1
|
Liu X, Hao S, Sun S, Xie J, Hou Z. Increased cortical iron deposition in glioma patients: a quantitative susceptibility mapping study. J Neurooncol 2025:10.1007/s11060-025-05027-8. [PMID: 40238026 DOI: 10.1007/s11060-025-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES This study aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), changes in glioma patients and its relationship to cognitive scores. MATERIALS AND METHODS This study included 121 glioma patients (45.42 ± 11.59 years; 61 females and 60 males) and 42 healthy controls (39.93 ± 10.37 years; 19 females and 23 males). The participants underwent cognitive assessment and brain magnetic resonance imaging using a 3D multi-echo gradient-echo sequence on a 3.0 T scanner. ITK-SNAP was used to measure the susceptibility values reflecting the iron content in the regions of interest (ROIs). We used analysis of covariance to investigate the differences in susceptibility between glioma patients and healthy controls in each brain region. Pearson's correlation analysis assessed the relationship between cortical magnetic susceptibility values and cognitive scores (MoCA). RESULTS The frontal (p < 0.001), precentral gyrus (p < 0.001), postcentral gyrus (p < 0.001), parietal (p < 0.001), insular (p < 0.001), occipital (p < 0.001), and temporal cortices (p < 0.001) showed higher magnetic susceptibility in glioma patients than in healthy controls. There was a negative correlation between MoCA scores and magnetic susceptibility values in each brain region, precentral gyrus with significant differences (r = -0.253, p = 0.028). CONCLUSION We quantified cortical magnetic susceptibility values reflecting the iron content in glioma patients using QSM and assessed participants' cognitive function using MoCA, and found that cortical iron deposition was increased in different brain regions and that cognitive decline in glioma patients may be associated with elevated iron content in the precentral gyrus.
Collapse
Affiliation(s)
- Xinlong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Shengjun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China.
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
2
|
Merenstein JL, Zhao J, Madden DJ. Depthwise cortical iron relates to functional connectivity and fluid cognition in healthy aging. Neurobiol Aging 2025; 148:27-40. [PMID: 39893877 DOI: 10.1016/j.neurobiolaging.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Age-related differences in fluid cognition have been associated with both the merging of functional brain networks, defined from resting-state functional magnetic resonance imaging (rsfMRI), and with elevated cortical iron, assessed by quantitative susceptibility mapping (QSM). Limited information is available, however, regarding the depthwise profile of cortical iron and its potential relation to functional connectivity. Here, using an adult lifespan sample (n = 138; 18-80 years), we assessed relations among graph theoretical measures of functional connectivity, column-based depthwise measures of cortical iron, and fluid cognition (i.e., tests of memory, perceptual-motor speed, executive function). Increased age was related both to less segregated functional networks and to increased cortical iron, especially for superficial depths. Functional network segregation mediated age-related differences in memory, whereas depthwise iron mediated age-related differences in general fluid cognition. Lastly, higher mean parietal iron predicted lower network segregation for adults younger than 45 years of age. These findings suggest that functional connectivity and depthwise cortical iron have distinct, complementary roles in the relation between age and fluid cognition in healthy adults.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA.
| | - Jiayi Zhao
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Liu FX, Yang SZ, Shi KK, Li DM, Song JB, Sun L, Dang X, Li JY, Deng ZQ, Zhao M, Feng YC. The role of protein phosphorylation modifications mediated by iron metabolism regulatory networks in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2025; 17:1540019. [PMID: 40071123 PMCID: PMC11893871 DOI: 10.3389/fnagi.2025.1540019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles. In addition, iron-mediated oxidative stress not only triggers neuronal damage, but also exacerbates neuronal dysfunction by altering the phosphorylation of N-methyl-D-aspartate receptors and γ-aminobutyric acid type A receptors. Iron accumulation also affects the phosphorylation status of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, interfering with the dopamine signaling pathway. On the other hand, iron affects iron transport and metabolism in the brain by regulating the phosphorylation of transferrin, further disrupting iron homeostasis. Therapeutic strategies targeting iron metabolism show promise by reducing iron accumulation, inhibiting oxidative stress, and reducing abnormal phosphorylation of key proteins. This article reviews the molecular mechanisms of phosphorylation modifications mediated by iron homeostasis imbalance in AD, and discusses the potential of interventions that regulate iron metabolism and related signaling pathways, providing a new theoretical basis for the treatment of AD.
