1
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
2
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM, Álvarez-Teijeiro S. Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother 2023; 161:114502. [PMID: 37002578 DOI: 10.1016/j.biopha.2023.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz de Luxan-Delgado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Gluck C, Glathar A, Tsompana M, Nowak N, Garrett-Sinha LA, Buck MJ, Sinha S. Molecular dissection of the oncogenic role of ETS1 in the mesenchymal subtypes of head and neck squamous cell carcinoma. PLoS Genet 2019; 15:e1008250. [PMID: 31306413 PMCID: PMC6657958 DOI: 10.1371/journal.pgen.1008250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/25/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous disease of significant mortality and with limited treatment options. Recent genomic analysis of HNSCC tumors has identified several distinct molecular classes, of which the mesenchymal subtype is associated with Epithelial to Mesenchymal Transition (EMT) and shown to correlate with poor survival and drug resistance. Here, we utilize an integrated approach to characterize the molecular function of ETS1, an oncogenic transcription factor specifically enriched in Mesenchymal tumors. To identify the global ETS1 cistrome, we have performed integrated analysis of RNA-Seq, ChIP-Seq and epigenomic datasets in SCC25, a representative ETS1high mesenchymal HNSCC cell line. Our studies implicate ETS1 as a crucial regulator of broader oncogenic processes and specifically Mesenchymal phenotypes, such as EMT and cellular invasion. We found that ETS1 preferentially binds cancer specific regulator elements, in particular Super-Enhancers of key EMT genes, highlighting its role as a master regulator. Finally, we show evidence that ETS1 plays a crucial role in regulating the TGF-β pathway in Mesenchymal cell lines and in leading-edge cells in primary HNSCC tumors that are endowed with partial-EMT features. Collectively our study highlights ETS1 as a key regulator of TGF-β associated EMT and reveals new avenues for sub-type specific therapeutic intervention. The expression of the transcriptional regulator, E26 transformation-specific 1 (ETS1), is elevated in many epithelial cancers and portends aggressive tumor behavior and poor survival. Within these carcinomas, ETS1 function has been shown to be associated with a wide range of cellular responses that include increased proliferation, angiogenesis, metastasis and drug resistance. Here we focus on Head and Neck Squamous Cell Carcinoma (HNSCC) and discover that higher expression of ETS1 is specifically more pronounced in the mesenchymal subtypes of HNSCC, which represent tumors with enriched expression of Epithelial to Mesenchymal Transition (EMT) markers and inflammation. By using genomic and epigenomic strategies, we have identified the global targets of ETS1 in a preclinical Mesenchymal HNSCC cell model and determined the crucial gene network that is most dependent upon its function. We further validate this ETS1-driven gene expression signature within several HNSCC patient derived datasets and conclude that ETS1 acts as a crucial regulator of the TGFβ signaling cascade to drive EMT. Our findings reinforce the challenges of epithelial tumor heterogeneity and offer insights into molecular underpinning of a specific subtype that can be mined for cancer vulnerability.
Collapse
Affiliation(s)
- Christian Gluck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Alexandra Glathar
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Maria Tsompana
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Norma Nowak
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | | | - Michael J. Buck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
4
|
Thennavan A, Sharma M, Chandrashekar C, Hunter K, Radhakrishnan R. Exploring the potential of laser capture microdissection technology in integrated oral biosciences. Oral Dis 2016; 23:737-748. [DOI: 10.1111/odi.12578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Affiliation(s)
- A Thennavan
- Department of Oral Pathology; Manipal College of Dental Sciences; Manipal Karnataka India
| | - M Sharma
- Pacific Academy of Higher Education and Research (PAHER) University; Udaipur Rajasthan India
- Department of Oral Pathology; ITS Dental College; Hospital and Research Center; Greater Noida India
| | - C Chandrashekar
- Department of Oral Pathology; Manipal College of Dental Sciences; Manipal Karnataka India
| | - K Hunter
- School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| | - R Radhakrishnan
- Department of Oral Pathology; Manipal College of Dental Sciences; Manipal Karnataka India
- School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| |
Collapse
|
5
|
Wu YH, Chang TH, Huang YF, Huang HD, Chou CY. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 2013; 33:3432-40. [PMID: 23934190 DOI: 10.1038/onc.2013.307] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/21/2013] [Accepted: 06/10/2013] [Indexed: 12/15/2022]
Abstract
Biomarkers that predict disease progression might assist the development of better therapeutic strategies for aggressive cancers, such as ovarian cancer. Here, we investigated the role of collagen type XI alpha 1 (COL11A1) in cell invasiveness and tumor formation and the prognostic impact of COL11A1 expression in ovarian cancer. Microarray analysis suggested that COL11A1 is a disease progression-associated gene that is linked to ovarian cancer recurrence and poor survival. Small interference RNA-mediated specific reduction in COL11A1 protein levels suppressed the invasive ability and oncogenic potential of ovarian cancer cells and decreased tumor formation and lung colonization in mouse xenografts. A combination of experimental approaches, including real-time RT-PCR, casein zymography and chromatin immunoprecipitation (ChIP) assays, showed that COL11A1 knockdown attenuated MMP3 expression and suppressed binding of Ets-1 to its putative MMP3 promoter-binding site, suggesting that the Ets-1-MMP3 axis is upregulated by COL11A1. Transforming growth factor (TGF)-beta (TGF-β1) treatment triggers the activation of smad2 signaling cascades, leading to activation of COL11A1 and MMP3. Pharmacological inhibition of MMP3 abrogated the TGF-β1-triggered, COL11A1-dependent cell invasiveness. Furthermore, the NF-YA-binding site on the COL11A1 promoter was identified as the major determinant of TGF-β1-dependent COL11A1 activation. Analysis of 88 ovarian cancer patients indicated that high COL11A1 mRNA levels are associated with advanced disease stage. The 5-year recurrence-free and overall survival rates were significantly lower (P=0.006 and P=0.018, respectively) among patients with high expression levels of tissue COL11A1 mRNA compared with those with low expression. We conclude that COL11A1 may promote tumor aggressiveness via the TGF-β1-MMP3 axis and that COL11A1 expression can predict clinical outcome in ovarian cancer patients.
