1
|
Peng W, Ma Y, Li C, Dai W, Fu X, Liu L, Liu L, Liu J. Fusion of brain imaging genetic data for alzheimer's disease diagnosis and causal factors identification using multi-stream attention mechanisms and graph convolutional networks. Neural Netw 2025; 184:107020. [PMID: 39721106 DOI: 10.1016/j.neunet.2024.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, and leverage the strengths of both modalities to achieve better classification results. In this work, we propose MCA-GCN, a Multi-stream Cross-Attention and Graph Convolutional Network-based classification method for AD patients. It first constructs a brain region-gene association network based on brain region fMRI time series and gene SNP data. Then it integrates the absolute and relative positions of the brain region time series to obtain a new brain region time series containing temporal information. Then long-range and local association features between brain regions and genes are sequentially aggregated by multi-stream cross-attention and graph convolutional networks. Finally, the learned brain region and gene features are input to the fully connected network to predict AD types. Experimental results on the ADNI dataset show that our model outperforms other methods in AD classification tasks. Moreover, MCA-GCN designed a multi-stage feature scoring process to extract high-risk genes and brain regions related to disease classification.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China.
| | - Yanhan Ma
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Chunshan Li
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
2
|
Sun T, Jiang C, Zhang Y, Li Y, Chen G, Zhou Y, Xu W, You L, Kong Y, Jiang W, Yuan Y. Distinguished multimodal imaging features affected by COVID-19 in major depressive disorder patients. J Psychiatr Res 2025; 183:1-9. [PMID: 39908714 DOI: 10.1016/j.jpsychires.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVES Growing attention has been directed toward the structural and functional alterations among individuals infected with COVID-19. However, data on its impact on patients with Major Depressive Disorder (MDD) remain limited. METHODS This study investigates the effects of COVID-19 on patients with MDD and healthy controls (HCs) using MRI scans. Participants were categorized into four groups: MDD patients before (n = 165) and after COVID-19 infection (n = 70), HCs before (n = 108) and after COVID-19 infection (n = 57). All participants underwent T1-weighted imaging, diffusion tensor imaging (DTI), and resting-state functional MRI from January 2022 to August 2023. RESULTS Structural alterations associated with COVID-19 were predominantly observed in the white matter (WM) rather than the gray matter (GM), with specific involvement noted in the superior longitudinal fasciculus tract, Forceps minor tract, and cingulum-cingulate gyrus tract among patients with MDD. Functional changes were spread from GM to WM. The bilateral supplementary motor area, the left angular gyrus, the left subcortical regions (amygdala and parahippocampal gyrus), and various WM tracts showed significant infection-related changes across groups. CONCLUSION COVID-19 infection induces significant microstructural damage of WM in healthy individuals and exacerbates white matter microstructural injury of MDD. These findings suggest that WM might be more susceptible to COVID-19 effects than GM in both MDD patients and HCs.
Collapse
Affiliation(s)
- Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China; Department of Medical Psychology, Huai'an No.3 People's Hospital, Huaian, 223001, Jiangsu, China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yubo Zhang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yueying Li
- Lab of Image Science and Technology, School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China; Department of Medical Psychology, Huai'an No.3 People's Hospital, Huaian, 223001, Jiangsu, China
| | - Yue Zhou
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Linlin You
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Youyong Kong
- Lab of Image Science and Technology, School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China.
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Gao B, Yu A, Qiao C, Calhoun VD, Stephen JM, Wilson TW, Wang YP. An Explainable Unified Framework of Spatio-Temporal Coupling Learning With Application to Dynamic Brain Functional Connectivity Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:941-951. [PMID: 39320999 PMCID: PMC11977455 DOI: 10.1109/tmi.2024.3467384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Time-series data such as fMRI and MEG carry a wealth of inherent spatio-temporal coupling relationship, and their modeling via deep learning is essential for uncovering biological mechanisms. However, current machine learning models for mining spatio-temporal information usually overlook this intrinsic coupling association, in addition to poor explainability. In this paper, we present an explainable learning framework for spatio-temporal coupling. Specifically, this framework constructs a deep learning network based on spatio-temporal correlation, which can well integrate the time-varying coupled relationships between node representation and inter-node connectivity. Furthermore, it explores spatio-temporal evolution at each time step, providing a better explainability of the analysis results. Finally, we apply the proposed framework to brain dynamic functional connectivity (dFC) analysis. Experimental results demonstrate that it can effectively capture the variations in dFC during brain development and the evolution of spatio-temporal information at the resting state. Two distinct developmental functional connectivity (FC) patterns are identified. Specifically, the connectivity among regions related to emotional regulation decreases, while the connectivity associated with cognitive activities increases. In addition, children and young adults display notable cyclic fluctuations in resting-state brain dFC.