Collapse
Affiliation(s)
- Fei-Xiang Liu
- Department of Neuropsychiatry and Psychology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shun-Zhi Yang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kai-Kai Shi
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ding-Ming Li
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia-bin Song
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Yao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zi-qi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Chen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Zachariou V, Pappas C, Bauer CE, Seago ER, Gold BT. Exploring the links among brain iron accumulation, cognitive performance, and dietary intake in older adults: A longitudinal MRI study. Neurobiol Aging 2025; 145:1-12. [PMID: 39447489 PMCID: PMC11578767 DOI: 10.1016/j.neurobiolaging.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
This study evaluated longitudinal brain iron accumulation in older adults, its association with cognition, and the role of specific nutrients in mitigating iron accumulation. MRI-based, quantitative susceptibility mapping estimates of brain iron concentration were acquired from seventy-two healthy older adults (47 women, ages 60-86) at a baseline timepoint (TP1) and a follow-up timepoint (TP2) 2.5-3.0 years later. Dietary intake was evaluated at baseline using a validated questionnaire. Cognitive performance was assessed at TP2 using the uniform data set (Version 3) neuropsychological tests of episodic memory (MEM) and executive function (EF). Voxel-wise, linear mixed-effects models, adjusted for longitudinal gray matter volume alterations, age, and several non-dietary lifestyle factors revealed brain iron accumulation in multiple subcortical and cortical brain regions, which was negatively associated with both MEM and EF performance at T2. However, consumption of specific dietary nutrients at TP1 was associated with reduced brain iron accumulation. Our study provides a map of brain regions showing iron accumulation in older adults over a short 2.5-year follow-up and indicates that certain dietary nutrients may slow brain iron accumulation.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Zhao Q, Maimaitiaili S, Bi Y, Li M, Li X, Li Q, Shen X, Wu M, Fu L, Zhu Z, Zhang X, Chen J, Hu A, Zhang Z, Zhang W, Zhang B. Brain Iron Deposition Alterations in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment Based on Quantitative Susceptibility Mapping. J Diabetes 2025; 17:e70052. [PMID: 39843980 PMCID: PMC11753919 DOI: 10.1111/1753-0407.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Iron is one of the most important elements in brain that may has a direct impact on the stability of central nervous system. The current study devoted to explore the alterations of iron distribution across the whole brain in type 2 diabetes mellitus (T2DM) patients with mild cognitive impairment (MCI). METHODS The quantitative susceptibility mapping (QSM) technique was used to quantify the intracranial iron content of 74 T2DM patients with MCI and 86 T2DM patients with normal cognition (NC). The group comparison was performed by a voxel-based analysis. Then we evaluated the relationships between cognitive indicators and magnetic susceptibility value (MSV) measured by QSM of the significant brain areas, which were set as the regions of interest (ROIs). In addition, we analyzed the moderation effects of grey matter volume (GMV) of the related brain areas and several metabolic and cerebrovascular factors on the associations between MSV of ROIs and cognitive characteristics. RESULTS T2DM patients with MCI exhibited a lower MSV in the right middle temporal gyrus (MTG) compared to NC group. And in the MCI group, there were significantly negative correlations between MSV of the right MTG and several memory indexes. Furthermore, the moderation effects of GMV of the whole brain and the bilateral MTG on the relationship between MSV of the right MTG and scores of list recognition were significant. CONCLUSIONS T2DM patients with MCI had a temporary decreased iron content in the right MTG, which may partially compensate for cognitive impairment. TRIAL REGISTRATION The study was registered at Clinicaltrials.gov (NCT02738671).
