1
|
Li Y, Xu H, Lin T, Zhang J, Ai J, Zhang S, Le W, Tan P, Zhang P, Wei Q, Zheng X, Yang L. Preoperative low plasma creatine kinase levels predict worse survival outcomes in bladder cancer after radical cystectomy. Int Urol Nephrol 2024; 56:2215-2225. [PMID: 38315281 DOI: 10.1007/s11255-024-03957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND AIMS To evaluate the prognostic significance of preoperative creatine kinase (CK) levels in bladder cancer (BCa) patients who underwent radical cystectomy (RC). MATERIALS AND METHODS 570 BCa patients with RC were identified between 2010 and 2020. 108.5 U/L of CK levels were defined as the cutoff value. Logistic regression analysis and Cox regression models were performed to evaluate the association between CK levels and oncologic outcomes. Subgroup analyses were performed to address cofounding factors. RESULTS Preoperative low CK levels were associated with worse recurrence-free survival (RFS, log-rank P = 0.001) and overall survival (OS, log-rank P = 0.002). Multivariate analysis revealed that preoperative low CK levels were an independent predictor for worse RFS (hazard ratio [HR]: 1.683; P < 0.001) and OS (HR: 1.567; P = 0.002). CONCLUSIONS The preoperative low CK level independently predicts worse survival outcomes in BCa after RC. Incorporating it into prediction models might be valuable to assist risk stratification.
Collapse
Affiliation(s)
- Yifan Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianhai Lin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiapeng Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianzhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiyu Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weizhen Le
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Tan
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaonan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Chen A, Gao G, Lian G, Gong J, Luo L, Liu J, Chen W, Xu C, Wang H, Xie L. Zinc promotes cell proliferation via regulating metal-regulatory transcription factor 1 expression and transcriptional activity in pulmonary arterial hypertension. Cell Cycle 2023; 22:1284-1301. [PMID: 37128643 PMCID: PMC10193901 DOI: 10.1080/15384101.2023.2205209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Metal responsive transcription factor 1 (MTF-1) is a zinc-dependent transcription factor involved in the development of pulmonary arterial hypertension (PAH), which is a life-threatening disease characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling. However, little is known about the role and regulatory signaling of MTF-1 in PAH. This study aimed to investigate the effect and mechanism of MTF-1 on the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Several techniques including intracellular-free zinc detected by fluorescent indicator-fluozinc-3-AM, western blot, luciferase reporter, and cell proliferation assay were conducted to perform a comprehensive analysis of MTF-1 in proliferation of PASMCs in PAH. Increased cytosolic zinc was shown in monocrotaline (MCT)-PASMCs and ZnSO₄-treated PASMCs, which led to overexpression and overactivation of MTF-1, followed by the up-regulation of placental growth factor (PlGF). Elevated MTF-1 and PlGF were observed in western blot, and high transcriptional activity of MTF-1 was confirmed by luciferase reporter in ZnSO4-treated cells. Further investigation of cell proliferation revealed a favorable impact of zinc ions on PASMCs proliferation, with the deletion of Mtf-1/Plgf attenuating ZnSO4-induced proliferation. Flow cytometry analysis showed that blockade of PKC signaling inhibited the cell cycle of MCT-PASMCs and ZnSO4-treated PASMCs. The Zinc/PKC/MTF-1/PlGF pathway is involved in the up-regulatory effect on the PASMCs proliferation in the process of PAH. This study provided novel insight into zinc homeostasis in the pathogenesis of PAHs, and the regulation of MTF-1 might be a potential target for therapeutic intervention in PAH.