Collapse
|
4
|
Kong Y, Zhang X, Wang W, Zhou Y, Li Y, Yuan Y. Multi-Scale Spatial-Temporal Attention Networks for Functional Connectome Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:475-488. [PMID: 39172603 DOI: 10.1109/tmi.2024.3448214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Many neuropsychiatric disorders are considered to be associated with abnormalities in the functional connectivity networks of the brain. The research on the classification of functional connectivity can therefore provide new perspectives for understanding the pathology of disorders and contribute to early diagnosis and treatment. Functional connectivity exhibits a nature of dynamically changing over time, however, the majority of existing methods are unable to collectively reveal the spatial topology and time-varying characteristics. Furthermore, despite the efforts of limited spatial-temporal studies to capture rich information across different spatial scales, they have not delved into the temporal characteristics among different scales. To address above issues, we propose a novel Multi-Scale Spatial-Temporal Attention Networks (MSSTAN) to exploit the multi-scale spatial-temporal information provided by functional connectome for classification. To fully extract spatial features of brain regions, we propose a Topology Enhanced Graph Transformer module to guide the attention calculations in the learning of spatial features by incorporating topology priors. A Multi-Scale Pooling Strategy is introduced to obtain representations of brain connectome at various scales. Considering the temporal dynamic characteristics between dynamic functional connectome, we employ Locality Sensitive Hashing attention to further capture long-term dependencies in time dynamics across multiple scales and reduce the computational complexity of the original attention mechanism. Experiments on three brain fMRI datasets of MDD and ASD demonstrate the superiority of our proposed approach. In addition, benefiting from the attention mechanism in Transformer, our results are interpretable, which can contribute to the discovery of biomarkers. The code is available at https://github.com/LIST-KONG/MSSTAN.
Collapse
|
5
|
Sun S, Yan C, Qu S, Luo G, Liu X, Tian F, Dong Q, Li X, Hu B. Resting-state dynamic functional connectivity in major depressive disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111076. [PMID: 38972502 DOI: 10.1016/j.pnpbp.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
As a novel measure, dynamic functional connectivity (dFC) provides insight into the dynamic nature of brain networks and their interactions in resting-state, surpassing traditional static functional connectivity in pathological conditions such as depression. Since a comprehensive review is still lacking, we then reviewed forty-five eligible papers to explore pathological mechanisms of major depressive disorder (MDD) from perspectives including abnormal brain regions and functional networks, brain state, topological properties, relevant recognition, along with longitudinal studies. Though inconsistencies could be found, common findings are: (1) From different perspectives based on dFC, default-mode network (DMN) with its subregions exhibited a close relation to the pathological mechanism of MDD. (2) With a corrupted integrity within large-scale functional networks and imbalance between them, longer fraction time in a relatively weakly-connected state may be a possible property of MDD concerning its relation with DMN. Abnormal transition frequencies between states were correlated to the severity of MDD. (3) Including dynamic properties in topological network metrics enhanced recognition effect. In all, this review summarized its use for clinical diagnosis and treatment, elucidating the non-stationary of MDD patients' aberrant brain activity in the absence of stimuli and bringing new views into its underlying neuro mechanism.
Collapse
Affiliation(s)
- Shuting Sun
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Chang Yan
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Shanshan Qu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Gang Luo
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xuesong Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Fuze Tian
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| |
Collapse
|
6
|
Lee LH, Ho CSH, Chan YL, Tay GWN, Lu CK, Tang TB. Antidepressant Treatment Response Prediction With Early Assessment of Functional Near-Infrared Spectroscopy and Micro-RNA. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 13:9-22. [PMID: 39911775 PMCID: PMC11793863 DOI: 10.1109/jtehm.2024.3506556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 02/07/2025]
Abstract
While functional near-infrared spectroscopy (fNIRS) had previously been suggested for major depressive disorder (MDD) diagnosis, the clinical application to predict antidepressant treatment response (ATR) is still unclear. To address this, the aim of the current study is to investigate MDD ATR at three response levels using fNIRS and micro-ribonucleic acids (miRNAs). Our proposed algorithm includes a custom inter-subject variability reduction based on the principal component analysis (PCA). The principal components of extracted features are first identified for non-responders' group. The first few components that sum up to 99% of explained variance are discarded to minimize inter-subject variability while the remaining projection vectors are applied on all response groups (24 non-responders, 15 partial-responders, 13 responders) to obtain their relative projections in feature space. The entire algorithm achieved a better performance through the radial basis function (RBF) support vector machine (SVM), with 82.70% accuracy, 78.44% sensitivity, 86.15% precision, and 91.02% specificity, respectively, when compared with conventional machine learning approaches that combine clinical, sociodemographic and genetic information as the predictor. The performance of the proposed custom algorithm suggests the prediction of ATR can be improved with multiple features sources, provided that the inter-subject variability is properly addressed, and can be an effective tool for clinical decision support system in MDD ATR prediction. Clinical and Translational Impact Statement-The fusion of neuroimaging fNIRS features and miRNA profiles significantly enhances the prediction accuracy of MDD ATR. The minimally required features also make the personalized medicine more practical and realizable.
Collapse
Affiliation(s)
- Lok Hua Lee
- Centre for Intelligent Signal and Imaging Research (CISIR)Universiti Teknologi PETRONASSeri IskandarPerak32610Malaysia
| | - Cyrus Su Hui Ho
- Department of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore117543
| | - Yee Ling Chan
- Centre for Intelligent Signal and Imaging Research (CISIR)Universiti Teknologi PETRONASSeri IskandarPerak32610Malaysia
| | - Gabrielle Wann Nii Tay
- Department of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeQueenstownSingapore117543
| | - Cheng-Kai Lu
- Department of Electrical and Electronic EngineeringNational Taiwan Normal UniversityTaipei106Taiwan
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR)Universiti Teknologi PETRONASSeri IskandarPerak32610Malaysia
| |
Collapse
|
7
|
Hu J, Luo J, Xu Z, Liao B, Dong S, Peng B, Hou G. Spatio-temporal learning and explaining for dynamic functional connectivity analysis: Application to depression. J Affect Disord 2024; 364:266-273. [PMID: 39137835 DOI: 10.1016/j.jad.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/26/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Functional connectivity has been shown to fluctuate over time. The present study aimed to identifying major depressive disorders (MDD) with dynamic functional connectivity (dFC) from resting-state fMRI data, which would be helpful to produce tools of early depression diagnosis and enhance our understanding of depressive etiology. METHODS The resting-state fMRI data of 178 subjects were collected, including 89 MDD and 89 healthy controls. We propose a spatio-temporal learning and explaining framework for dFC analysis. A yet effective spatio-temporal model is developed to classifying MDD from healthy controls with dFCs. The model is a stacking neural network model, which learns network structure information by a multi-layer perceptron based spatial encoder, and learns time-varying patterns by a Transformer based temporal encoder. We propose to explain the spatio-temporal model with a two-stage explanation method of importance feature extracting and disorder-relevant pattern exploring. The layer-wise relevance propagation (LRP) method is introduced to extract the most relevant input features in the model, and the attention mechanism with LRP is applied to extract the important time steps of dFCs. The disorder-relevant functional connections, brain regions, and brain states in the model are further explored and identified. RESULTS We achieved the best classification performance in identifying MDD from healthy controls with dFC data. The top important functional connectivity, brain regions, and dynamic states closely related to MDD have been identified. LIMITATIONS The data preprocessing may affect the classification performance of the model, and this study needs further validation in a larger patient population. CONCLUSIONS The experimental results demonstrate that the proposed spatio-temporal model could effectively classify MDD, and uncover structural and temporal patterns of dFCs in depression.
