1
|
Essex CA, Overson DK, Merenstein JL, Truong TK, Madden DJ, Bedggood MJ, Morgan C, Murray HC, Holdsworth SJ, Stewart AW, Faull RLM, Hume P, Theadom A, Pedersen M. Mild traumatic brain injury increases cortical iron: evidence from individual susceptibility mapping. Brain Commun 2025; 7:fcaf110. [PMID: 40161218 PMCID: PMC11954555 DOI: 10.1093/braincomms/fcaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Quantitative susceptibility mapping has been applied to map brain iron distribution after mild traumatic brain injury to understand properties of neural tissue which may be related to cellular dyshomeostasis. However, this is a heterogeneous injury associated with microstructural brain changes, and 'traditional' group-wise statistical approaches may lead to a loss of clinically relevant information, as subtle alterations at the individual level can be obscured by averages and confounded by within-group variability. More precise and individualized approaches are needed to characterize mild traumatic brain injury better and elucidate potential cellular mechanisms to improve intervention and rehabilitation. To address this issue, we use quantitative MRI to build individualized profiles of regional positive (iron-related) magnetic susceptibility across 34 bilateral cortical ROIs following mild traumatic brain injury. Healthy population templates were constructed for each cortical area using standardized Z-scores derived from 25 age-matched male controls aged between 16 and 32 years (M = 21.10, SD = 4.35), serving as a reference against which Z-scores of 35 males with acute (<14 days) sports-related mild traumatic brain injury were compared [M = 21.60 years (range: 16-33), SD = 4.98]. Secondary analyses sensitive to cortical depth and curvature were also generated to approximate the location of iron accumulation in the cortical laminae and the effect of gyrification. Primary analyses indicated that approximately one-third (11/35; 31%) of injured participants exhibited elevated positive susceptibility indicative of abnormal iron profiles relative to the healthy population, a finding that was mainly concentrated in regions within the temporal lobe. Injury severity was significantly higher (P = 0.02) for these participants than their iron-normal counterparts, suggesting a link between injury severity, symptom burden, and elevated cortical iron. Secondary exploratory analyses of cortical depth and curvature profiles revealed abnormal iron accumulation in 83% (29/35) of mild traumatic brain injury participants, enabling better localization of injury-related changes in iron content to specific loci within each region and identifying effects that may be more subtle and lost in region-wise averaging. Our findings suggest that individualized approaches can further elucidate the clinical relevance of iron in mild head injury. Differences in injury severity between iron-normal and iron-abnormal mild traumatic brain injury participants identified in our primary analysis highlight not only why precise investigation is required to understand the link between objective changes in the brain and subjective symptomatology, but also identify iron as a candidate biomarker for tissue pathology after mild traumatic brain injury.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, Auckland 1023, New Zealand
- School of Psychology, The University of Auckland, Auckland 1142, New Zealand
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Helen C Murray
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Queensland 4067, Australia
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Patria Hume
- School of Sport and Recreation, Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland 0627, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| |
Collapse
|
2
|
Essex CA, Merenstein JL, Overson DK, Truong TK, Madden DJ, Bedggood MJ, Murray H, Holdsworth SJ, Stewart AW, Morgan C, Faull RLM, Hume P, Theadom A, Pedersen M. Characterizing positive and negative quantitative susceptibility values in the cortex following mild traumatic brain injury: a depth- and curvature-based study. Cereb Cortex 2025; 35:bhaf059. [PMID: 40099836 PMCID: PMC11915090 DOI: 10.1093/cercor/bhaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Evidence has linked head trauma to increased risk factors for neuropathology, including mechanical deformation of the sulcal fundus and, later, perivascular accumulation of hyperphosphorylated tau adjacent to these spaces related to chronic traumatic encephalopathy. However, little is known about microstructural abnormalities and cellular dyshomeostasis in acute mild traumatic brain injury in humans, particularly in the cortex. To address this gap, we designed the first architectonically motivated quantitative susceptibility mapping study to assess regional patterns of net positive (iron-related) and net negative (myelin-, calcium-, and protein-related) magnetic susceptibility across 34 cortical regions of interest following mild traumatic brain injury. Bilateral, between-group analyses sensitive to cortical depth and curvature were conducted between 25 males with acute (<14 d) sports-related mild traumatic brain injury and 25 age-matched male controls. Results suggest a trauma-induced increase in net positive susceptibility focal to superficial, perivascular-adjacent spaces in the parahippocampal sulcus. Decreases in net negative susceptibility values in distinct voxel populations within the same region indicate a potential dual pathology of neural substrates. These mild traumatic brain injury-related patterns were distinct from age-related processes revealed by correlation analyses. Our findings suggest depth- and curvature-specific deposition of biological substrates in cortical tissue convergent with features of misfolded proteins in trauma-related neurodegeneration.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Helen Murray