Collapse
Affiliation(s)
- Ai Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Junping Liu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
3
|
Yang M, Wang X, Ye Z, Liu T, Meng Y, Duan Y, Yuan X, Yue X, Deng W, Liu RY. Mitochondrial creatine kinase 1 regulates the cell cycle in non-small cell lung cancer via activation of cyclin-dependent kinase 4. Respir Res 2023; 24:111. [PMID: 37061730 PMCID: PMC10105958 DOI: 10.1186/s12931-023-02417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the main type of the most common malignant tumor in the world. Previous studies have shown that the expression level of mitochondrial creatine kinase 1 (CKMT1) is abnormal in NSCLC, but the mechanism of its effect remains unclear. Therefore, in this study, we intend to clarify the potential mechanism of CKMT1 in NSCLC and provide the theoretical basis for the clinical application of CKMT1. METHODS The function of CKMT1 in NSCLC was identified by analyzing the GEO dataset and evaluating using in vitro and in vivo models. Protein mass spectrometry was used to find proteins interacting with CKMT1, and Co-immunoprecipitation (Co-IP) and GST-pull down experiments were used to verify the interaction between proteins. The immunofluorescence (IF) assay was used to explore the functional position of CKMT1 in cells. The effect of CKMT1 expression level on the efficacy of paclitaxel (TAX) in the treatment of NSCLC was analyzed by a combined TAX experiment in vivo and in vitro. RESULTS CKMT1 expression was increased in NSCLC and CKMT1 promoted the proliferation of NSCLC cells in vitro and in vivo. CKMT1 knockdown resulted in a significantly increased G0/G1 fraction and decreased S phase cell fraction, indicating G1 phase arrest. Mechanically, the cyclin-dependent kinase 4 (CDK4) was identified to interact with CKMT1, and the crucial binding areas were focused on the DH domain of CKMT1 and the N- and C-terminal of CDK4. A fraction of the CDK4 proteins colocalize and interact with the CKMT1 at mitochondria, the level of phosphorylated CDK4 was regulated by CKMT1. Hence, the decrease in CKMT1 expression level could increase the antitumor effect of G2/M cell cycle antagonist-TAX in NSCLC in vitro and in vivo. CONCLUSIONS CKMT1 could interact with CDK4 in mitochondria and regulate the phosphorylated level of CDK4, thus contributing to the proliferation and cell cycle transition of NSCLC cells. And CKMT1 could be a potential target to improve the sensitivity of chemotherapy based on TAX.
Collapse
Affiliation(s)
- Mengjie Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xuecen Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihua Ye
- Department of Medical Oncology Center, Zhongshan People's Hospital, Zhongshan, Guangdong Province, China
| | - Tingyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuan Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Youfa Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xuexia Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Xu Y, Li H, Lan A, Wu Q, Tang Z, Shu D, Tan Z, Liu X, Liu Y, Liu S. Cuprotosis-Related Genes: Predicting Prognosis and Immunotherapy Sensitivity in Pancreatic Cancer Patients. JOURNAL OF ONCOLOGY 2022; 2022:2363043. [PMID: 36117848 PMCID: PMC9481390 DOI: 10.1155/2022/2363043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/25/2022]
Abstract
Based on TCGA, GTEx, and TIMER databases and various bioinformatics analysis methods, the potential biological roles of cuprotosis-related genes in pancreatic cancer were deeply explored, and a predictive model for pancreatic cancer patients was constructed. We downloaded the RNA-Seq data and clinicopathological and predictive data of 179 pancreatic cancer tissues and 332 adjacent normal tissues from TCGA and GTEx databases. The differential expression of cuprotosis-related genes in pancreatic cancer tissue and adjacent normal tissue was analyzed, and the LASSO regression algorithm was used to construct a prediction model and verify the validity of the model prediction. Based on the LASSO regression algorithm, a predictive model composed of three genes LIPT1, LIAS, and DLAT was screened. The corresponding survival curves showed that the constructed prediction model could significantly distinguish the prognosis of pancreatic cancer patients, and the prognosis of patients in the high-risk group was worse (P = 0.00557). The ROC curve showed that the area under the curve of the predictive model for predicting the 4-, 5-, and 6-year survival rates in pancreatic cancer was 0.816, 0.836, and 0.956, respectively. The AUC value of this risk model was significantly higher than 0.7, which could more accurately predict the prognosis of pancreatic cancer patients. This study determined a risk-scoring model of cuprotosis-related genes, which can provide an essential basis for judging the prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Han Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ailin Lan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiulin Wu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Dan Shu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhaofu Tan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Xin Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yang Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
