1
|
de Castro AL, Fernandes RO, Ortiz VD, Campos C, Bonetto JHP, Fernandes TRG, Conzatti A, Siqueira R, Tavares AV, Belló-Klein A, Araujo ASDR. Cardioprotective doses of thyroid hormones improve NO bioavailability in erythrocytes and increase HIF-1α expression in the heart of infarcted rats. Arch Physiol Biochem 2022; 128:1516-1523. [PMID: 32551929 DOI: 10.1080/13813455.2020.1779752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Infarction leads to a decrease in NO bioavailability in the erythrocytes. Thyroid hormones (TH) present positive effects after infarction. However, there are no studies evaluating the effects of cardioprotective doses of TH in the erythrocytes after infarction. OBJECTIVE This study aimed to evaluate the effects of TH in NO bioavailability and oxidative stress parameters in the erythrocytes of infarcted rats. MATERIAL AND METHODS Wistar rats were allocated into the three groups: Sham-operated (SHAM), infarcted (AMI) and infarcted + TH (AMIT). AMIT rats received T4 and T3 for 12 days by gavage. Subsequently, the animals were evaluated by echocardiography and the LV and erythrocytes were collected. RESULTS TH improved NO bioavailability and increased catalase activity in the erythrocytes. Besides that, TH increased HIF-1α in the heart. CONCLUSION TH seems to be positive for erythrocytes preventing a decrease in NO bioavailability and increasing antioxidant enzymatic defense after infarction.
Collapse
Affiliation(s)
- Alexandre Luz de Castro
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Oliveira Fernandes
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa D Ortiz
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristina Campos
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica H P Bonetto
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tânia Regina G Fernandes
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Conzatti
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafaela Siqueira
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela Vicente Tavares
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Tip60 might be a candidate for the acetylation of hepatic carbonic anhydrase I and III in mice. Mol Biol Rep 2021; 48:7397-7404. [PMID: 34651296 DOI: 10.1007/s11033-021-06753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) play a significant role in maintaining pH balance by catalyzing the conversion of carbon dioxide to bicarbonate. The regulation of pH is critical for all living organisms. Although there are many studies in the literature on the biochemical, functional, and structural features of CAs, there is not sufficient information about the epigenetic regulation of CAs. METHODS AND RESULTS The lysine acetyltransferase TIP60 (60 kDa Tat-interactive protein) was knocked out specifically in mouse liver using the Cre/loxP system, and knockout rate was shown as 83-88% by Southern blot analysis. The impact of Tip60 on the expression of Ca1, Ca3, and Ca7 was investigated at six Zeitgeber time (ZT) points in the control and liver-specific Tip60 knockout mice (mutant) groups by real-time PCR. In the control group, while Ca1 showed the highest expression at ZT8 and ZT12, the lowest expression profile was observed at ZT0 and ZT20. Hepatic Ca1 displayed robust circadian expression. However, hepatic Ca3 exhibited almost the same level of expression at all ZT points. The highest expression of Ca7 was observed at ZT12, and the lowest expression was determined at ZT4. Furthermore, hepatic Ca7 also showed robust circadian expression. The expression of Ca1 and Ca3 significantly decreased in mutant mice at all time periods, but the expression of Ca7 used as a negative control was not affected. CONCLUSIONS It was suggested for the first time that Tip60 might be considered a candidate protein in the regulation of the Ca1 and Ca3 genes, possibly by acetylation.
Collapse
|
3
|
DUSP12 acts as a novel endogenous protective signal against hepatic ischemia-reperfusion damage by inhibiting ASK1 pathway. Clin Sci (Lond) 2021; 135:161-166. [PMID: 33416082 PMCID: PMC7796299 DOI: 10.1042/cs20201091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Ischemia–reperfusion injury (IRI) consequent to major liver surgery is a still unmet clinical problem. The activation of endogenous systems of hepatoprotection can prevent the damaging effects of ischemia–reperfusion (IR) as shown by the phenomenon known as ‘ischemic preconditioning’. The identification of endogenous signal mediators of hepatoprotection is of main interest since they could be targeted in future therapeutic interventions. Qiu et al. recently reported in Clin. Sci. (Lond.) (2020) 134(17), 2279–2294, the discovery of a novel protective molecule against hepatic IR damage: dual-specificity phosphatase 12 (DUSP12). IR significantly decreased DUSP12 expression in liver whereas DUSP12 overexpression in hepatocytes protected IRI and DUSP12 deletion in DUSP12 KO mice exacerbated IRI. The protective effects of DUSP12 depended on apoptosis signal-regulating kinase 1 (ASK1) and acted through the inhibition of the ASK1-dependent kinases c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results enlighten DUSP12 as a novel intermediate negative regulator of the pro-inflammatory and pro-apoptotic ASK1/JNK-p38 MAPK pathway activated during hepatic IR and identify DUSP12 as potential therapeutic target for IRI.
