underpinnings of the interplay between network structure and dynamics and could be complementary to the macroscopic level inquiries. In this article, we review theoretical and empirical studies that attempt to elucidate the coupling between brain structure and dynamics. Special attention is given to various clinically relevant dimensions of brain connectivity such as the topological features and neural synchronization, and their applicability for a given modality, spatial or temporal scale of analysis is discussed. Our review provides a summary of the progress made along this line of research and identifies challenges and promising future directions for multi-modal neuroimaging analyses.
Collapse
Affiliation(s)
- Siva Venkadesh
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, Charlottesville, VA, United States.,School of Data Science, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Chen X, Wang Y, Kopetzky SJ, Butz-Ostendorf M, Kaiser M. Connectivity within regions characterizes epilepsy duration and treatment outcome. Hum Brain Mapp 2021; 42:3777-3791. [PMID: 33973688 PMCID: PMC8288103 DOI: 10.1002/hbm.25464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022] Open
Abstract
Finding clear connectome biomarkers for temporal lobe epilepsy (TLE) patients, in particular at early disease stages, remains a challenge. Currently, the whole-brain structural connectomes are analyzed based on coarse parcellations (up to 1,000 nodes). However, such global parcellation-based connectomes may be unsuitable for detecting more localized changes in patients. Here, we use a high-resolution network (~50,000-nodes overall) to identify changes at the local level (within brain regions) and test its relation with duration and surgical outcome. Patients with TLE (n = 33) and age-, sex-matched healthy subjects (n = 36) underwent high-resolution (~50,000 nodes) structural network construction based on deterministic tracking of diffusion tensor imaging. Nodes were allocated to 68 cortical regions according to the Desikan-Killany atlas. The connectivity within regions was then used to predict surgical outcome. MRI processing, network reconstruction, and visualization of network changes were integrated into the NICARA (https://nicara.eu). Lower clustering coefficient and higher edge density were found for local connectivity within regions in patients, but were absent for the global network between regions (68 cortical regions). Local connectivity changes, in terms of the number of changed regions and the magnitude of changes, increased with disease duration. Local connectivity yielded a better surgical outcome prediction (Mean value: 95.39% accuracy, 92.76% sensitivity, and 100% specificity) than global connectivity. Connectivity within regions, compared to structural connectivity between brain regions, can be a more efficient biomarker for epilepsy assessment and surgery outcome prediction of medically intractable TLE.
Collapse
Affiliation(s)
- Xue Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China.,School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Yanjiang Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China
| | - Sebastian J Kopetzky
- Biomax Informatics AG, Brain Science, Planegg, Germany.,TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | | | - Marcus Kaiser
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|