- Center for Brain Research, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Mātai Medical Research Institute, 466 Childers Road, Te Hapara, Gisborne 4010, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Building 57 of, University Dr, St Lucia QLD 4067, Australia
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Patria Hume
- Sports Performance Research Institute New Zealand, Auckland University of Technology, 17 Antares Place, Rosedale, Auckland 0632, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| |
Collapse
|
3
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EM. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024; 41:2528-2544. [PMID: 39096127 PMCID: PMC11698675 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M. Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Fox AJ, Matthews N, Qiu Z, Filmer HL, Dux PE. On the lasting impact of mild traumatic brain injury on working memory: Behavioural and electrophysiological evidence. Neuropsychologia 2024; 204:109005. [PMID: 39313130 DOI: 10.1016/j.neuropsychologia.2024.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Despite increasing recognition of the significance of mild traumatic brain injury (mTBI), the long-term cognitive consequences of the injury remain unclear. More sensitive measures that can detect subtle cognitive changes and consideration of individual variability are needed to properly characterise cognitive outcomes following mTBI. Here, we used complex behavioural tasks, individual differences approaches, and electrophysiology to investigate the long-term cognitive effects of a history of mTBI. In Experiment 1, participants with self-reported mTBI history (n=82) showed poorer verbal working memory performance on the operation span task compared to control participants (n=88), but there were no group differences in visual working memory, multitasking, cognitive flexibility, attentional control, visuospatial ability, or information processing speed. Individual differences analyses revealed that time since injury and presence of memory loss predicted visual working memory capacity and visuospatial ability, respectively, in those with mTBI history. In Experiment 2, participants with mTBI history (n=20) again demonstrated poorer verbal working memory on the operation span task compared to control participants (n=38), but no group differences were revealed on a visuospatial complex span task or simpler visual working memory measures. We also explored the electrophysiological indices of visual working memory using EEG during a change detection task. No differences were observed in early sensory event-related potentials (P1, N1) or the later negative slow wave associated with visual working memory capacity. Together, these findings suggest that mTBI history may be associated with a lasting, isolated disruption in the subsystem underlying verbal working memory storage. The results emphasise the importance of sensitive cognitive measures and accounting for individual variability in injury characteristics when assessing mTBI outcomes.
Collapse
Affiliation(s)
- Amaya J Fox
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia.
| | - Natasha Matthews
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| | - Zeguo Qiu
- Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Poliva O, Herrera C, Sugai K, Whittle N, Leek MR, Barnes S, Holshouser B, Yi A, Venezia JH. Additive effects of mild head trauma, blast exposure, and aging within white matter tracts: A novel Diffusion Tensor Imaging analysis approach. J Neuropathol Exp Neurol 2024; 83:853-869. [PMID: 39053000 DOI: 10.1093/jnen/nlae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Existing diffusion tensor imaging (DTI) studies of neurological injury following high-level blast exposure (hlBE) in military personnel have produced widely variable results. This is potentially due to prior studies often not considering the quantity and/or recency of hlBE, as well as co-morbidity with non-blast head trauma (nbHT). Herein, we compare commonly used DTI metrics: fractional anisotropy and mean, axial, and radial diffusivity, in Veterans with and without history of hlBE and/or nbHT. We use both the traditional method of dividing participants into 2 equally weighted groups and an alternative method wherein each participant is weighted by quantity and recency of hlBE and/or nbHT. While no differences were detected using the traditional method, the alternative method revealed diffuse and extensive changes in all DTI metrics. These effects were quantified within 43 anatomically defined white matter tracts, which identified the forceps minor, middle corpus callosum, acoustic and optic radiations, fornix, uncinate, inferior fronto-occipital and inferior longitudinal fasciculi, and cingulum, as the pathways most affected by hlBE and nbHT. Moreover, additive effects of aging were present in many of the same tracts suggesting that these neuroanatomical effects may compound with age.
Collapse
Affiliation(s)
- Oren Poliva
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | | | - Kelli Sugai
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Nicole Whittle
- VA Portland Healthcare System, Portland, OR, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Samuel Barnes
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
6
|
Plummer CJ, Abramson N. Acute Concussion. Phys Med Rehabil Clin N Am 2024; 35:523-533. [PMID: 38945648 DOI: 10.1016/j.pmr.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Concussions are the most common type of traumatic brain injury. They result from external force to the head that causes a neuro-metabolic cascade to unfold. This can then lead to a variety of symptoms in the domains of physical, cognition, mood, and sleep. Concussions are a clinical diagnosis but it is important to rule out acute intracranial pathology through a detailed history and physical examination in addition to possible head imaging. Treatment should include an individualized approach that focuses on what domains are affected after concussion.