Collapse
Affiliation(s)
- Y-H Wu
- Cancer Research Center, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - T-H Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan, ROC
| | - Y-F Huang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan, ROC
| | - H-D Huang
- 1] Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, ROC [2] Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| | - C-Y Chou
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan, ROC
| |
Collapse
|
6
|
Immunohistochemical determination of ETS-1 oncoprotein expression in urothelial carcinomas of the urinary bladder. Appl Immunohistochem Mol Morphol 2012; 20:153-8. [PMID: 21623185 DOI: 10.1097/pai.0b013e31821ba035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ETS-1 protooncogene is an important transcription factor that plays a role in the regulation of physiological processes, such as cell proliferation and differentiation. ETS-1 is thought to be related to the growth of carcinoma cells by its regulation of the transcription of matrix metalloproteinases and urokinase-type plasminogen activator. In this study, we aimed to investigate the expression pattern of ETS-1 oncoprotein in urothelial carcinomas of the urinary bladder and determine its relationship with histopathologic parameters, including tumor grade and stage. One hundred six specimens of urothelial carcinoma and a total of 14 normal urothelium were analyzed immunohistochemically with anti-ETS-1 monoclonal antibody. The normal urothelium showed positive ETS-1 immunostaining. ETS-1 expression remained high in low-grade and noninvasive tumors, whereas it frequently decreased in high-grade or invasive carcinomas. Interestingly, ETS-1 was highly expressed in the basal cell layer of the noninvasive urothelial carcinomas. ETS-1 expression showed a strong negative correlation with the tumor grade (P<0.001; r, -0.67) and stage (P<0.001; r, -0.75). The nonmuscle-invasive tumors (pTa+pT1) and noninvasive tumors (pTa) had significantly higher ETS-1 expression than the muscle-invasive tumors (pT2; P<0.001) and invasive tumors (pT1+pT2; P<0.001), respectively. Results of our study show that decreased ETS-1 expression is significantly associated with high grade and advanced stage in urothelial carcinomas of the urinary bladder, and that the downregulation of ETS-1 expression may be a marker of the aggressiveness of such malignancies.
Collapse
|
7
|
Calli AO, Sari A, Cakalagaoglu F, Altinboga AA, Oncel S. ETS-1 proto-oncogene as a key newcomer molecule to predict invasiveness in laryngeal carcinoma. Pathol Res Pract 2011; 207:628-33. [PMID: 21940109 DOI: 10.1016/j.prp.2011.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/20/2011] [Accepted: 07/29/2011] [Indexed: 12/01/2022]
Abstract
ETS-1 protein is one of the key regulators in tumor invasion and progression. We aimed to evaluate the role of ETS-1 in the invasiveness and progression of laryngeal squamous carcinoma, as well as to determine the correlations between clinicopathological characteristics and expression of this molecule. We assessed the levels of ETS-1 in a total of 96 laryngeal specimens of varying degrees of dysplasia, microinvasive squamous carcinoma (8), and invasive squamous carcinoma (60), using normal mucosal epithelium (10) as a positive control. The relationship between ETS-1 expression and clinicopathological parameters of laryngeal carcinoma was also analyzed. We found a significantly higher ETS-1 expression in invasive laryngeal squamous cell carcinomas than in dysplasia (P<0.001). A correlation between ETS-1 expression scores and grade was detected - T factor, stage, cartilage invasion, lymph node metastasis, as well as depth of invasion in laryngeal tumors. Our study is the first to demonstrate that ETS-1 expression is significantly increased in invasive carcinoma, but it is absent in low-moderate grade laryngeal dysplasia and non-neoplastic laryngeal mucosa. This data suggest that ETS-1 expression may play an important role in tumor invasion, and may function in the initiation of the invasive process in laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Aylin Orgen Calli
- Izmir Training and Research Hospital, Department of Pathology, Yesilyurt, Turkey.