Collapse
Affiliation(s)
- Jinlong Hu
- Guangdong Key Lab of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jianmiao Luo
- Guangdong Key Lab of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Bin Liao
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China.
| | - Shoubin Dong
- Guangdong Key Lab of Communication and Computer Network, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China.
| |
Collapse
|
8
|
Fu J, Yang F, Dang Y, Liu X, Yin J. Learning Constrained Dynamic Correlations in Spatiotemporal Graphs for Motion Prediction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:14273-14287. [PMID: 37256808 DOI: 10.1109/tnnls.2023.3277476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human motion prediction is challenging due to the complex spatiotemporal feature modeling. Among all methods, graph convolution networks (GCNs) are extensively utilized because of their superiority in explicit connection modeling. Within a GCN, the graph correlation adjacency matrix drives feature aggregation, and thus, is the key to extracting predictive motion features. State-of-the-art methods decompose the spatiotemporal correlation into spatial correlations for each frame and temporal correlations for each joint. Directly parameterizing these correlations introduces redundant parameters to represent common relations shared by all frames and all joints. Besides, the spatiotemporal graph adjacency matrix is the same for different motion samples, and thus, cannot reflect samplewise correspondence variances. To overcome these two bottlenecks, we propose dynamic spatiotemporal decompose GC (DSTD-GC), which only takes 28.6% parameters of the state-of-the-art GC. The key of DSTD-GC is constrained dynamic correlation modeling, which explicitly parameterizes the common static constraints as a spatial/temporal vanilla adjacency matrix shared by all frames/joints and dynamically extracts correspondence variances for each frame/joint with an adjustment modeling function. For each sample, the common constrained adjacency matrices are fixed to represent generic motion patterns, while the extracted variances complete the matrices with specific pattern adjustments. Meanwhile, we mathematically reformulate GCs on spatiotemporal graphs into a unified form and find that DSTD-GC relaxes certain constraints of other GC, which contributes to a better representation capability. Moreover, by combining DSTD-GC with prior knowledge like body connection and temporal context, we propose a powerful spatiotemporal GCN called DSTD-GCN. On the Human3.6M, Carnegie Mellon University (CMU) Mocap, and 3D Poses in the Wild (3DPW) datasets, DSTD-GCN outperforms state-of-the-art methods by 3.9%-8.7% in prediction accuracy with 55.0%-96.9% fewer parameters. Codes are available at https://github.com/Jaakk0F/DSTD-GCN.
Collapse
|
9
|
Wang Q, Wang W, Fang Y, Yap PT, Zhu H, Li HJ, Qiao L, Liu M. Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI. IEEE Trans Biomed Eng 2024; 71:2391-2401. [PMID: 38412079 PMCID: PMC11257815 DOI: 10.1109/tbme.2024.3370415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
Collapse
|
10
|
Meinke C, Lueken U, Walter H, Hilbert K. Predicting treatment outcome based on resting-state functional connectivity in internalizing mental disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 160:105640. [PMID: 38548002 DOI: 10.1016/j.neubiorev.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Predicting treatment outcome in internalizing mental disorders prior to treatment initiation is pivotal for precision mental healthcare. In this regard, resting-state functional connectivity (rs-FC) and machine learning have often shown promising prediction accuracies. This systematic review and meta-analysis evaluates these studies, considering their risk of bias through the Prediction Model Study Risk of Bias Assessment Tool (PROBAST). We examined the predictive performance of features derived from rs-FC, identified features with the highest predictive value, and assessed the employed machine learning pipelines. We searched the electronic databases Scopus, PubMed and PsycINFO on the 12th of December 2022, which resulted in 13 included studies. The mean balanced accuracy for predicting treatment outcome was 77% (95% CI: [72%- 83%]). rs-FC of the dorsolateral prefrontal cortex had high predictive value in most studies. However, a high risk of bias was identified in all studies, compromising interpretability. Methodological recommendations are provided based on a comprehensive exploration of the studies' machine learning pipelines, and potential fruitful developments are discussed.
Collapse
Affiliation(s)
- Charlotte Meinke
- Department of Psychology, Humboldt-Universität zu Berlin, Germany.
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Germany; German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Germany.
| | - Henrik Walter
- Charité Universtätsmedizin Berlin, corporate member of FU Berlin and Humboldt Universität zu Berlin, Department of Psychiatrie and Psychotherapy, CCM, Germany.