Collapse
Affiliation(s)
- Clausyl J Plummer
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, 2201 Children's Way, Nashville, TN 37212, USA.
| | - Nicholas Abramson
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, 2201 Children's Way, Nashville, TN 37212, USA
| |
Collapse
|
7
|
To XV, Cumming P, Nasrallah F. From impact to recovery: tracking mild traumatic brain injury with MRI-a pilot study and case series. BMJ Open Sport Exerc Med 2024; 10:e002010. [PMID: 39104372 PMCID: PMC11298751 DOI: 10.1136/bmjsem-2024-002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Background Diagnosis and recovery tracking of mild traumatic brain injury (mTBI) is often challenging due to the lack of clear findings on routine imaging techniques. This also complicates defining safe points for returning to activities. Hypothesis/purpose Quantitative susceptibility mapping (QSM) can provide information about cerebral venous oxygen saturation (CSvO2) in the context of brain injury. We tested the prediction that these imaging modalities would enable the detection of changes and recovery patterns in the brains of patients with mTBI. Study design In a case-control study, we recruited a cohort of 24 contact sport athletes for baseline QSM and resting-state functional MRI (rs-fMRI) scanning. Two of those who subsequently experienced head impact with significant post-injury symptoms underwent scans at 3, 7, 14 and 28 days post-injury; one had a boxing match without classical mTBI symptoms were also followed-up on. Results The cohort baseline QSM measurements of the straight sinus were established. The two injured athletes with post-impact symptoms consistent with mTBI had susceptibility results at days 3 and 7 post-impact that fell below the 25th percentile of the baseline values. The per cent amplitude fluctuation quantified from rs-fMRI agreed with the susceptibility trends in the straight sinus. Conclusion QSM holds promise as a diagnostic tool for tracking mTBI progression or recovery in contact sport head injury.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima Nasrallah
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Rahmani F, Batson RD, Zimmerman A, Reddigari S, Bigler ED, Lanning SC, Ilasa E, Grafman JH, Lu H, Lin AP, Raji CA. Rate of abnormalities in quantitative MR neuroimaging of persons with chronic traumatic brain injury. BMC Neurol 2024; 24:235. [PMID: 38969967 PMCID: PMC11225195 DOI: 10.1186/s12883-024-03745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) can result in lasting brain damage that is often too subtle to detect by qualitative visual inspection on conventional MR imaging. Although a number of FDA-cleared MR neuroimaging tools have demonstrated changes associated with mTBI, they are still under-utilized in clinical practice. METHODS We investigated a group of 65 individuals with predominantly mTBI (60 mTBI, 48 due to motor-vehicle collision, mean age 47 ± 13 years, 27 men and 38 women) with MR neuroimaging performed in a median of 37 months post-injury. We evaluated abnormalities in brain volumetry including analysis of left-right asymmetry by quantitative volumetric analysis, cerebral perfusion by pseudo-continuous arterial spin labeling (PCASL), white matter microstructure by diffusion tensor imaging (DTI), and neurometabolites via magnetic resonance spectroscopy (MRS). RESULTS All participants demonstrated atrophy in at least one lobar structure or increased lateral ventricular volume. The globus pallidi and cerebellar grey matter were most likely to demonstrate atrophy and asymmetry. Perfusion imaging revealed significant reductions of cerebral blood flow in both occipital and right frontoparietal regions. Diffusion abnormalities were relatively less common though a subset analysis of participants with higher resolution DTI demonstrated additional abnormalities. All participants showed abnormal levels on at least one brain metabolite, most commonly in choline and N-acetylaspartate. CONCLUSION We demonstrate the presence of coup-contrecoup perfusion injury patterns, widespread atrophy, regional brain volume asymmetry, and metabolic aberrations as sensitive markers of chronic mTBI sequelae. Our findings expand the historic focus on quantitative imaging of mTBI with DTI by highlighting the complementary importance of volumetry, arterial spin labeling perfusion and magnetic resonance spectroscopy neurometabolite analyses in the evaluation of chronic mTBI.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Richard D Batson
- Endocrine & Brain Injury Research Alliance, Neurevolution Medicine, PLLC, NUNM Helfgott Research Institute, Portland, Oregon, USA
| | | | | | - Erin D Bigler
- Department of Neurology, Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | | | - Jordan H Grafman
- Departments of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine, Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cyrus A Raji
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Huang S, Han J, Zheng H, Li M, Huang C, Kui X, Liu J. Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury: predictors of patient prognosis. Neural Regen Res 2024; 19:1553-1558. [PMID: 38051899 PMCID: PMC10883483 DOI: 10.4103/1673-5374.387971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00035/figure1/v/2023-11-20T171125Z/r/image-tiff
Patients with mild traumatic brain injury have a diverse clinical presentation, and the underlying pathophysiology remains poorly understood. Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neurobiological markers after mild traumatic brain injury. This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury. Graph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function. However, most previous mild traumatic brain injury studies using graph theory have focused on specific populations, with limited exploration of simultaneous abnormalities in structural and functional connectivity. Given that mild traumatic brain injury is the most common type of traumatic brain injury encountered in clinical practice, further investigation of the patient characteristics and evolution of structural and functional connectivity is critical. In the present study, we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury. In this longitudinal study, we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 weeks of injury, as well as 36 healthy controls. Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis. In the acute phase, patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network. More than 3 months of follow-up data revealed signs of recovery in structural and functional connectivity, as well as cognitive function, in 22 out of the 46 patients. Furthermore, better cognitive function was associated with more efficient networks. Finally, our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury. These findings highlight the importance of integrating structural and functional connectivity in understanding the occurrence and evolution of mild traumatic brain injury. Additionally, exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jungong Han