Collapse
Affiliation(s)
- Qiuyue Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Subinuer Maimaitiaili
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Qian Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xinyi Shen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Min Wu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Anning Hu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Zhou Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| |
Collapse
|
6
|
Li R, Fan YR, Wang YZ, Lu HY, Li PX, Dong Q, Jiang YF, Chen XD, Cui M. Brain Iron in signature regions relating to cognitive aging in older adults: the Taizhou Imaging Study. Alzheimers Res Ther 2024; 16:211. [PMID: 39358805 PMCID: PMC11448274 DOI: 10.1186/s13195-024-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Recent magnetic resonance imaging (MRI) studies have established that brain iron accumulation might accelerate cognitive decline in Alzheimer's disease (AD) patients. Both normal aging and AD are associated with cerebral atrophy in specific regions. However, no studies have investigated aging- and AD-selective iron deposition-related cognitive changes during normal aging. Here, we applied quantitative susceptibility mapping (QSM) to detect iron levels in cortical signature regions and assessed the relationships among iron, atrophy, and cognitive changes in older adults. METHODS In this Taizhou Imaging Study, 770 older adults (mean age 62.0 ± 4.93 years, 57.5% women) underwent brain MRI to measure brain iron and atrophy, of whom 219 underwent neuropsychological tests nearly every 12 months for up to a mean follow-up of 2.68 years. Global cognition was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Domain-specific cognitive scores were obtained from MoCA subscore components. Regional analyses were performed for cortical regions and 2 signature regions where atrophy affected by aging and AD only: Aging (AG) -specific and AD signature meta-ROIs. The QSM and cortical morphometry means of the above ROIs were also computed. RESULTS Significant associations were found between QSM levels and cognitive scores. In particular, after adjusting for cortical thickness of regions of interest (ROIs), participants in the upper tertile of the cortical and AG-specific signature QSM exhibited worse ZMMSE than did those in the lower tertile [β = -0.104, p = 0.026;β = -0.118, p = 0.021, respectively]. Longitudinal analysis suggested that QSM values in all ROIs might predict decline in ZMoCA and key domains such as attention and visuospatial function (all p < 0.05). Furthermore, iron levels were negatively correlated with classic MRI markers of cortical atrophy (cortical thickness, gray matter volume, and local gyrification index) in total, AG-specific signature and AD signature regions (all p < 0.05). CONCLUSION AG- and AD-selective iron deposition was associated with atrophy and cognitive decline in elderly people, highlighting its potential as a neuroimaging marker for cognitive aging.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yi-Ren Fan
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Ying-Zhe Wang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - He-Yang Lu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Pei-Xi Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yan-Feng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xing-Dong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Mei Cui
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
7
|
Jansen MG, Zwiers MP, Marques JP, Chan KS, Amelink JS, Altgassen M, Oosterman JM, Norris DG. The Advanced BRain Imaging on ageing and Memory (ABRIM) data collection: Study design, data processing, and rationale. PLoS One 2024; 19:e0306006. [PMID: 38905233 PMCID: PMC11192316 DOI: 10.1371/journal.pone.0306006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18-80 years, stratified by age decade and sex (median age 52, IQR 36-66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience.
Collapse
Affiliation(s)
- Michelle G. Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel P. Zwiers
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jose P. Marques
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kwok-Shing Chan
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jitse S. Amelink
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Radboud University, Nijmegen, the Netherlands
| | - Mareike Altgassen
- Department of Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joukje M. Oosterman
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - David G. Norris
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Merenstein JL, Zhao J, Overson DK, Truong TK, Johnson KG, Song AW, Madden DJ. Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease. Cereb Cortex 2024; 34:bhad525. [PMID: 38185996 PMCID: PMC10839848 DOI: 10.1093/cercor/bhad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Jiayi Zhao
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Kim G Johnson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
9
|
Hu H, Zhou J, Fang W, Chen HH, Jiang WH, Pu XY, Xu XQ, Gu WH, Wu FY. Increased brain iron in patients with thyroid-associated ophthalmopathy: a whole-brain analysis. Front Endocrinol (Lausanne) 2023; 14:1268279. [PMID: 38034014 PMCID: PMC10687634 DOI: 10.3389/fendo.2023.1268279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Background To investigate the whole-brain iron deposition alternations in patients with thyroid-associated ophthalmopathy (TAO) using quantitative susceptibility mapping (QSM). Methods Forty-eight patients with TAO and 33 healthy controls (HCs) were enrolled. All participants underwent brain magnetic resonance imaging scans and clinical scale assessments. QSM values were calculated and compared between TAO and HCs groups using a voxel-based analysis. A support vector machine (SVM) analysis was performed to evaluate the performance of QSM values in differentiating patients with TAO from HCs. Results Compared with HCs, patients with TAO showed significantly increased QSM values in the bilateral caudate nucleus (CN), left thalamus (TH), left cuneus, left precuneus, right insula and right middle frontal gyrus. In TAO group, QSM values in left TH were positively correlated with Hamilton Depression Rating Scale (HDRS) scores (r = 0.414, p = 0.005). The QSM values in right CN were negatively correlated with Montreal Cognitive Assessment (MoCA) scores (r = -0.342, p = 0.021). Besides that, a nearly negative correlation was found between QSM values in left CN and MoCA scores (r = -0.286, p = 0.057). The SVM model showed a good performance in distinguishing patients with TAO from the HCs (area under the curve, 0.958; average accuracy, 90.1%). Conclusion Patients with TAO had significantly increased iron deposition in brain regions corresponding to known visual, emotional and cognitive deficits. QSM values could serve as potential neuroimaging markers of TAO.