| | | | | | | | | |
Collapse
|
8
|
Xavier FCA, Rodini CO, Ramalho LMP, Mantesso A, Nunes FD. WNT-5A, but not matrix metalloproteinase 3 or beta-catenin protein, expression is related to early stages of lip carcinogenesis. J Oral Pathol Med 2009; 38:708-15. [PMID: 19473452 DOI: 10.1111/j.1600-0714.2009.00756.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oncogenic Wnt/beta-catenin signaling occurs in numerous types of cancers, but little is known about the role of the Wnt protein family member, WNT-5A, in lip carcinogenesis. The aim of this study was to investigate WNT-5A, beta-catenin, and matrix metalloproteinase (MMP)-3 protein expression in actinic cheilitis (AC), and lip squamous cell carcinoma (LSCC). METHODS Twenty-one cases of AC, and fifty-one cases of LSCC were analyzed, with normal lip mucosa used as a control. Qualitative and semi-quantitative analyses of WNT-5A, beta-catenin, and MMP-3 immunostaining pattern and cellular distribution were performed. RESULTS WNT-5A was observed in more than 50% of the cells, scattered in all layers of AC, in contrast to the absence of immunostaining in normal lip mucosa. AC presented a higher level of WNT-5A expression than LSCC (P = 0.0289, Fisher test), while MMP-3 immunoexpression was statistically more significant in LSCC than in AC (P = 0.0285, Fisher test). Immunolabeling of beta-catenin protein was differentially distributed between samples; the majority of AC cases (61.90%) demonstrated a membranous-cytoplasmic pattern, while a considerable number of LSCC cases (29.41%) revealed a cytoplasmic pattern, instead of the usual membranous pattern. CONCLUSIONS The present results suggest that WNT-5A may be an important marker during initial events of AC malignant transformation, in which non-canonical and canonical Wnt/beta-catenin signaling pathways could be involved. Additionally, WNT-5A might recruit other events in LSCC, such as MMP-3 protein synthesis, as its presence is increased in established malignant processes without beta-catenin dependency.
Collapse
|
9
|
Nagarajan P, Parikh N, Garrett-Sinha LA, Sinha S. Ets1 induces dysplastic changes when expressed in terminally-differentiating squamous epidermal cells. PLoS One 2009; 4:e4179. [PMID: 19142229 PMCID: PMC2615206 DOI: 10.1371/journal.pone.0004179] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/28/2008] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ets1 is an oncogene that functions as a transcription factor and regulates the activity of many genes potentially important for tumor initiation and progression. Interestingly, the Ets1 oncogene is over-expressed in many human squamous cell cancers and over-expression is highly correlated with invasion and metastasis. Thus, Ets1 is believed to mainly play a role in later stages of the oncogenic process, but not early events. METHODOLOGY/PRINCIPAL FINDINGS To better define the role of Ets1 in squamous cell carcinogenesis, we generated a transgenic mouse model in which expression of the Ets1 oncogene could be temporally and spatially regulated. Upon Ets1 induction in differentiating cells of stratified squamous epithelium, these mice exhibited dramatic changes in epithelial organization including increased proliferation and blocked terminal differentiation. The phenotype was completely reversed when Ets1 expression was suppressed. In mice where Ets1 expression was re-induced at a later age, the phenotype was more localized and the lesions that developed were more invasive. Many potential Ets1 targets were upregulated in the skin of these mice with the most dramatic being the metalloprotease MMP13, which we demonstrate to be a direct transcriptional target of Ets1. CONCLUSIONS/SIGNIFICANCE Collectively, our data reveal that upregulation of Ets1 can be an early event that promotes pre-neoplastic changes in epidermal tissues via its regulation of key genes driving growth and invasion. Thus, the Ets1 oncogene may be important for oncogenic processes in both early and late stages of tumor development.
Collapse
Affiliation(s)
- Priyadharsini Nagarajan
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Neha Parikh
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail: (LAG-S); (SS)
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail: (LAG-S); (SS)
| |
Collapse
|
10
|
Hopkins J, Cescon DW, Tse D, Bradbury P, Xu W, Ma C, Wheatley-Price P, Waldron J, Goldstein D, Meyer F, Bairati I, Liu G. Genetic polymorphisms and head and neck cancer outcomes: a review. Cancer Epidemiol Biomarkers Prev 2008; 17:490-9. [PMID: 18349267 DOI: 10.1158/1055-9965.epi-07-2714] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) patients have variable prognoses even within the same clinical stage and while receiving similar treatments. The number of studies of genetic polymorphisms as prognostic factors of HNC outcomes is growing. Candidate polymorphisms have been evaluated in DNA repair, cell cycle, xenobiotic metabolism, and growth factor pathways. Polymorphisms of XRCC1, FGFR, and CCND1 have been consistently associated with HNC survival in at least two studies, whereas most of the other polymorphisms have either conflicting data or were from single studies. Heterogeneity and lack of description of patient populations and lack of accounting for multiple comparisons were common problems in a significant proportion of studies. Despite a large number of exploratory studies, large replication studies in well-characterized HNC populations are warranted.
Collapse
Affiliation(s)
- Jessica Hopkins
- Community Medicine Residency Program and Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|