Collapse
|
4
|
Late Phases of Cardioprotection During Remote Ischemic Preconditioning and Adenosine Preconditioning Involve Activation of Neurogenic Pathway. J Cardiovasc Pharmacol 2020; 73:63-69. [PMID: 30422893 DOI: 10.1097/fjc.0000000000000634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The role of the neurogenic pathway in early phases of cardioprotection during remote ischemic preconditioning (RIPC) and adenosine preconditioning is reported. AIM This study was designed to explore the involvement of the neurogenic pathway in late phases of cardioprotection during RIPC and adenosine preconditioning. MATERIAL AND METHODS Fifty-four Wistar rats were used and divided into 9 experimental groups. RIPC was induced by tying the blood pressure cuff around the hind limb and subjecting to 4 cycles of inflation and deflation of 5 minutes each. In early RIPC, the heart was isolated immediately after the last episode of RIPC, whereas in late RIPC, the heart was isolated 24 hours after the last cycle of RIPC. In a similar way, adenosine preconditioning was instituted in early and late phases by either isolating the heart 40 minutes or 24 hours after adenosine (4 mg/kg, intraperitoneally [i.p.]) administration. Isolated hearts were subjected to ischemia-reperfusion (I/R) injury on the Langendorff's system. RESULTS Both early and late phases of RIPC and adenosine preconditioning significantly abrogated I/R-induced myocardial injury in terms of decrease in the release of lactate dehydrogenase, creatine kinase, and decrease in infarct size. Pretreatment with hexamethonium, a ganglion blocker (20 mg/kg, i.p.), significantly abolished the cardioprotective effects of both early and late phases of RIPC and adenosine preconditioning. CONCLUSION Apart from the involvement of the neurogenic pathway in the early phases, there is a critical role of the neurogenic pathway in the late phase of cardioprotection during RIPC and adenosine preconditioning.
Collapse
|
5
|
Chen F, Zhang YM, Wang JT, Wang J, Cui ZL, Liu ZR. Pre-treatment with FK506 reduces hepatic ischemia-reperfusion injury in rats. Clin Res Hepatol Gastroenterol 2019; 43:161-170. [PMID: 30713033 DOI: 10.1016/j.clinre.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 02/04/2023]
Abstract
AIM The study is aimed to investigate the protective effects and possible mechanism of tacrolimus (FK506) pre-treatment in hepatic ischemia-reperfusion injury in rats. METHODS The rats were randomly assigned into four groups, which were S, IR, L and H group, and then all groups were subjected to 60min of 70% partial warm liver ischemia, except S group. Rats in the L and H group were pre-treated with two different doses FK506 at 60min before ischemia. The rats of the IR group received an identical volume of normal saline. All animals were sacrificed after 6h of reperfusion. Transaminases were measured by biochemistry analyzer. Elisa kit was used to detect TNF-α, IL-6 and IL-1β levels in serum. Liver specimens were stained with hematoxylin and eosin (HE) to assess the pathologic changes. The expressions of heme oxygenase-1 (HO-1), hypoxia-inducible factor-1α (HIF-1α), nuclear factor of activated T cells (NFAT3) were measured by real-time quantitative PCR and western blotting and the Bcl-2 and the Bax protein were tested by western blotting. RESULTS In rats pre-treated with FK506, the levels of transaminases, TNF-α and IL-1β were reduced significantly and also liver damage was dramatically mitigated compared to those without FK506 pre-treatment. Moreover, the expression of HO-1 at the level of both transcription and translation increased clearly and the activation of the HIF-1α was found in FK506 pre-treated livers. Moreover, NFAT3 protein transportation to the nucleus was reduced and Bax protein expression was decreased, but the expression of Bcl-2 protein was markedly increased after FK506 pre-treatment. CONCLUSION FK506 pre-treatment could lessen hepatic ischemia-reperfusion injury through up-regulating the expression of HIF-1α and HO-1, and inhibiting nuclear translocation of NFAT3 in liver tissues.