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Mengjun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Radiology, Quality Control Center of Hunan Province, Changsha, Hunan Province, China
- Clinical Research Center for Medical Imaging of Hunan Province, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
11
|
Nwakamma MC, Stillman AM, Gabard-Durnam LJ, Cavanagh JF, Hillman CH, Morris TP. Slowing of Parameterized Resting-State Electroencephalography After Mild Traumatic Brain Injury. Neurotrauma Rep 2024; 5:448-461. [PMID: 38666007 PMCID: PMC11044859 DOI: 10.1089/neur.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Reported changes in electroencephalography (EEG)-derived spectral power after mild traumatic brain injury (mTBI) remains inconsistent across existing literature. However, this may be a result of previous analyses depending solely on observing spectral power within traditional canonical frequency bands rather than accounting for the aperiodic activity within the collected neural signal. Therefore, the aim of this study was to test for differences in rhythmic and arrhythmic time series across the brain, and in the cognitively relevant frontoparietal (FP) network, and observe whether those differences were associated with cognitive recovery post-mTBI. Resting-state electroencephalography (rs-EEG) was collected from 88 participants (56 mTBI and 32 age- and sex-matched healthy controls) within 14 days of injury for the mTBI participants. A battery of executive function (EF) tests was collected at the first session with follow-up metrics collected approximately 2 and 4 months after the initial visit. After spectral parameterization, a significant between-group difference in aperiodic-adjusted alpha center peak frequency within the FP network was observed, where a slowing of alpha peak frequency was found in the mTBI group in comparison to the healthy controls. This slowing of week 2 (collected within 2 weeks of injury) aperiodic-adjusted alpha center peak frequency within the FP network was associated with increased EF over time (evaluated using executive composite scores) post-mTBI. These findings suggest alpha center peak frequency within the FP network as a candidate prognostic marker of EF recovery and may inform clinical rehabilitative methods post-mTBI.
Collapse
Affiliation(s)
- Mark C. Nwakamma
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Alexandra M. Stillman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Laurel J. Gabard-Durnam
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Charles H. Hillman
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Timothy P. Morris
- Department of Physical Therapy Human Movement Sciences, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
- Department of Applied Psychology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Ellingson CJ, Shafiq MA, Ellingson CA, Neary JP, Dehghani P, Singh J. Assessment of cardiovascular functioning following sport-related concussion: A physiological perspective. Auton Neurosci 2024; 252:103160. [PMID: 38428323 DOI: 10.1016/j.autneu.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
There is still much uncertainty surrounding the approach to diagnosing and managing a sport-related concussion (SRC). Neurobiological recovery may extend beyond clinical recovery following SRC, highlighting the need for objective physiological parameters to guide diagnosis and management. With an increased understanding of the connection between the heart and the brain, the utility of assessing cardiovascular functioning following SRC has gained attention. As such, this review focuses on the assessment of cardiovascular parameters in the context of SRC. Although conflicting results have been reported, decreased heart rate variability, blood pressure variability, and systolic (ejection) time, in addition to increased spontaneous baroreflex sensitivity and magnitude of atrial contraction have been shown in acute SRC. We propose that these findings result from the neurometabolic cascade triggered by a concussion and represent alterations in myocardial calcium handling, autonomic dysfunction, and an exaggerated compensatory response that attempts to maintain homeostasis following a SRC. Assessment of the cardiovascular system has the potential to assist in diagnosing and managing SRC, contributing to a more comprehensive and multimodal assessment strategy.
Collapse
Affiliation(s)
- Chase J Ellingson
- College of Medicine, University of Saskatchewan Regina Campus, Regina, SK, Canada; Prairie Vascular Research Inc, Regina, SK, Canada
| | - M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, Regina, SK, Canada; Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | | | - Jyotpal Singh
- Prairie Vascular Research Inc, Regina, SK, Canada; Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| |
Collapse
|
13
|
Zhou L, Hu H, Ning X, Bai Z, Xu J, Xu L, Zhuang W, Sun J, Zhang H, Wang F, Cui W, Jin G, Nian Y, Li K, Duan A, Chen M. Study of the Immediately Detection of Mild Traumatic Brain Injury by Feature Engineering on Electroencephalography. Adv Biol (Weinh) 2023; 7:e2300208. [PMID: 37670395 DOI: 10.1002/adbi.202300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/16/2023] [Indexed: 09/07/2023]
Abstract
The electroencephalographic (EEG) diagnosis of mild traumatic brain injury (mTBI) is not usually timely, and the detection is often performed several hours or days after the trauma, leading to a decrease in the accuracy of its detection. In this study, EEG signals are recorded immediately after mTBI by connecting a bipolar single lead to injured animals. And three types of EEG features, namely time domain, frequency domain, and nonlinear dynamics, are screened for optimal feature subset in mTBI detection. First, EEG signals of animals are recorded before and after establishing the animal model of mTBI. Second, signal preprocessing, feature extraction, and feature preprocessing are performed to obtain the full-feature dataset, and 1442 feature subsets are obtained by 15 feature reduction algorithms extracted from combinations of 47 features. Ultimately, the support vector machines and K-nearest neighbor algorithms are trained and tested respectively, and their performance is comprehensively compared to determine the optimal feature subset for mTBI detection. In the EEG dataset collected in this study, a total of eight feature subsets extracted from combinations of original 47 features and classification models with 100% accuracy are obtained. This study shows the perspective of immediately detecting mTBI based on a bipolar single-lead EEG.