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Germany; Department of Psychology, Health and Medical University Erfurt, Germany.
| |
Collapse
|
11
|
Zheng K, Yu S, Chen B. CI-GNN: A Granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis. Neural Netw 2024; 172:106147. [PMID: 38306785 DOI: 10.1016/j.neunet.2024.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which, in turn, also motivates an urgent need for psychiatrists to fully understand the decision behavior of the used GNNs. However, most of the existing GNN explainers are either post-hoc in which another interpretive model needs to be created to explain a well-trained GNN, or do not consider the causal relationship between the extracted explanation and the decision, such that the explanation itself contains spurious correlations and suffers from weak faithfulness. In this work, we propose a granger causality-inspired graph neural network (CI-GNN), a built-in interpretable model that is able to identify the most influential subgraph (i.e., functional connectivity within brain regions) that is causally related to the decision (e.g., major depressive disorder patients or healthy controls), without the training of an auxillary interpretive network. CI-GNN learns disentangled subgraph-level representations α and β that encode, respectively, the causal and non-causal aspects of original graph under a graph variational autoencoder framework, regularized by a conditional mutual information (CMI) constraint. We theoretically justify the validity of the CMI regulation in capturing the causal relationship. We also empirically evaluate the performance of CI-GNN against three baseline GNNs and four state-of-the-art GNN explainers on synthetic data and three large-scale brain disease datasets. We observe that CI-GNN achieves the best performance in a wide range of metrics and provides more reliable and concise explanations which have clinical evidence. The source code and implementation details of CI-GNN are freely available at GitHub repository (https://github.com/ZKZ-Brain/CI-GNN/).
Collapse
Affiliation(s)
- Kaizhong Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.
| | - Shujian Yu
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Machine Learning Group, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Badong Chen
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
12
|
Dai P, Zhou Y, Shi Y, Lu D, Chen Z, Zou B, Liu K, Liao S. Classification of MDD using a Transformer classifier with large-scale multisite resting-state fMRI data. Hum Brain Mapp 2024; 45:e26542. [PMID: 38088473 PMCID: PMC10789197 DOI: 10.1002/hbm.26542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide with high recurrence rate. Identifying MDD patients, particularly those with recurrent episodes with resting-state fMRI, may reveal the relationship between MDD and brain function. We proposed a Transformer-Encoder model, which utilized functional connectivity extracted from large-scale multisite rs-fMRI datasets to classify MDD and HC. The model discarded the Transformer's Decoder part, reducing the model's complexity and decreasing the number of parameters to adapt to the limited sample size and it does not require a complex feature selection process and achieves end-to-end classification. Additionally, our model is suitable for classifying data combined from multiple brain atlases and has an optional unsupervised pre-training module to acquire optimal initial parameters and speed up the training process. The model's performance was tested on a large-scale multisite dataset and identified brain regions affected by MDD using the Grad-CAM method. After conducting five-fold cross-validation, our model achieved an average classification accuracy of 68.61% on a dataset consisting of 1611 samples. For the selected recurrent MDD dataset, the model reached an average classification accuracy of 78.11%. Abnormalities were detected in the frontal gyri and cerebral cortex of MDD patients in both datasets. Furthermore, the identified brain regions in the recurrent MDD dataset generally exhibited a higher contribution to the model's performance.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Ying Zhou
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Yun Shi
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Da Lu
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Zailiang Chen
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Beiji Zou
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Kun Liu
- Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Shenghui Liao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | | |
Collapse
|
13
|
Duan J, Li Y, Zhang X, Dong S, Zhao P, Liu J, Zheng J, Zhu R, Kong Y, Wang F. Predicting treatment response in adolescents and young adults with major depressive episodes from fMRI using graph isomorphism network. Neuroimage Clin 2023; 40:103534. [PMID: 37939442 PMCID: PMC10665904 DOI: 10.1016/j.nicl.2023.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Major depressive episode (MDE) is the main clinical feature of mood disorders (major depressive disorder and bipolar disorder) in adolescents and young adults and accounts for most of the disease course. However, 30%-40% of MDE patients not responding to clinical first-line interventions. It is crucial to predict treatment response in the early stages and identify biomarkers associated with treatment response. Graph Isomorphism Network (GIN), a deep learning method, is promising for predicting treatment response for individual MDE patients with more powerful representation ability to capture the features of brain functional connectivity. METHODS In this study, GIN was used to predict individual treatment response in 198 adolescents and young adults with MDE. The most discriminating regions were also identified for the treatment response prediction. RESULTS Using GIN approach, the baseline functional connectivity could predict 79.8% responders and 67.4% non-responders to treatment (accuracy 74.24%). Furthermore, the most discriminating brain regions were mainly involved in paralimbic and subcortical areas. CONCLUSIONS GIN has shown potential in predicting treatment response for individual patients, which may enable personalized treatment decisions. Furthermore, targeted interventions focused on modulating the activity and connectivity within paralimbic and subcortical regions could potentially improve treatment outcomes and enable personalized interventions for adolescents and young adults with MDE.