Collapse
Affiliation(s)
- Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Fang
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Gu
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Madden DJ, Merenstein JL. Quantitative susceptibility mapping of brain iron in healthy aging and cognition. Neuroimage 2023; 282:120401. [PMID: 37802405 PMCID: PMC10797559 DOI: 10.1016/j.neuroimage.2023.120401] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain iron is present even among healthy older adults. To better understand the topographical pattern of iron accumulation and its relation to cognitive aging, we conducted an integrative review of 47 QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter nuclei vary with regard to age-related effects, which are most prominent in the putamen, and age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions during healthy aging. The third theme focused on the behavioral relevance of iron content and indicated that higher iron in both deep gray matter and cortical regions was related to decline in fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, suggest that iron interacts with imaging measures of brain function, white matter degradation, and the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new insights into healthy neurocognitive aging.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA
| |
Collapse
|
11
|
Coray RC, Berberat J, Zimmermann J, Seifritz E, Stock AK, Beste C, Cole DM, Unschuld PG, Quednow BB. Striatal Iron Deposition in Recreational MDMA (Ecstasy) Users. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:956-966. [PMID: 36848948 DOI: 10.1016/j.bpsc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/30/2022] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND The common club drug MDMA (also known as ecstasy) enhances mood, sensory perception, energy, sociability, and euphoria. While MDMA has been shown to produce neurotoxicity in animal models, research on its potential neurotoxic effects in humans is inconclusive and has focused primarily on the serotonin system. METHODS We investigated 34 regular, largely pure MDMA users for signs of premature neurodegenerative processes in the form of increased iron load in comparison to a group of 36 age-, sex-, and education-matched MDMA-naïve control subjects. We used quantitative susceptibility mapping, a novel tool able to detect even small tissue (nonheme) iron accumulations. Cortical and relevant subcortical gray matter structures were grouped into 8 regions of interest and analyzed. RESULTS Significantly increased iron deposition in the striatum was evident in the MDMA user group. The effect survived correction for multiple comparisons and remained after controlling for relevant confounding factors, including age, smoking, and stimulant co-use. Although no significant linear relationship between measurements of the amounts of MDMA intake (hair analysis and self-reports) and quantitative susceptibility mapping values was observed, increased striatal iron deposition might nevertheless point to MDMA-induced neurotoxic processes. Additional factors (hyperthermia and simultaneous co-use of other substances) that possibly amplify neurotoxic effects of MDMA during the state of acute intoxication are discussed. CONCLUSIONS The demonstrated increased striatal iron accumulation may indicate that regular MDMA users have an increased risk potential for neurodegenerative diseases with progressing age.
Collapse
Affiliation(s)
- Rebecca C Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland.
| | - Jatta Berberat
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland; Institute of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
| | - Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland; Translational Psychiatry Lab, University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Paul G Unschuld
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Bu M, Deng X, Zhang Y, Chen SW, Jiang M, Chen BT. Brain iron content and cognitive function in patients with β-thalassemia. Ther Adv Hematol 2023; 14:20406207231167050. [PMID: 37151807 PMCID: PMC10155013 DOI: 10.1177/20406207231167050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Patients with β-thalassemia (β-TM) may have brain iron overload from long-term blood transfusions, ineffective erythropoiesis, and increased intestinal iron absorption, leading to cognitive impairment. Brain magnetic resonance imaging (MRI) methods such as the transverse relaxation rate, susceptibility-weighted imaging, and quantitative susceptibility mapping can provide quantitative, in vivo measurements of brain iron. This review assessed these MRI methods for brain iron quantification and the measurements for cognitive function in patients with β-TM. We aimed to identify the neural correlates of cognitive impairment, which should help to evaluate therapies for improving cognition and quality of life in patients with β-TM.