Collapse
Affiliation(s)
- Lilong Zhou
- Army Medical University, Gaotanyan, Chongqing, China
| | - Hang Hu
- Army Medical University, Gaotanyan, Chongqing, China
| | - Xu Ning
- Army Medical University, Gaotanyan, Chongqing, China
| | - Zelin Bai
- Army Medical University, Gaotanyan, Chongqing, China
| | - Jia Xu
- Army Medical University, Gaotanyan, Chongqing, China
| | - Lin Xu
- Army Medical University, Gaotanyan, Chongqing, China
| | - Wei Zhuang
- Army Medical University, Gaotanyan, Chongqing, China
| | - Jian Sun
- Army Medical University, Gaotanyan, Chongqing, China
| | | | - Feng Wang
- Army Medical University, Gaotanyan, Chongqing, China
| | - Weiheng Cui
- Army Medical University, Gaotanyan, Chongqing, China
| | - Gui Jin
- Army Medical University, Gaotanyan, Chongqing, China
| | - Yongjian Nian
- Army Medical University, Gaotanyan, Chongqing, China
| | - Kui Li
- Army Medical University, Gaotanyan, Chongqing, China
| | - Aowen Duan
- Army Medical University, Gaotanyan, Chongqing, China
| | | |
Collapse
|
14
|
Li F, Lu L, Li H, Liu Y, Chen H, Yuan F, Jiang H, Yin X, Chen YC. Disrupted resting-state functional connectivity and network topology in mild traumatic brain injury: an arterial spin labelling study. Brain Commun 2023; 5:fcad254. [PMID: 37829696 PMCID: PMC10567062 DOI: 10.1093/braincomms/fcad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Mild traumatic brain injury can cause different degrees of cognitive impairment and abnormal brain structure and functional connectivity, but there is still a lack of research on the functional connectivity and topological organization of cerebral blood flow fluctuations. This study explored the cerebral blood flow, functional connectivity and topological organization of the cerebral blood flow network in acute mild traumatic brain injury patients. In total, 48 mild traumatic brain injury patients and 46 well-matched healthy controls underwent resting-state arterial spin labelling perfusion MRI and neuropsychological assessments. The functional connectivity and topological organization of the cerebral blood flow network were analysed. Then, the correlation between the changes in cerebral blood flow network characteristics and cognitive function was explored. Acute mild traumatic brain injury patients showed decreased cerebral blood flow in the right insula and increased cerebral blood flow in the right inferior temporal gyrus and left superior temporal gyrus. Abnormal cerebral blood flow network connection patterns mainly occur in sensorimotor network, default mode network, cingulo-opercular network and occipital network-related regions. Furthermore, mild traumatic brain injury disrupted the topological organization of the whole brain, which manifested as (i) reduced global efficiency; (ii) abnormal degree centrality, betweenness centrality, nodal clustering coefficient and nodal efficiency; and (iii) decreased intermodular connectivity between the occipital network and sensorimotor network. Finally, the change in network topology was correlated with the cognitive score of the mild traumatic brain injury. This study provided evidence of abnormal functional connectivity and network topology based on cerebral blood flow in acute mild traumatic brain injury patients, revealing their potential use as early markers for mild traumatic brain injury, which may contribute to both disease diagnosis and assessment.