Collapse
Affiliation(s)
- Feng Chen
- Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, 261001 Shandong, China
| | - Ya-Min Zhang
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China.
| | - Jing-Tao Wang
- Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, 261001 Shandong, China
| | - Jian Wang
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China
| | - Zi-Lin Cui
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China
| | - Zi-Rong Liu
- Department of hepatobiliary surgery, Tianjin First Center hospital, No. 24, Fukang road, Nankai district, 300192 Tianjin, China
| |
Collapse
|
6
|
Abstract
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver ischemia-reperfusion injury involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver ischemia-reperfusion injury in patients.
Collapse
|
7
|
Alchera E, Rolla S, Imarisio C, Bardina V, Valente G, Novelli F, Carini R. Adenosine A2a receptor stimulation blocks development of nonalcoholic steatohepatitis in mice by multilevel inhibition of signals that cause immunolipotoxicity. Transl Res 2017; 182:75-87. [PMID: 28011152 DOI: 10.1016/j.trsl.2016.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/09/2016] [Accepted: 11/26/2016] [Indexed: 12/22/2022]
Abstract
Lipotoxicity and immunoinflammation are associated with the evolution of steatosis toward nonalcoholic steatohepatitis (NASH). This study reports the ability of adenosine A2a receptor (A2aR) activation to inhibit NASH development by modulating the responses of CD4+ T-helper (Th) cells to avoid an immuno-mediated potentiation of lipotoxicity. The effect of the A2aR agonist CGS21680 on immunoinflammatory signals, CD4+Th cell infiltration and immunolipotoxicity was analyzed in steatotic C57BL/6 mice fed with a methionine-choline-deficient (MCD) diet and in mouse hepatocytes exposed to palmitic acid (PA). CGS21680 inhibited NASH development in steatotic mice and decreased cytokines and chemokines involved in Th cell recruitment or polarization (namely CXCL10, CCL2, tumor necrosis factor alfa [TNFα], tumor growth factor [TGFβ], and IL-12). CGS21680 also reduced the expansion of Th17, Th22, and Th1 cells and increased the immunosuppressive activity of T regulatory cells. In PA-treated mice hepatocytes, CGS21680 inhibited the production of CXCL10, TNFα, TGFβ, IL-12, and CCL2; CGS21680 also prevented JNK-dependent lipotoxicity and its intensification by IL-17 or IL-17 plus IL-22 through Akt/PI3-kinase stimulation and inhibition of the negative regulator of PI3-kinase, (phosphatase and tensin homologue deleted from chromosome 10 (PTEN), which is upregulated by IL-17. In MCD livers, CGS21680 reduced JNK activation and PTEN expression and increased Akt phosphorylation. In conclusion, A2aR stimulation inhibited NASH development by reducing Th17 cell expansion and inhibiting the exacerbation of the IL-17-induced JNK-dependent lipotoxicity. These data promote the implementation of further studies to evaluate the potential clinical application of A2aR agonists that, by being able to function as both cytoprotective and immunomodulatory agents, could efficiently antagonize the multi-faced pathogenesis of NASH.
Collapse
Affiliation(s)
- Elisa Alchera
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | - Simona Rolla
- Center for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, Torino, Italy; Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Chiara Imarisio
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | - Valentina Bardina
- Center for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, Torino, Italy; Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Guido Valente
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplantation Biology Unit, Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rita Carini
- Department of Health Science, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
8
|
Beyond Preconditioning: Postconditioning as an Alternative Technique in the Prevention of Liver Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8235921. [PMID: 27340509 PMCID: PMC4909928 DOI: 10.1155/2016/8235921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 01/04/2023]
Abstract
Liver ischemia/reperfusion injury may significantly compromise hepatic postoperative function. Various hepatoprotective methods have been improvised, aiming at attenuating IR injury. With ischemic preconditioning (IPC), the liver is conditioned with a brief ischemic period followed by reperfusion, prior to sustained ischemia. Ischemic postconditioning (IPostC), consisting of intermittent sequential interruptions of blood flow in the early phase of reperfusion, seems to be a more feasible alternative than IPC, since the onset of reperfusion is more predictable. Regarding the potential mechanisms involved, it has been postulated that the slow intermittent oxygenation through controlled reperfusion decreases the burst production of oxygen free radicals, increases antioxidant activity, suppresses neutrophil accumulation, and modulates the apoptotic cascade. Additionally, favorable effects on mitochondrial ultrastructure and function, and upregulation of the cytoprotective properties of nitric oxide, leading to preservation of sinusoidal structure and maintenance of blood flow through the hepatic circulation could also underlie the protection afforded by postconditioning. Clinical studies are required to show whether biochemical and histological improvements afforded by the reperfusion/reocclusion cycles of postconditioning during early reperfusion can be translated to a substantial clinical benefit in liver resection and transplantation settings or to highlight more aspects of its molecular mechanisms.