Collapse
Affiliation(s)
- Jia Duan
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yueying Li
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Xiaotong Zhang
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Shuai Dong
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Liu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Youyong Kong
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China; Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing, China.
| | - Fei Wang
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China; Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Zhang S, Yang J, Zhang Y, Zhong J, Hu W, Li C, Jiang J. The Combination of a Graph Neural Network Technique and Brain Imaging to Diagnose Neurological Disorders: A Review and Outlook. Brain Sci 2023; 13:1462. [PMID: 37891830 PMCID: PMC10605282 DOI: 10.3390/brainsci13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neurological disorders (NDs), such as Alzheimer's disease, have been a threat to human health all over the world. It is of great importance to diagnose ND through combining artificial intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze the brain, imaging from morphology, anatomical structure, function features, and other aspects, thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have investigated the application of GNN in the medical field, but the scope is broad, and its application to NDs is less frequent and not detailed enough. This review focuses on the research progress of GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND, including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we investigated common NDs using the GNN diagnostic model in terms of data modality, number of subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research directions. The results of this review may be a valuable contribution to the ongoing intersection of artificial intelligence technology and brain imaging.
Collapse
Affiliation(s)
- Shuoyan Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiacheng Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiayi Zhong
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenjing Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chenyang Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiehui Jiang
- Shanghai Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Sheu YH, Magdamo C, Miller M, Das S, Blacker D, Smoller JW. AI-assisted prediction of differential response to antidepressant classes using electronic health records. NPJ Digit Med 2023; 6:73. [PMID: 37100858 PMCID: PMC10133261 DOI: 10.1038/s41746-023-00817-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Antidepressant selection is largely a trial-and-error process. We used electronic health record (EHR) data and artificial intelligence (AI) to predict response to four antidepressants classes (SSRI, SNRI, bupropion, and mirtazapine) 4 to 12 weeks after antidepressant initiation. The final data set comprised 17,556 patients. Predictors were derived from both structured and unstructured EHR data and models accounted for features predictive of treatment selection to minimize confounding by indication. Outcome labels were derived through expert chart review and AI-automated imputation. Regularized generalized linear model (GLM), random forest, gradient boosting machine (GBM), and deep neural network (DNN) models were trained and their performance compared. Predictor importance scores were derived using SHapley Additive exPlanations (SHAP). All models demonstrated similarly good prediction performance (AUROCs ≥ 0.70, AUPRCs ≥ 0.68). The models can estimate differential treatment response probabilities both between patients and between antidepressant classes for the same patient. In addition, patient-specific factors driving response probabilities for each antidepressant class can be generated. We show that antidepressant response can be accurately predicted from real-world EHR data with AI modeling, and our approach could inform further development of clinical decision support systems for more effective treatment selection.
Collapse
Affiliation(s)
- Yi-Han Sheu
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA
| | - Matthew Miller
- Harvard Injury Control Research Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jordan W Smoller
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
16
|
Yang Y, Ye C, Ma T. A deep connectome learning network using graph convolution for connectome-disease association study. Neural Netw 2023; 164:91-104. [PMID: 37148611 DOI: 10.1016/j.neunet.2023.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/01/2023] [Accepted: 04/16/2023] [Indexed: 05/08/2023]
Abstract
Multivariate analysis approaches provide insights into the identification of phenotype associations in brain connectome data. In recent years, deep learning methods including convolutional neural network (CNN) and graph neural network (GNN), have shifted the development of connectome-wide association studies (CWAS) and made breakthroughs for connectome representation learning by leveraging deep embedded features. However, most existing studies remain limited by potentially ignoring the exploration of region-specific features, which play a key role in distinguishing brain disorders with high intra-class variations, such as autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD). Here, we propose a multivariate distance-based connectome network (MDCN) that addresses the local specificity problem by efficient parcellation-wise learning, as well as associating population and parcellation dependencies to map individual differences. The approach incorporating an explainable method, parcellation-wise gradient and class activation map (p-GradCAM), is feasible for identifying individual patterns of interest and pinpointing connectome associations with diseases. We demonstrate the utility of our method on two largely aggregated multicenter public datasets by distinguishing ASD and ADHD from healthy controls and assessing their associations with underlying diseases. Extensive experiments have demonstrated the superiority of MDCN in classification and interpretation, where MDCN outperformed competitive state-of-the-art methods and achieved a high proportion of overlap with previous findings. As a CWAS-guided deep learning method, our proposed MDCN framework may narrow the bridge between deep learning and CWAS approaches, and provide new insights for connectome-wide association studies.
Collapse
Affiliation(s)
- Yanwu Yang
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Chenfei Ye
- Peng Cheng Laboratory, Shenzhen, China; International Research Institute for Artificial Intelligence, Harbin Institute of Technology at Shenzhen, Shenzhen, China.