5
|
Yin J, He X, Xia H, He L, Li D, Hu L, Zheng S, Huang Y, Li S, Hu W. Head and Neck Squamous Cell Carcinoma Subtypes Based on Immunologic and Hallmark Gene Sets in Tumor and Non-tumor Tissues. Front Surg 2022; 9:821600. [PMID: 35187059 PMCID: PMC8850349 DOI: 10.3389/fsurg.2022.821600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-tumor tissue has a significant impact on the prognosis of head and neck squamous cell carcinoma (HNSCC). Previous studies for HNSCC have mainly focused on tumor tissue, greatly neglecting the role of non-tumor tissue. This study aimed to identify HNSCC subtypes and prognostic gene sets based on activity changes of immunologic and hallmark gene sets in tumor and adjacent non-tumor tissues to improve patient prognosis. Methods In the study, we used gene set variation analysis (GSVA) to estimate the relative enrichment of gene sets over the sample population, and identified relevant subtypes of HNSCC by Cox regression analysis and the non-negative matrix factorization (NMF) method. The representative gene sets were identified by calculating the differential enrichment score of gene sets between each of the two subgroups, intersecting them, and screening them using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to screen out potential prognostic gene sets and establish a risk model. Finally, genes encompassed in each prognostic gene set were obtained and subjected to enrichment analysis and protein–protein interaction (PPI) in tumor and non-tumor tissues. Results We identified three subtypes of HNSCC based on gene sets in tumor and non-tumor tissues, and patients with subtype 1 had a higher survival rate than subtypes 2 and 3. The subtypes were related to the survival status, pathological stage, and T stage of HNSCC patients. In total 450 differentially gene sets and 39 representative gene sets were obtained by calculating the differential enrichment score of gene sets between each of the two subgroups, intersecting them, and screening them using univariate Cox regression analysis. The prognostic model was constructed by LASSO regression analysis, including five prognostic gene sets. Kaplan-Meier analysis indicated that different risk groups and the five prognostic gene sets were associated with survival status in the model. Finally, enrichment analysis and PPI indicated that non-tumor and tumor tissues affect the prognosis of HNSCC patients in different ways. Conclusion In conclusion, we provide a novel insight for rational treatment strategies and precise prognostic assessments based on tumor and adjacent non-tumor tissues, suggesting that more emphasis should be placed on changes in adjacent non-tumor and tumor tissues, rather than just the tumor itself.
Collapse
|
6
|
Wang Y, Zhao S, Qin Q, Gao X, Zhang X, Zhang M, Jiang Y, Ji X, Zhu H, Zhao X, Li H. CKMT1A is a novel potential prognostic biomarker in patients with endometrial cancer. PLoS One 2022; 17:e0262000. [PMID: 35077462 PMCID: PMC8789190 DOI: 10.1371/journal.pone.0262000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/15/2021] [Indexed: 12/01/2022] Open
Abstract
PURPOSE The International Federation of Gynecology and Obstetrics (FIGO) stage remains the standard staging system for the assessment of endometrial cancer (EC) prognosis. Thus, we aim to identify the significant genes or biomarkers associated with the stage of endometrial cancer, which may also help reveal the mechanism of EC progression and assess the prognosis of patients with EC. MATERIALS AND METHODS We compared the mRNA expression levels of EC patients with stages I and II as well as stages III and IV in the Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) of EC patients at different stages were selected by volcano plot and Venn analysis. Gene Ontology (GO) and Pathways were applied to analyze the identified genes. Protein protein interaction (PPI) network was employed to identify the correlation. The survival analyses based on TCGA database were conducted for further screening. The Human Protein Atlas, quantitative PCR and immunohistochemistry were utilized to confirm the differences in expression of DEGs in endometrial cancer samples at different FIGO stages. RESULTS CKMT1A was identified as a candidate gene. Through survival analyses, we found that CKMT1A may be a poor prognostic factor in the overall survival of endometrial cancer patients. GO and Pathways revealed that CKMT1A is closely associated with the metabolic process. More importantly, Human Protein Atlas and quantitative PCR confirmed the differences in expression of CKMT1A in endometrial cancer samples at different FIGO stages. CONCLUSION In summary, this study shows that CKMT1A is a newly identified essential tumor progression regulator of endometrial cancer, which may give rise to novel therapeutic strategies in the management of endometrial cancer patients to prolong its prognosis and prevent tumor progression.