Collapse
Affiliation(s)
- Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hui Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Hailong Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
15
|
Lynch DG, Narayan RK, Li C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 2023; 12:jcm12062179. [PMID: 36983181 PMCID: PMC10052098 DOI: 10.3390/jcm12062179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Despite extensive research efforts, the majority of trialed monotherapies to date have failed to demonstrate significant benefit. It has been suggested that this is due to the complex pathophysiology of TBI, which may possibly be addressed by a combination of therapeutic interventions. In this article, we have reviewed combinations of different pharmacologic treatments, combinations of non-pharmacologic interventions, and combined pharmacologic and non-pharmacologic interventions for TBI. Both preclinical and clinical studies have been included. While promising results have been found in animal models, clinical trials of combination therapies have not yet shown clear benefit. This may possibly be due to their application without consideration of the evolving pathophysiology of TBI. Improvements of this paradigm may come from novel interventions guided by multimodal neuromonitoring and multimodal imaging techniques, as well as the application of multi-targeted non-pharmacologic and endogenous therapies. There also needs to be a greater representation of female subjects in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel G. Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, St. Francis Hospital, Roslyn, NY 11576, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
- Department of Neurosurgery, Northwell Health, Manhasset, NY 11030, USA
- Correspondence:
| |
Collapse
|
16
|
Singh G, Chanda A. Development and Mechanical Characterization of Artificial Surrogates for Brain Tissues. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
17
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Pinky NN, Debert CT, Dukelow SP, Benson BW, Harris AD, Yeates KO, Emery CA, Goodyear BG. Multimodal magnetic resonance imaging of youth sport-related concussion reveals acute changes in the cerebellum, basal ganglia, and corpus callosum that resolve with recovery. Front Hum Neurosci 2022; 16:976013. [PMID: 36337852 PMCID: PMC9626521 DOI: 10.3389/fnhum.2022.976013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022] Open
Abstract
Magnetic resonance imaging (MRI) can provide a number of measurements relevant to sport-related concussion (SRC) symptoms; however, most studies to date have used a single MRI modality and whole-brain exploratory analyses in attempts to localize concussion injury. This has resulted in highly variable findings across studies due to wide ranging symptomology, severity and nature of injury within studies. A multimodal MRI, symptom-guided region-of-interest (ROI) approach is likely to yield more consistent results. The functions of the cerebellum and basal ganglia transcend many common concussion symptoms, and thus these regions, plus the white matter tracts that connect or project from them, constitute plausible ROIs for MRI analysis. We performed diffusion tensor imaging (DTI), resting-state functional MRI, quantitative susceptibility mapping (QSM), and cerebral blood flow (CBF) imaging using arterial spin labeling (ASL), in youth aged 12-18 years following SRC, with a focus on the cerebellum, basal ganglia and white matter tracts. Compared to controls similar in age, sex and sport (N = 20), recent SRC youth (N = 29; MRI at 8 ± 3 days post injury) exhibited increased susceptibility in the cerebellum (p = 0.032), decreased functional connectivity between the caudate and each of the pallidum (p = 0.035) and thalamus (p = 0.021), and decreased diffusivity in the mid-posterior corpus callosum (p < 0.038); no changes were observed in recovered asymptomatic youth (N = 16; 41 ± 16 days post injury). For recent symptomatic-only SRC youth (N = 24), symptom severity was associated with increased susceptibility in the superior cerebellar peduncles (p = 0.011) and reduced activity in the cerebellum (p = 0.013). Fewer days between injury and MRI were associated with reduced cerebellar-parietal functional connectivity (p < 0.014), reduced activity of the pallidum (p = 0.002), increased CBF in the caudate (p = 0.005), and reduced diffusivity in the central corpus callosum (p < 0.05). Youth SRC is associated with acute cerebellar inflammation accompanied by reduced cerebellar activity and cerebellar-parietal connectivity, as well as structural changes of the middle regions of the corpus callosum accompanied by functional changes of the caudate, all of which resolve with recovery. Early MRI post-injury is important to establish objective MRI-based indicators for concussion diagnosis, recovery assessment and prediction of outcome.
Collapse
Affiliation(s)
- Najratun Nayem Pinky
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sean P. Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brian W. Benson
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Canadian Sport Institute Calgary, University of Calgary, Calgary, AB, Canada
- Benson Concussion Institute, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Keith O. Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Carolyn A. Emery
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Sports Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada
| | - Bradley G. Goodyear
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Bradley G. Goodyear,
| |
Collapse
|
19
|
Ellingson CJ, Singh J, Ellingson CA, Sirant LW, Krätzig GP, Dorsch KD, Piskorski J, Neary JP. Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion. Life (Basel) 2022; 12:life12091400. [PMID: 36143435 PMCID: PMC9500648 DOI: 10.3390/life12091400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Current methods to diagnose concussions are subjective and difficult to confirm. A variety of physiological biomarkers have been reported, but with conflicting results. This study assessed heart rate variability (HRV), spontaneous baroreflex sensitivity (BRS), and systolic blood pressure variability (BPV) in concussed athletes. The assessment consisted of a 5-min seated rest followed by a 5-min (0.1 Hz) controlled breathing protocol. Thirty participants completed baseline assessments. The protocol was repeated during the post-injury acute phase (days one to five). Total (p = 0.02) and low-frequency (p = 0.009) BPV spectral power were significantly decreased during the acute phase of concussion. BRS down-sequence (p = 0.036) and up-sequence (p = 0.05) were significantly increased in the acute phase of concussion, with a trend towards an increased BRS pooled (p = 0.06). Significant decreases in HRV were also found. Acute concussion resulted in altered BRS and BPV dynamics compared to baseline. These findings highlight objective physiological parameters that could aid concussion diagnosis and return-to-play protocols.