Collapse
|
9
|
Rolla S, Alchera E, Imarisio C, Bardina V, Valente G, Cappello P, Mombello C, Follenzi A, Novelli F, Carini R. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice. Clin Sci (Lond) 2016; 130:193-203. [PMID: 26558403 DOI: 10.1042/cs20150405] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2023]
Abstract
The mechanisms responsible for the evolution of steatosis towards NASH (non-alcoholic steatohepatitis) and fibrosis are not completely defined. In the present study we evaluated the role of CD4(+) T-helper (Th) cells in this process. We analysed the infiltration of different subsets of CD4(+) Th cells in C57BL/6 mice fed on a MCD (methionine choline-deficient) diet, which is a model reproducing all phases of human NASH progression. There was an increase in Th17 cells at the beginning of NASH development and at the NASH-fibrosis transition, whereas levels of Th22 cells peaked between the first and the second expansion of Th17 cells. An increase in the production of IL (interleukin)-6, TNFα (tumour necrosis factor α), TGFβ (transforming growth factor β) and CCL20 (CC chemokine ligand 20) accompanied the changes in Th17/Th22 cells. Livers of IL-17(-/-) mice were protected from NASH development and characterized by an extensive infiltration of Th22 cells. In vitro, IL-17 exacerbated the JNK (c-Jun N-terminal kinase)-dependent mouse hepatocyte lipotoxicity induced by palmitate. IL-22 prevented lipotoxicity through PI3K (phosphoinositide 3-kinase)-mediated inhibition of JNK, but did not play a protective role in the presence of IL-17, which up-regulated the PI3K/Akt inhibitor PTEN (phosphatase and tensin homologue deleted on chromosome 10). Consistently, livers of IL-17(-/-) mice fed on the MCD diet displayed decreased activation of JNK, reduced expression of PTEN and increased phosphorylation of Akt compared with livers of wild-type mice. Hepatic infiltration of Th17 cells is critical for NASH initiation and development of fibrosis in mice, and reflects an infiltration of Th22 cells. Th22 cells are protective in NASH, but only in the absence of IL-17. These data strongly support the potentiality of clinical applications of IL-17 inhibitors that can prevent NASH by both abolishing the lipotoxic action of IL-17 and allowing IL-22-mediated protection.
Collapse
Affiliation(s)
- Simona Rolla
- Center for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Department of Molecular Biotechnology and Health Sciences, via Nizza 56, University of Torino, 10126 Turin, Italy
| | - Elisa Alchera
- Department of Health Sciences, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Chiara Imarisio
- Department of Health Sciences, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Valentina Bardina
- Center for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Department of Molecular Biotechnology and Health Sciences, via Nizza 56, University of Torino, 10126 Turin, Italy
| | - Guido Valente
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Department of Molecular Biotechnology and Health Sciences, via Nizza 56, University of Torino, 10126 Turin, Italy Molecular Biology Center, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Cristina Mombello
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Department of Molecular Biotechnology and Health Sciences, via Nizza 56, University of Torino, 10126 Turin, Italy Immunogenetics and Transplantation Biology Unit, Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Molecular Biology Center, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Rita Carini
- Department of Health Sciences, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
10
|
Owusu-Ansah A, Ihunnah CA, Walker AL, Ofori-Acquah SF. Inflammatory targets of therapy in sickle cell disease. Transl Res 2016; 167:281-97. [PMID: 26226206 PMCID: PMC4684475 DOI: 10.1016/j.trsl.2015.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion, and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident for more than several decades that a more complex disease process contributes to the myriad of clinical complications seen in patients with SCD with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition, they are useful tools to dissect the molecular and cellular mechanisms that promote individual clinical events and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only Food and Drug Administration-approved drug for SCD.