Collapse
Affiliation(s)
- Yaping Wang
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shujun Zhao
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of gynecological oncology, Zhengzhou, Henan, China
| | - Qiaohong Qin
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of gynecological oncology, Zhengzhou, Henan, China
| | - Xiang Gao
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinlu Zhang
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Zhang
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Jiang
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaorong Ji
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hai Zhu
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyu Li
- Gynecologic Oncology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of gynecological oncology, Zhengzhou, Henan, China
| |
Collapse
|
7
|
An Integrated Genomic Strategy to Identify CHRNB4 as a Diagnostic/Prognostic Biomarker for Targeted Therapy in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12051324. [PMID: 32455963 PMCID: PMC7281299 DOI: 10.3390/cancers12051324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
Although many studies have shown the association between smoking and the increased incidence and adverse prognosis of head and neck squamous cell carcinoma (HNSCC), the mechanisms and pharmaceutical targets involved remain unclear. Here, we integrated gene expression signatures, genetic alterations, and survival analyses to identify prognostic indicators and therapeutic targets for smoking HNSCC patients, and we discovered that the FDA-approved drug varenicline inhibits the target for cancer cell migration/invasion. We first identified 18 smoking-related and prognostic genes for HNSCC by using RNA-Seq and clinical follow-up data. One of these genes, CHRNB4 (neuronal acetylcholine receptor subunit beta-4), increased the risk of death by approximately threefold in CHRNB4-high expression smokers compared to CHRNB4-low expression smokers (log rank, p = 0.00042; hazard ratio, 2.82; 95% CI, 1.55–5.14), former smokers, and non-smokers. Furthermore, we examined the functional enrichment of co-regulated genes of CHRNB4 and its 246 frequently occurring copy number alterations (CNAs). We found that these genes were involved in promoting angiogenesis, resisting cell death, and sustaining proliferation, and contributed to much worse outcomes for CHRNB4-high patients. Finally, we performed CHRNB4 gene editing and drug inhibition assays, and the results validate these observations. In summary, our study suggests that CHRNB4 is a prognostic indicator for smoking HNSCC patients and provides a potential new therapeutic drug to prevent recurrence or distant metastasis.
Collapse
|
8
|
Ruan X, Zheng J, Liu X, Liu Y, Liu L, Ma J, He Q, Yang C, Wang D, Cai H, Li Z, Liu J, Xue Y. lncRNA LINC00665 Stabilized by TAF15 Impeded the Malignant Biological Behaviors of Glioma Cells via STAU1-Mediated mRNA Degradation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:823-840. [PMID: 32464546 PMCID: PMC7256440 DOI: 10.1016/j.omtn.2020.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Glioma is a brain cancer characterized by strong invasiveness with limited treatment options and poor prognosis. Recently, dysregulation of long non-coding RNAs (lncRNAs) has emerged as an important component in cellular processes and tumorigenesis. In this study, we demonstrated that TATA-box binding protein associated factor 15 (TAF15) and long intergenic non-protein coding RNA 665 (LINC00665) were both downregulated in glioma tissues and cells. TAF15 overexpression enhanced the stability of LINC00665, inhibiting malignant biological behaviors of glioma cells. Both metal regulatory transcription factor 1 (MTF1) and YY2 transcription factor (YY2) showed high expression levels in glioma tissues and cells, and their knockdown inhibited malignant progression. Mechanistically, overexpression of LINC00665 was confirmed to destabilize MTF1 and YY2 mRNA by interacting with STAU1, and knockdown of STAU1 could rescue the MTF1 and YY2 mRNA degradation caused by LINC00665 overexpression. G2 and S-phase expressed 1 (GTSE1) was identified as an oncogene in glioma, and knockdown of MTF1 or YY2 decreased the mRNA and protein expression levels of GTSE1 through direct binding to the GTSE1 promoter region. Our study highlights a key role of the TAF15/LINC00665/MTF1(YY2)/GTSE1 axis in modulating the malignant biological behaviors of glioma cells, suggesting novel mechanisms by which lncRNAs affect STAU1-mediated mRNA stability, which can inform new molecular therapies for glioma.