| | - Ting Ma
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China; International Research Institute for Artificial Intelligence, Harbin Institute of Technology at Shenzhen, Shenzhen, China; Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
17
|
Multi-Scale Self-Attention Mixup for Graph Classification. Pattern Recognit Lett 2023. [DOI: 10.1016/j.patrec.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
18
|
Fang Y, Wang M, Potter GG, Liu M. Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification. Med Image Anal 2023; 84:102707. [PMID: 36512941 PMCID: PMC9850278 DOI: 10.1016/j.media.2022.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) data have been widely used for automated diagnosis of brain disorders such as major depressive disorder (MDD) to assist in timely intervention. Multi-site fMRI data have been increasingly employed to augment sample size and improve statistical power for investigating MDD. However, previous studies usually suffer from significant inter-site heterogeneity caused for instance by differences in scanners and/or scanning protocols. To address this issue, we develop a novel discrepancy-based unsupervised cross-domain fMRI adaptation framework (called UFA-Net) for automated MDD identification. The proposed UFA-Net is designed to model spatio-temporal fMRI patterns of labeled source and unlabeled target samples via an attention-guided graph convolution module, and also leverage a maximum mean discrepancy constrained module for unsupervised cross-site feature alignment between two domains. To the best of our knowledge, this is one of the first attempts to explore unsupervised rs-fMRI adaptation for cross-site MDD identification. Extensive evaluation on 681 subjects from two imaging sites shows that the proposed method outperforms several state-of-the-art methods. Our method helps localize disease-associated functional connectivity abnormalities and is therefore well interpretable and can facilitate fMRI-based analysis of MDD in clinical practice.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guy G Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
19
|
Zhang L, Pang M, Liu X, Hao X, Wang M, Xie C, Zhang Z, Yuan Y, Zhang D. Incorporating multi-stage diagnosis status to mine associations between genetic risk variants and the multi-modality phenotype network in major depressive disorder. Front Psychiatry 2023; 14:1139451. [PMID: 36937715 PMCID: PMC10017727 DOI: 10.3389/fpsyt.2023.1139451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Depression (major depressive disorder, MDD) is a common and serious medical illness. Globally, it is estimated that 5% of adults suffer from depression. Recently, imaging genetics receives growing attention and become a powerful strategy for discoverying the associations between genetic variants (e.g., single-nucleotide polymorphisms, SNPs) and multi-modality brain imaging data. However, most of the existing MDD imaging genetic research studies conducted by clinicians usually utilize simple statistical analysis methods and only consider single-modality brain imaging, which are limited in the deeper discovery of the mechanistic understanding of MDD. It is therefore imperative to utilize a powerful and efficient technology to fully explore associations between genetic variants and multi-modality brain imaging. In this study, we developed a novel imaging genetic association framework to mine the multi-modality phenotype network between genetic risk variants and multi-stage diagnosis status. Specifically, the multi-modality phenotype network consists of voxel node features and connectivity edge features from structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI). Thereafter, an association model based on multi-task learning strategy was adopted to fully explore the relationship between the MDD risk SNP and the multi-modality phenotype network. The multi-stage diagnosis status was introduced to further mine the relation among the multiple modalities of different subjects. A multi-modality brain imaging data and genotype data were collected by us from two hospitals. The experimental results not only demonstrate the effectiveness of our proposed method but also identify some consistent and stable brain regions of interest (ROIs) biomarkers from the node and edge features of multi-modality phenotype network. Moreover, four new and potential risk SNPs associated with MDD were discovered.
Collapse
Affiliation(s)
- Li Zhang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- *Correspondence: Li Zhang
| | - Mengqian Pang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Xiaoyun Liu
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Meiling Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Yonggui Yuan
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Daoqiang Zhang
| |
Collapse
|
20
|
Asadi N, Olson IR, Obradovic Z. A transformer model for learning spatiotemporal contextual representation in fMRI data. Netw Neurosci 2023; 7:22-47. [PMID: 37334006 PMCID: PMC10270708 DOI: 10.1162/netn_a_00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/26/2022] [Indexed: 09/24/2023] Open
Abstract
Representation learning is a core component in data-driven modeling of various complex phenomena. Learning a contextually informative representation can especially benefit the analysis of fMRI data because of the complexities and dynamic dependencies present in such datasets. In this work, we propose a framework based on transformer models to learn an embedding of the fMRI data by taking the spatiotemporal contextual information in the data into account. This approach takes the multivariate BOLD time series of the regions of the brain as well as their functional connectivity network simultaneously as the input to create a set of meaningful features that can in turn be used in various downstream tasks such as classification, feature extraction, and statistical analysis. The proposed spatiotemporal framework uses the attention mechanism as well as the graph convolution neural network to jointly inject the contextual information regarding the dynamics in time series data and their connectivity into the representation. We demonstrate the benefits of this framework by applying it to two resting-state fMRI datasets, and provide further discussion on various aspects and advantages of it over a number of other commonly adopted architectures.
Collapse
Affiliation(s)
- Nima Asadi
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Ingrid R. Olson
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, Philadelphia, PA, USA
- Decision Neuroscience, College of Liberal Arts, Temple University, Philadelphia, PA, USA
| | - Zoran Obradovic
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Venkatapathy S, Votinov M, Wagels L, Kim S, Lee M, Habel U, Ra IH, Jo HG. Ensemble graph neural network model for classification of major depressive disorder using whole-brain functional connectivity. Front Psychiatry 2023; 14:1125339. [PMID: 37032921 PMCID: PMC10077869 DOI: 10.3389/fpsyt.2023.1125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Major depressive disorder (MDD) is characterized by impairments in mood and cognitive functioning, and it is a prominent source of global disability and stress. A functional magnetic resonance imaging (fMRI) can aid clinicians in their assessments of individuals for the identification of MDD. Herein, we employ a deep learning approach to the issue of MDD classification. Resting-state fMRI data from 821 individuals with MDD and 765 healthy controls (HCs) is employed for investigation. An ensemble model based on graph neural network (GNN) has been created with the goal of identifying patients with MDD among HCs as well as differentiation between first-episode and recurrent MDDs. The graph convolutional network (GCN), graph attention network (GAT), and GraphSAGE models serve as a base models for the ensemble model that was developed with individual whole-brain functional networks. The ensemble's performance is evaluated using upsampling and downsampling, along with 10-fold cross-validation. The ensemble model achieved an upsampling accuracy of 71.18% and a downsampling accuracy of 70.24% for MDD and HC classification. While comparing first-episode patients with recurrent patients, the upsampling accuracy is 77.78% and the downsampling accuracy is 71.96%. According to the findings of this study, the proposed GNN-based ensemble model achieves a higher level of accuracy and suggests that our model produces can assist healthcare professionals in identifying MDD.