Collapse
Affiliation(s)
- Chase J. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Cody A. Ellingson
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Luke W. Sirant
- College of Medicine, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Gregory P. Krätzig
- Department of Psychology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kim D. Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jaroslaw Piskorski
- Institute of Physics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland
| | - J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Correspondence: ; Tel.: +1-306-585-4844
| |
Collapse
|
20
|
Lake EMR, Higley MJ. Building bridges: simultaneous multimodal neuroimaging approaches for exploring the organization of brain networks. NEUROPHOTONICS 2022; 9:032202. [PMID: 36159712 PMCID: PMC9506627 DOI: 10.1117/1.nph.9.3.032202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Brain organization is evident across spatiotemporal scales as well as from structural and functional data. Yet, translating from micro- to macroscale (vice versa) as well as between different measures is difficult. Reconciling disparate observations from different modes is challenging because each specializes within a restricted spatiotemporal milieu, usually has bounded organ coverage, and has access to different contrasts. True intersubject biological heterogeneity, variation in experiment implementation (e.g., use of anesthesia), and true moment-to-moment variations in brain activity (maybe attributable to different brain states) also contribute to variability between studies. Ultimately, for a deeper and more actionable understanding of brain organization, an ability to translate across scales, measures, and species is needed. Simultaneous multimodal methods can contribute to bettering this understanding. We consider four modes, three optically based: multiphoton imaging, single-photon (wide-field) imaging, and fiber photometry, as well as magnetic resonance imaging. We discuss each mode as well as their pairwise combinations with regard to the definition and study of brain networks.
Collapse
Affiliation(s)
- Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Michael J. Higley
- Yale School of Medicine, Departments of Neuroscience and Psychiatry, New Haven, Connecticut, United States
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, New Haven, Connecticut, United States
| |
Collapse
|
21
|
Liu Y, Lu L, Li F, Chen YC. Neuropathological Mechanisms of Mild Traumatic Brain Injury: A Perspective From Multimodal Magnetic Resonance Imaging. Front Neurosci 2022; 16:923662. [PMID: 35784844 PMCID: PMC9247389 DOI: 10.3389/fnins.2022.923662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 80% of the total number of TBI cases. The mechanism of injury for patients with mTBI has a variety of neuropathological processes. However, the underlying neurophysiological mechanism of the mTBI is unclear, which affects the early diagnosis, treatment decision-making, and prognosis evaluation. More and more multimodal magnetic resonance imaging (MRI) techniques have been applied for the diagnosis of mTBI, such as functional magnetic resonance imaging (fMRI), arterial spin labeling (ASL) perfusion imaging, susceptibility-weighted imaging (SWI), and diffusion MRI (dMRI). Various imaging techniques require to be used in combination with neuroimaging examinations for patients with mTBI. The understanding of the neuropathological mechanism of mTBI has been improved based on different angles. In this review, we have summarized the application of these aforementioned multimodal MRI techniques in mTBI and evaluated its benefits and drawbacks.
Collapse
|
22
|
Legarda SB, Lahti CE, McDermott D, Michas-Martin A. Use of Novel Concussion Protocol With Infralow Frequency Neuromodulation Demonstrates Significant Treatment Response in Patients With Persistent Postconcussion Symptoms, a Retrospective Study. Front Hum Neurosci 2022; 16:894758. [PMID: 35685335 PMCID: PMC9170890 DOI: 10.3389/fnhum.2022.894758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/20/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction Concussion is a growing public health concern. No uniformly established therapy exists; neurofeedback studies report treatment value. We use infralow frequency neuromodulation (ILF) to remediate disabling neurological symptoms caused by traumatic brain injury (TBI) and noted improved outcomes with a novel concussion protocol. Postconcussion symptoms (PCS) and persistent postconcussion symptoms (PPCS; >3 months post head injury) are designated timelines for protracted neurological complaints following TBI. We performed a retrospective study to explore effectiveness of ILF in PCS/PPCS and investigated the value of using this concussion protocol. Method Patients with PCS/PPCS seen for their first neurology office visit or received their first neurofeedback session between 1 August 2018 and 31 January 2021 were entered. Outcomes were compared following treatment as usual (TAU) vs. TAU with ILF neurotherapy (TAU+ILF). The study cohort was limited to PPCS patients; the TAU+ILF group was restricted further to PPCS patients receiving at least 10 neurotherapy sessions. Within the TAU+ILF group, comparisons were made between those who trained at least 10 sessions using concussion protocol (TAU+ILF+CP) and those who trained for at least 10 sessions of ILF regardless of protocol (TAU+ILF-CP). Results Among our resultant PPCS cohort (n = 59) leading persistent neurological complaints were headache (67.8%), memory impairment (57.6%), and brain fog (50.8%). PPCS patients in TAU+ILF+CP (n = 25) demonstrated greater net (p = 0.004) and percent (p = 0.026) improvement of symptoms compared to PPCS subjects in TAU (n = 26). PPCS patients in TAU+ILF-CP (n = 8) trended toward significant symptom improvements compared to TAU, and TAU+ILF+CP trended toward greater efficacy than TAU+ILF-CP. Conclusion PPCS patients who received TAU+ILF+CP demonstrated significantly greater improvement as a group when compared to TAU. When used as an integrative modality to treatment as usual in managing patients with PPCS, ILF neuromodulation with use of concussion protocol provided significant symptom improvements.