Collapse
Affiliation(s)
- Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China.
| |
Collapse
|
9
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Hsueh YS, Chang HH, Shan YS, Sun HS, Fletcher JA, Li CF, Chen LT. Nuclear KIT induces a NFKBIB-RELA-KIT autoregulatory loop in imatinib-resistant gastrointestinal stromal tumors. Oncogene 2019; 38:6550-6565. [PMID: 31363162 PMCID: PMC6756115 DOI: 10.1038/s41388-019-0900-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are frequently driven by auto-activated, mutant KIT and have durable response to KIT tyrosine kinase inhibitor. However, acquired resistance is an increasing clinical issue in GIST patients receiving front-line imatinib therapy. Our previous studies showed the colocalization of KIT with DAPI-stained nuclei in GIST cells without knowing the role of nuclear KIT in GIST tumorigenesis. In this article, we first identified the binding of nuclear KIT to the promoter of NFKB inhibitor beta (NFKBIB) by chromatin immunoprecipitation (ChIP) sequencing and ChIP assays, which was accompanied with enhanced NFKBIB protein expression in GIST cells. Clinically, high NCCN risk GISTs had significantly higher mean expression levels of nuclear phospho-KIT and NFKBIB as compared with those of intermediate or low/very low-risk GISTs. Conversely, downregulation of NFKBIB by siRNA led to RELA nuclear translocation that could bind to the KIT promoter region and subsequently reduced KIT transcription/expression and the viability of GIST cells. These findings were further confirmed by either RELA overexpression or NFKB/RELA inducer, valproic acid, treatment to result in reduced KIT expression and relative cell viability of imatinib-resistant GIST cells. Combining valproic acid with imatinib showed significantly better growth inhibitory effects on imatinib-resistant GIST48 and GIST430 cells in vitro, and in the GIST430 animal xenograft model. Taken together, these results demonstrate the existence of a nuclear KIT-driven NFKBIB-RELA-KIT autoregulatory loop in GIST tumorigenesis, which are potential targets for developing combination therapy to overcome imatinib-resistant of KIT-expressing GISTs.
Collapse
Affiliation(s)
- Yuan-Shuo Hsueh
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Bioinformatics Center, National Cheng Kung University, Tainan, Taiwan
| | - Jonathan Alfred Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
- Department of Pathology, Chi-Mei Foundation Medical Center, Tainan, Taiwan.