Collapse
Affiliation(s)
- Sujitha Venkatapathy
- School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, Republic of Korea
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Research Center Juelich, Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Juelich, Republic of Korea
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Research Center Juelich, Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Juelich, Republic of Korea
| | - Sangyun Kim
- AI Convergence Research Section, Electronics and Telecommunications Research Institute, Gwangju, Republic of Korea
| | - Munseob Lee
- AI Convergence Research Section, Electronics and Telecommunications Research Institute, Gwangju, Republic of Korea
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Research Center Juelich, Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Juelich, Republic of Korea
| | - In-Ho Ra
- School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, Republic of Korea
| | - Han-Gue Jo
- School of Computer Information and Communication Engineering, Kunsan National University, Gunsan, Republic of Korea
- *Correspondence: Han-Gue Jo
| |
Collapse
|
22
|
Hosseinzadeh MM, Cannataro M, Guzzi PH, Dondi R. Temporal networks in biology and medicine: a survey on models, algorithms, and tools. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 12:10. [PMID: 36618274 PMCID: PMC9803903 DOI: 10.1007/s13721-022-00406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023]
Abstract
The use of static graphs for modelling and analysis of biological and biomedical data plays a key role in biomedical research. However, many real-world scenarios present dynamic behaviours resulting in both node and edges modification as well as feature evolution. Consequently, ad-hoc models for capturing these evolutions along the time have been introduced, also referred to as dynamic, temporal, time-varying graphs. Here, we focus on temporal graphs, i.e., graphs whose evolution is represented by a sequence of time-ordered snapshots. Each snapshot represents a graph active in a particular timestamp. We survey temporal graph models and related algorithms, presenting fundamentals aspects and the recent advances. We formally define temporal graphs, focusing on the problem setting and we present their main applications in biology and medicine. We also present temporal graph embedding and the application to recent problems such as epidemic modelling. Finally, we further state some promising research directions in the area. Main results of this study include a systematic review of fundamental temporal network problems and their algorithmic solutions considered in the literature, in particular those having application in computational biology and medicine. We also include the main software developed in this context.
Collapse
Affiliation(s)
| | - Mario Cannataro
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Riccardo Dondi
- Department of Literature, Philosophy, Communication Studies, University of Bergamo, Bergamo, Italy
| |
Collapse
|
23
|
Jing R, Huo Y, Si J, Li H, Yu M, Lin X, Liu G, Li P. Altered spatio-temporal state patterns for functional dynamics estimation in first-episode drug-naive major depression. Brain Imaging Behav 2022; 16:2744-2754. [PMID: 36333522 PMCID: PMC9638404 DOI: 10.1007/s11682-022-00739-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Patients with major depressive disorder (MDD) display affective and cognitive impairments. Although MDD-associated abnormalities of brain function and structure have been explored in depth, the relationships between MDD and spatio-temporal large-scale functional networks have not been evaluated in large-sample datasets. We employed data from International Big-Data Center for Depression Research (IBCDR), and comparable 543 healthy controls (HC) and 314 first-episode drug-naive (FEDN) MDD patients were included. We used a multivariate pattern classification method to learn informative spatio-temporal functional states. Brain states of each participant were extracted for functional dynamic estimation using an independent component analysis. Then, a multi-kernel pattern classification method was developed to identify discriminative spatio-temporal states associated with FEDN MDD. Finally, statistical analysis was applied to intrinsic and clinical brain characteristics. Compared with HC, FEDN MDD patients exhibited altered spatio-temporal functional states of the default mode network (DMN), the salience network, a hub network (centered on the dorsolateral prefrontal cortex), and a relatively complex coupling network (visual, DMN, motor-somatosensory and subcortical networks). Multi-kernel classification models to distinguish patients from HC obtained areas under the receiver operating characteristic curves up to 0.80. Classification scores correlated with Hamilton Depression Rating Scale scores and age at MDD onset. FEDN MDD patients had multiple abnormal spatio-temporal functional states. Classification scores derived from these states were related to symptom severity. The assessment of spatio-temporal states may represent a powerful clinical and research tool to distinguish between neuropsychiatric patients and controls.
Collapse
Affiliation(s)
- Rixing Jing
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China.
| | - Yanxi Huo
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Juanning Si
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Huiyu Li
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Mingxin Yu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuanbei Road, Beijing, 100191, China
| | - Guozhong Liu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuanbei Road, Beijing, 100191, China.
| |
Collapse
|
24
|
Si Q, Gan C, Zhang H, Cao X, Sun H, Wang M, Wang L, Yuan Y, Zhang K. Altered dynamic functional network connectivity in levodopa-induced dyskinesia of Parkinson's disease. CNS Neurosci Ther 2022; 29:192-201. [PMID: 36229900 PMCID: PMC9804048 DOI: 10.1111/cns.13994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS The aim of this study was to clarify the dynamic neural activity of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). METHODS Using dynamic functional network connectivity (dFNC) analysis, we evaluated 41 PD patients with LID (LID group) and 34 PD patients without LID (No-LID group). Group spatial independent component analysis and sliding-window approach were employed. Moreover, we applied a k-means clustering algorithm on windowed functional connectivity (FC) matrices to identify reoccurring FC patterns (i.e., states). RESULTS The optimal number of states was determined to be five, the so-called State 1, 2, 3, 4, and 5. In ON phase, compared with No-LID group, LID group occurred more frequently and dwelled longer in strongly connected State 1, characterized by strong positive connections between visual network (VIS) and sensorimotor network (SMN). When switching from OFF to ON phase, LID group occurred less frequently in State 3 and State 4. Meanwhile, LID group dwelled longer in State 2 and shorter in State 3. No-LID group occurred more frequently in State 5 and less frequently in State 3. Additionally, correlation analysis demonstrated that dyskinesia's severity was associated with frequency of occurrence and dwell time in State 2, dominated by inferior frontal cortex in cognitive executive network (CEN). CONCLUSION Using dFNC analysis, we found that dyskinesia may be related to the dysfunctional inhibition of CEN on motor loops and excessive excitation of VIS and SMN, which provided evidence of the changes in brain dynamics associated with the occurrence of dyskinesia.