Collapse
Affiliation(s)
- Meiru Bu
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xi Deng
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu Zhang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Sean W. Chen
- Department of Medical Oncology &
Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte,
CA, USA
| | - Muliang Jiang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of
Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
13
|
Merenstein JL, Mullin HA, Madden DJ. Age-related differences in frontoparietal activation for target and distractor singletons during visual search. Atten Percept Psychophys 2023; 85:749-768. [PMID: 36627473 PMCID: PMC10066832 DOI: 10.3758/s13414-022-02640-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Age-related decline in visual search performance has been associated with different patterns of activation in frontoparietal regions using functional magnetic resonance imaging (fMRI), but whether these age-related effects represent specific influences of target and distractor processing is unclear. Therefore, we acquired event-related fMRI data from 68 healthy, community-dwelling adults ages 18-78 years, during both conjunction (T/F target among rotated Ts and Fs) and feature (T/F target among Os) search. Some displays contained a color singleton that could correspond to either the target or a distractor. A diffusion decision analysis indicated age-related increases in sensorimotor response time across all task conditions, but an age-related decrease in the rate of evidence accumulation (drift rate) was specific to conjunction search. Moreover, the color singleton facilitated search performance when occurring as a target and disrupted performance when occurring as a distractor, but only during conjunction search, and these effects were independent of age. The fMRI data indicated that decreased search efficiency for conjunction relative to feature search was evident as widespread frontoparietal activation. Activation within the left insula mediated the age-related decrease in drift rate for conjunction search, whereas this relation in the FEF and parietal cortex was significant only for individuals younger than 30 or 44 years, respectively. Finally, distractor singletons were associated with significant parietal activation, whereas target singletons were associated with significant frontoparietal deactivation, and this latter effect increased with adult age. Age-related differences in frontoparietal activation therefore reflect both the overall efficiency of search and the enhancement from salient targets.
Collapse
Affiliation(s)
- Jenna L. Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Hollie A. Mullin
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J. Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
14
|
Spence H, McNeil CJ, Waiter GD. Cognition and brain iron deposition in whole grey matter regions and hippocampal subfields. Eur J Neurosci 2022; 56:6039-6054. [PMID: 36215153 PMCID: PMC10092357 DOI: 10.1111/ejn.15838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022]
Abstract
Regional brain iron accumulation is observed in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and is associated with cognitive decline. We explored associations between age, cognition and iron content in grey matter regions and hippocampal subfields in 380 participants of the Aberdeen children of the 1950s cohort and their first-generation relatives (aged 26-72 years). Participants underwent cognitive assessment at the time of MRI scanning. Quantitative susceptibility mapping of these MRI data was used to assess iron content in grey matter regions and in hippocampal subfields. Principle component analysis was performed on cognitive test scores to create a general cognition score. Spline analysis was used with the Akaike information criterion to determine if order 1, 2 or 3 natural splines were optimal for assessing non-linear relationships between regional iron and age. Multivariate linear models were used to assess associations between regional iron and cognition. Higher iron correlated with older age in the left putamen across all ages and in the right putamen of only participants over 58. Whereas a decrease in iron with older age was observed in the right thalamus and left pallidum across all ages. Right amygdala iron levels were associated with poorer general cognition scores and poorer immediate recall scores. Iron was not associated with any measures of cognitive performance in other regions of interest. Our results suggest that, whilst iron in some regions was associated with cognitive performance, there is an overall lack of association between regional iron content and cognitive ability in cognitively healthy individuals.
Collapse
Affiliation(s)
- Holly Spence
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
15
|
Lancione M, Bosco P, Costagli M, Nigri A, Aquino D, Carne I, Ferraro S, Giulietti G, Napolitano A, Palesi F, Pavone L, Pirastru A, Savini G, Tagliavini F, Bruzzone MG, Gandini Wheeler-Kingshott CA, Tosetti M, Biagi L. Multi-centre and multi-vendor reproducibility of a standardized protocol for quantitative susceptibility Mapping of the human brain at 3T. Phys Med 2022; 103:37-45. [DOI: 10.1016/j.ejmp.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
|
16
|
Iron Deposition in Brain: Does Aging Matter? Int J Mol Sci 2022; 23:ijms231710018. [PMID: 36077413 PMCID: PMC9456423 DOI: 10.3390/ijms231710018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The alteration of iron homeostasis related to the aging process is responsible for increased iron levels, potentially leading to oxidative cellular damage. Iron is modulated in the Central Nervous System in a very sensitive manner and an abnormal accumulation of iron in the brain has been proposed as a biomarker of neurodegeneration. However, contrasting results have been presented regarding brain iron accumulation and the potential link with other factors during aging and neurodegeneration. Such uncertainties partly depend on the fact that different techniques can be used to estimate the distribution of iron in the brain, e.g., indirect (e.g., MRI) or direct (post-mortem estimation) approaches. Furthermore, recent evidence suggests that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their anatomical location. This review aims to collect the available data on the association between iron concentration in the brain and aging, shedding light on potential mechanisms that may be helpful in the detection of physiological neurodegeneration processes and neurodegenerative diseases such as Alzheimer's disease.
Collapse
|