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Meng X, Zhao Y, Liu J, Wang L, Dong Z, Zhang T, Gu X, Zheng Z. Comprehensive analysis of histone modification-associated genes on differential gene expression and prognosis in gastric cancer. Exp Ther Med 2019; 18:2219-2230. [PMID: 31452712 DOI: 10.3892/etm.2019.7808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the epigenetic alterations caused by histone modifications have important roles in the genesis of gastric cancer (GC), particularly the well-studied acetylation and methylation modifications. In the present study, a Bioinformatics analysis of the expression of histone modification-associated genes in GC and normal tissues was performed by using datasets from Oncomine, the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The clinical data of GC patients were downloaded from TCGA to determine the association between histone modification-associated gene expression and clinicopathological parameters or survival of GC. Finally, lysine acetyltransferase 2A (KAT2A), nuclear receptor coactivator 1 (NCOA1), SMYD family member 5 (SMYD5), protein arginine methyltransferase 1 (PRMT1) and PRDF1-RIZ (PR)/Su(var)3-9, enhancer-of-zeste and trithorax (SET) domain 16 (PRDM16) were screened; KAT2A, SMYD5 and PRMT1 were upregulated, while PRDM16 expression was downregulated in GC. Analysis of the GEO and Oncomine datasets revealed that NCOA1 was upregulated, which was contrary to the result obtained with the TCGA stomach adenocarcinoma dataset. Aberrant expression of KAT2A, NCOA1, SMYD5 and PRMT1 was more obvious in gastric intestinal-type adenocarcinoma; low NCOA1 expression was associated with better overall survival of GC patients [hazard ratio (HR)=0.690, 95% CI=0.570-0.840, P<0.001] and was an independent predictor for patients diagnosed with GC (HR=0.639, 95% CI=0.437-0.933, P=0.020). Correlation analysis and protein-protein interaction network analysis indicated a close association between ATAD2 and estrogen receptor 1 (ESR1), PRMT1, NCOA1 and KAT2A. In conclusion, differential expression of KAT2A, NCOA1, SMYD5, PRMT1 and PRDM16 was identified in GC vs. normal tissues, low NCOA1 expression was associated with poor survival of GC and ATAD2 may interact with ESR1 to regulate NCOA1 and PRMT1 in GC.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jingwei Liu
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Wang
- Department of Ultrasonography, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Zhe Dong
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Tao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaohu Gu
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Zhichao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
12
|
Lan R, Huang F, Zhong G, Chen R, Wang Z, Chen J, Fu L, Hong J, Zhang L. Effects of CKMT1 on radiosensitivity of nasopharyngeal carcinoma cells. Int J Radiat Biol 2019; 95:597-606. [PMID: 30507333 DOI: 10.1080/09553002.2019.1554919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Radioresistance is an important factor for unsatisfactory prognosis in Nasopharyngeal carcinoma (NPC) patients. Ubiquitous mitochondrial creatine kinase (CKMT1) is always associated with malignancy in a variety of cancers. However, its significance in NPC progression and radiosensitivity remains unclear. The present study focused on investigating the effects of CKMT1 on NPC cell radiosensitivity. MATERIAL AND METHODS CKMT1 was overexpressed in NPC cell line CNE-1 or knocked out in CNE-2. Biological changes were detected after cells exposing to different doses of X-ray to determine the role of CKMT1 on NPC cell radiosensitivity. RESULTS CKMT1 promotes proliferation and migration in NPC cell lines CNE-1 and CNE-2. Overexpression of CKMT1 in CNE-1 cells enhanced colony formation rates, reduced G2/M phase cell cycle arrest, lowered apoptosis rate and c-PARP level, and elevated STAT3 phosphorylation level after radiation treatment. While knocking out CKMT1 using the CRISPR/Cas9 system in CNE-2 cells lowered colony formation rates, increased G2/M phase cell cycle arrest, apoptosis rates, and c-PARP levels, and decreased STAT3 phosphorylation in response to radiation treatment. CONCLUSIONS NPC cells with higher CKMT1 exhibited lower radiosensitivity through promoting phosphorylation of STAT3. Our findings suggest that CKMT1 may be an alternative radiotherapeutic target in NPC therapy.