Collapse
Affiliation(s)
- Qianqian Si
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Caiting Gan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Heng Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingyue Cao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Huimin Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of RadiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lina Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongsheng Yuan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kezhong Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
25
|
Karvelis P, Charlton CE, Allohverdi SG, Bedford P, Hauke DJ, Diaconescu AO. Computational approaches to treatment response prediction in major depression using brain activity and behavioral data: A systematic review. Netw Neurosci 2022; 6:1066-1103. [PMID: 38800454 PMCID: PMC11117101 DOI: 10.1162/netn_a_00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 05/29/2024] Open
Abstract
Major depressive disorder is a heterogeneous diagnostic category with multiple available treatments. With the goal of optimizing treatment selection, researchers are developing computational models that attempt to predict treatment response based on various pretreatment measures. In this paper, we review studies that use brain activity data to predict treatment response. Our aim is to highlight and clarify important methodological differences between various studies that relate to the incorporation of domain knowledge, specifically within two approaches delineated as data-driven and theory-driven. We argue that theory-driven generative modeling, which explicitly models information processing in the brain and thus can capture disease mechanisms, is a promising emerging approach that is only beginning to be utilized in treatment response prediction. The predictors extracted via such models could improve interpretability, which is critical for clinical decision-making. We also identify several methodological limitations across the reviewed studies and provide suggestions for addressing them. Namely, we consider problems with dichotomizing treatment outcomes, the importance of investigating more than one treatment in a given study for differential treatment response predictions, the need for a patient-centered approach for defining treatment outcomes, and finally, the use of internal and external validation methods for improving model generalizability.
Collapse
Affiliation(s)
- Povilas Karvelis
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Colleen E. Charlton
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Shona G. Allohverdi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Peter Bedford
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Daniel J. Hauke
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
| | - Andreea O. Diaconescu
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- University of Toronto, Department of Psychiatry, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Wang M, Zhang D, Huang J, Liu M, Liu Q. Consistent connectome landscape mining for cross-site brain disease identification using functional MRI. Med Image Anal 2022; 82:102591. [DOI: 10.1016/j.media.2022.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/08/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
27
|
Lu G, Zhang Y, Kong Y, Zhang C, Coatrieux JL, Shu H. Landmark Localization for Cephalometric Analysis using Multiscale Image Patch-based Graph Convolutional Networks. IEEE J Biomed Health Inform 2022; 26:3015-3024. [PMID: 35259123 DOI: 10.1109/jbhi.2022.3157722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accurate and robust cephalometric image analysis plays an essential role in orthodontic diagnosis, treatment assessment and surgical planning. This paper proposes a novel landmark localization method for cephalometric analysis using multiscale image patch-based graph convolutional networks. In detail, image patches with the same size are hierarchically sampled from the Gaussian pyramid to well preserve multiscale context information. We combine local appearance and shape information into spatialized features with an attention module to enrich node representations in graph. The spatial relationships of landmarks are built with the incorporation of three-layer graph convolutional networks, and multiple landmarks are simultaneously updated and moved toward the targets in a cascaded coarse-to-fine process. Quantitative results obtained on publicly available cephalometric X-ray images have exhibited superior performance compared with other state-of-the-art methods in terms of mean radial error and successful detection rate within various precision ranges. Our approach performs significantly better especially in the clinically accepted range of 2 mm and this makes it suitable in cephalometric analysis and orthognathic surgery.
Collapse
|
28
|
Kong Y, Gao S, Yue Y, Hou Z, Shu H, Xie C, Zhang Z, Yuan Y. Spatio-temporal graph convolutional network for diagnosis and treatment response prediction of major depressive disorder from functional connectivity. Hum Brain Mapp 2021; 42:3922-3933. [PMID: 33969930 PMCID: PMC8288094 DOI: 10.1002/hbm.25529] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of major depressive disorder (MDD) has been explored to be highly associated with the dysfunctional integration of brain networks. It is therefore imperative to explore neuroimaging biomarkers to aid diagnosis and treatment. In this study, we developed a spatiotemporal graph convolutional network (STGCN) framework to learn discriminative features from functional connectivity for automatic diagnosis and treatment response prediction of MDD. Briefly, dynamic functional networks were first obtained from the resting-state fMRI with the sliding temporal window method. Secondly, a novel STGCN approach was proposed by introducing the modules of spatial graph attention convolution (SGAC) and temporal fusion. A novel SGAC was proposed to improve the feature learning ability and special anatomy prior guided pooling was developed to enable the feature dimension reduction. A temporal fusion module was proposed to capture the dynamic features of functional connectivity between adjacent sliding windows. Finally, the STGCN proposed approach was utilized to the tasks of diagnosis and antidepressant treatment response prediction for MDD. Performances of the framework were comprehensively examined with large cohorts of clinical data, which demonstrated its effectiveness in classifying MDD patients and predicting the treatment response. The sound performance suggests the potential of the STGCN for the clinical use in diagnosis and treatment prediction.
Collapse
Affiliation(s)
- Youyong Kong
- Lab of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China.,Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing, China
| | - Shuwen Gao
- Lab of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yingying Yue
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenhua Hou
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Huazhong Shu
- Lab of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China.,Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|