Collapse
Affiliation(s)
- Stella B. Legarda
- Neurology, Montage Health, Montage Medical Group, Monterey, CA, United States
| | | | | | | |
Collapse
|
23
|
Wu YY, Hu YS, Wang J, Zang YF, Zhang Y. Toward Precise Localization of Abnormal Brain Activity: 1D CNN on Single Voxel fMRI Time-Series. Front Comput Neurosci 2022; 16:822237. [PMID: 35573265 PMCID: PMC9094401 DOI: 10.3389/fncom.2022.822237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is one of the best techniques for precise localization of abnormal brain activity non-invasively. Machine-learning approaches have been widely used in neuroimaging studies; however, few studies have investigated the single-voxel modeling of fMRI data under cognitive tasks. We proposed a hybrid one-dimensional (1D) convolutional neural network (1D-CNN) based on the temporal dynamics of single-voxel fMRI time-series and successfully differentiated two continuous task states, namely, self-initiated (SI) and visually guided (VG) motor tasks. First, 25 activation peaks were identified from the contrast maps of SI and VG tasks in a blocked design. Then, the fMRI time-series of each peak voxel was transformed into a temporal-frequency domain by using continuous wavelet transform across a broader frequency range (0.003–0.313 Hz, with a step of 0.01 Hz). The transformed time-series was inputted into a 1D-CNN model for the binary classification of SI and VG continuous tasks. Compared with the univariate analysis, e.g., amplitude of low-frequency fluctuation (ALFF) at each frequency band, including, wavelet-ALFF, the 1D-CNN model highly outperformed wavelet-ALFF, with more efficient decoding models [46% of 800 models showing area under the curve (AUC) > 0.61] and higher decoding accuracies (94% of the efficient models), especially on the high-frequency bands (>0.1 Hz). Moreover, our results also demonstrated the advantages of wavelet decompositions over the original fMRI series by showing higher decoding performance on all peak voxels. Overall, this study suggests a great potential of single-voxel analysis using 1D-CNN and wavelet transformation of fMRI series with continuous, naturalistic, steady-state task design or resting-state design. It opens new avenues to precise localization of abnormal brain activity and fMRI-guided precision brain stimulation therapy.
Collapse
Affiliation(s)
- Yun-Ying Wu
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yun-Song Hu
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Transcranial Magnetic Stimulation Center, Deqing Hospital of Hangzhou Normal University, Huzhou, China
- *Correspondence: Yu-Feng Zang
| | - Yu Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
- Yu Zhang
| |
Collapse
|
24
|
Visser K, Koggel M, Blaauw J, van der Horn HJ, Jacobs B, van der Naalt J. Blood-based biomarkers of inflammation in mild traumatic brain injury: A systematic review. Neurosci Biobehav Rev 2021; 132:154-168. [PMID: 34826510 DOI: 10.1016/j.neubiorev.2021.11.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/17/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
VISSER, K., M. Koggel, J. Blaauw, H.J.v.d. Horn, B. Jacobs, and J.v.d. Naalt. Blood based biomarkers of inflammation in mild traumatic brain injury: A systematic review. NEUROSCI BIOBEHAV REV XX(X) XXX-XXX, 2021. - Inflammation is an important secondary physiological response to traumatic brain injury (TBI). Most of the current knowledge on this response is derived from research in moderate and severe TBI. In this systematic review we summarize the literature on clinical studies measuring blood based inflammatory markers following mild traumatic brain injury (mTBI) and identify the value of inflammatory markers as biomarkers. Twenty-three studies were included. This review suggests a distinct systemic inflammatory response following mTBI, quantifiable within 6 h up to 12 months post-injury. Interleukin-6 is the most promising biomarker for the clinical diagnosis of brain injury while interleukin-10 is a potential candidate for triaging CT scans. The diagnostic and prognostic utility of inflammatory markers may be more fully appreciated as a component of a panel of biomarkers. However, discrepancies in study design, analysis and reporting make it difficult to draw any definite conclusions. For the same reasons, a meta-analysis was not possible. We provide recommendations to follow standardized methodologies to allow for reproducibility of results in future studies.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Milou Koggel
- Faculty of Science, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jurre Blaauw
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
25
|
Lunkova E, Guberman GI, Ptito A, Saluja RS. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum Brain Mapp 2021; 42:5477-5494. [PMID: 34427960 PMCID: PMC8519871 DOI: 10.1002/hbm.25630] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Guido I. Guberman
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Alain Ptito
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill University Health CentreMontrealQuebecCanada
| | - Rajeet Singh Saluja
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- McGill University Health Centre Research InstituteMontrealQuebecCanada
| |
Collapse
|