Collapse
Affiliation(s)
- Ruilong Lan
- a Central Lab , First Affiliated Hospital of Fujian Medical University , Fuzhou , China.,b Fujian Key Lab of Individualized Active Immunotherapy , Fuzhou , China.,c Key Laboratory of Radiation Biology of Fujian Province Universities , Fuzhou , China
| | - Fei Huang
- a Central Lab , First Affiliated Hospital of Fujian Medical University , Fuzhou , China.,b Fujian Key Lab of Individualized Active Immunotherapy , Fuzhou , China.,c Key Laboratory of Radiation Biology of Fujian Province Universities , Fuzhou , China
| | - Guangxian Zhong
- d Department of Orthopaedics , First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Ruiqing Chen
- a Central Lab , First Affiliated Hospital of Fujian Medical University , Fuzhou , China.,b Fujian Key Lab of Individualized Active Immunotherapy , Fuzhou , China.,c Key Laboratory of Radiation Biology of Fujian Province Universities , Fuzhou , China
| | - Zeng Wang
- a Central Lab , First Affiliated Hospital of Fujian Medical University , Fuzhou , China.,b Fujian Key Lab of Individualized Active Immunotherapy , Fuzhou , China.,c Key Laboratory of Radiation Biology of Fujian Province Universities , Fuzhou , China
| | - Junying Chen
- a Central Lab , First Affiliated Hospital of Fujian Medical University , Fuzhou , China.,b Fujian Key Lab of Individualized Active Immunotherapy , Fuzhou , China.,c Key Laboratory of Radiation Biology of Fujian Province Universities , Fuzhou , China
| | - Lengxi Fu
- a Central Lab , First Affiliated Hospital of Fujian Medical University , Fuzhou , China.,b Fujian Key Lab of Individualized Active Immunotherapy , Fuzhou , China.,c Key Laboratory of Radiation Biology of Fujian Province Universities , Fuzhou , China
| | - Jinsheng Hong
- e Department of Radiotherapy , First Affiliated Hospital of Fujian Medical University , Fuzhou , China
| | - Lurong Zhang
- a Central Lab , First Affiliated Hospital of Fujian Medical University , Fuzhou , China.,b Fujian Key Lab of Individualized Active Immunotherapy , Fuzhou , China.,c Key Laboratory of Radiation Biology of Fujian Province Universities , Fuzhou , China
| |
Collapse
|
13
|
Ji L, Zhao G, Zhang P, Huo W, Dong P, Watari H, Jia L, Pfeffer LM, Yue J, Zheng J. Knockout of MTF1 Inhibits the Epithelial to Mesenchymal Transition in Ovarian Cancer Cells. J Cancer 2018; 9:4578-4585. [PMID: 30588241 PMCID: PMC6299381 DOI: 10.7150/jca.28040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
Due to peritoneal metastasis and frequent recurrence, ovarian cancer has the highest mortality among gynecological cancers. Epithelial to mesenchymal transition (EMT) contributes to ovarian tumor metastasis. In this study, we report for the first time that metal regulatory transcription factor 1 (MTF1) was upregulated in ovarian cancer, and its high expression was associated with poor patient survival and disease relapse. Knockout of MTF1 using lentiviral CRISPR/Cas9 nickase vector-mediated gene editing inhibited EMT by upregulating epithelial cell markers E-cadherin and cytokeratin 7, and downregulating mesenchymal markers Snai2 and β-catenin in ovarian cancer SKOV3 and OVCAR3 cells. Loss of MTF1 reduced cell proliferation, migration, and invasion in both SKOV3 and OVCAR3 cells. Knockout of MTF1 upregulated the expression of the KLF4 transcription factor, and attenuated two cellular survival pathways, ERK1/2 and AKT. Our studies demonstrated that MTF1 plays an oncogenic role and contributes to ovarian tumor metastasis by promoting EMT. MTF1 may be a novel biomarker for early diagnosis as well as a drug target for clinical therapy.
Collapse
Affiliation(s)
- Liang Ji
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Peng Zhang
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wenying Huo
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Limin Jia
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, the University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinhua Zheng
- Department of Anatomy, College of Basic Medical Science, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
15
|
Zhang T, Meng J, Liu X, Zhang X, Peng X, Cheng Z, Zhang F. ING5 differentially regulates protein lysine acetylation and promotes p300 autoacetylation. Oncotarget 2017; 9:1617-1629. [PMID: 29416718 PMCID: PMC5788586 DOI: 10.18632/oncotarget.22176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
ING5 belongs to the Inhibitor of Growth (ING) candidate tumor suppressor family. Previously, we have shown that ING5 inhibits invasiveness of lung cancer cells by downregulating EMT-inducing genes. However, the underlying mechanisms remain unclear. The aim of the study was to use integrated approach involving SILAC labeling and mass spectrometry-based quantitative proteomics to quantify dynamic changes of acetylation regulated by ING5 in lung cancer cells. Here, we have found that ING5 has a profound influence on protein lysine acetylation with 163 acetylation peptides on 122 proteins significantly upregulated and 100 acetylation peptides on 72 proteins downregulated by ING5 overexpression. Bioinfomatic analysis revealed that the acetylated proteins upregulated by ING5 located preferentially in nucleus to cytoplasm and were significantly enriched in transcription cofactor activity, chromatin binding and DNA binding functions; while those downregulated by ING5 located preferentially in cytoplasm rather than nucleus and were functionally enriched in metabolism, suggesting diverse functions of ING5 through differentially regulating protein acetylation. Interestingly, we found ING5 overexpression promotes p300 autoacetylation at K1555, K1558 and K1560 within p300 HAT domain, and two novel sites K1647 and K1794, leading to activation of p300 HAT activity, which was confirmed by accelerated acetylation of p300 target proteins, p53 at k382 and histone H3 at K18. A specific p300 HAT inhibitor C646 impaired ING5-increased acetylation of H3K18 and p53K382, and subsequent expression of p21 and Bax. In conclusion, our results reveal the lysine acetylome regulated by ING5 and provide new insights into mechanisms of ING5 in the regulation of gene expression, metabolism and other cellular functions.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jin Meng
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Department of Pharmacy, No. 309 Hospital of PLA, Beijing 100091, China
| | - Xinli Liu
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xutao Zhang
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Zhongyi Cheng
- Department of Bioinformatics, Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Feng Zhang
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
16
|
Ma YS, Wu TM, Lv ZW, Lu GX, Cong XL, Xie RT, Yang HQ, Chang ZY, Sun R, Chai L, Cai MX, Zhong XJ, Zhu J, Fu D. High expression of miR-105-1 positively correlates with clinical prognosis of hepatocellular carcinoma by targeting oncogene NCOA1. Oncotarget 2017; 8:11896-11905. [PMID: 28060733 PMCID: PMC5355313 DOI: 10.18632/oncotarget.14435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence supports that microRNA (miRNA) plays a significant functional role in cancer progression by directly regulating respective targets. In this study, the expression levels of miR-105-1 and its target gene were analyzed using genes microarray and hierarchical clustering analysis followed by validation with quantitative RT-PCR in hepatocellular carcinoma (HCC) and normal liver tissues. We examined the expression of nuclear receptor coactivator 1 (NCOA1), the potential target gene of miR-105-1, following the transfection of miR-105-1 mimics or inhibitors. Our results showed that miR-105-1 was downregulated in HCC tissues when compared with normal liver tissues and patients with lower miR-105-1 expression had shorter overall survival (OS) and progression free survival (PFS). Moreover, NCOA1 was confirmed to be a direct target of miR-105-1. Furthermore, concomitant high expression of NCOA1 and low expression of miR-105-1 correlated with a shorter median OS and PFS in HCC patients. In conclusion, our results provide the first evidence that NCOA1 is a direct target of miR-105-1 suggesting that NCOA1 and miR-105-1 may have potential prognostic value and may be useful as tumor biomarkers for the diagnosis of HCC patients.
Collapse
Affiliation(s)
- Yu-Shui Ma
- 1 Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- 2 Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ting-Miao Wu
- 1 Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- 3 Department of Radiology, the Fourth Affiliated Hospital, Medical University of Anhui, Hefei 230601, China
| | - Zhong-Wei Lv
- 1 Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gai-Xia Lu
- 1 Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xian-Ling Cong
- 4 Tissue Bank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Ru-Ting Xie
- 5 Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Qiong Yang
- 5 Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zheng-Yan Chang
- 5 Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ran Sun
- 4 Tissue Bank, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Li Chai
- 1 Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ming-Xiang Cai
- 1 Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Jun Zhong
- 6 Department of Medical Oncology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jian Zhu
- 7 Department of Digestive Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Da Fu
- 8 Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|