Collapse
Affiliation(s)
- Amma Owusu-Ansah
- Division of Hematology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Chibueze A Ihunnah
- Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Aisha L Walker
- Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Solomon F Ofori-Acquah
- Division of Hematology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Center for Translational and International Hematology, Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
11
|
Pharmacological Preconditioning by Adenosine A2a Receptor Stimulation: Features of the Protected Liver Cell Phenotype. BIOMED RESEARCH INTERNATIONAL 2015; 2015:286746. [PMID: 26539478 PMCID: PMC4619783 DOI: 10.1155/2015/286746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
Abstract
Ischemic preconditioning (IP) of the liver by a brief interruption of the blood flow protects the damage induced by a subsequent ischemia/reperfusion (I/R) preventing parenchymal and nonparenchymal liver cell damage. The discovery of IP has shown the existence of intrinsic systems of cytoprotection whose activation can stave off the progression of irreversible tissue damage. Deciphering the molecular mediators that underlie the cytoprotective effects of preconditioning can pave the way to important therapeutic possibilities. Pharmacological activation of critical mediators of IP would be expected to emulate or even to intensify its salubrious effects. In vitro and in vivo studies have demonstrated the role of the adenosine A2a receptor (A2aR) as a trigger of liver IP. This review will provide insight into the phenotypic changes that underline the resistance to death of liver cells preconditioned by pharmacological activation of A2aR and their implications to develop innovative strategies against liver IR damage.
Collapse
|
12
|
Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch-Puy E, Hotter G, Capasso C, T. Supuran C, Rosselló-Catafau J. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage. PLoS One 2015; 10:e0134499. [PMID: 26225852 PMCID: PMC4520486 DOI: 10.1371/journal.pone.0134499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 01/11/2023] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. CAs are involved in numerous physiological and pathological processes, including acid-base homeostasis, electrolyte balance, oxygen delivery to tissues and nitric oxide generation. Given that these processes are found to be dysregulated during ischemia reperfusion injury (IRI), and taking into account the high vulnerability of steatotic livers to preservation injury, we hypothesized a new role for CA as a pharmacological agent able to protect against ischemic damage. Two different aspects of the role of CA II in fatty liver grafts preservation were evaluated: 1) the effect of its addition to Institut Georges Lopez (IGL-1) storage solution after cold ischemia; 2) and after 24h of cold storage followed by two hours of normothermic ex-vivo perfusion. In all cases, liver injury, CA II protein concentration, CA II mRNA levels and CA II activity were determined. In case of the ex-vivo perfusion, we further assessed liver function (bile production, bromosulfophthalein clearance) and Western blot analysis of phosphorylated adenosine monophosphate activated protein kinase (AMPK), mitogen activated protein kinases family (MAPKs) and endoplasmic reticulum stress (ERS) parameters (GRP78, PERK, IRE, eIF2α and ATF6). We found that CA II was downregulated after cold ischemia. The addition of bovine CA II to IGL-1 preservation solution efficiently protected steatotic liver against cold IRI. In the case of reperfusion, CA II protection was associated with better function, AMPK activation and the prevention of ERS and MAPKs activation. Interestingly, CA II supplementation was not associated with enhanced CO2 hydration. The results suggest that CA II modulation may be a promising target for fatty liver graft preservation.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Eirini Pantazi
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Viviana De Luca
- Institute of Bioscience and Bioresources (IBBR), National Research Council, Napoli, Italy
| | - Arnau Panisello
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Emma Folch-Puy
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
| | - Clemente Capasso
- Institute of Bioscience and Bioresources (IBBR), National Research Council, Napoli, Italy
| | | | - Joan Rosselló-Catafau
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
13
|
Gaudin A, Lepetre-Mouelhi S, Mougin J, Parrod M, Pieters G, Garcia-Argote S, Loreau O, Goncalves J, Chacun H, Courbebaisse Y, Clayette P, Desmaële D, Rousseau B, Andrieux K, Couvreur P. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis. J Control Release 2015; 212:50-8. [PMID: 26087468 PMCID: PMC4534517 DOI: 10.1016/j.jconrel.2015.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/02/2015] [Accepted: 06/13/2015] [Indexed: 12/13/2022]
Abstract
Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[3H]-Adenosine NAs and [14C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1 h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury.
Collapse
Affiliation(s)
- Alice Gaudin
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | - Sinda Lepetre-Mouelhi
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | - Julie Mougin
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | - Martine Parrod
- BERTIN Pharma, 10 Avenue Claude Guillemin, 45071 Orléans, France.
| | - Grégory Pieters
- CEA Saclay, iBiTecS-S/SCBM, Labex LERMIT, 91191 Gif-sur-Yvette, France.
| | | | - Olivier Loreau
- CEA Saclay, iBiTecS-S/SCBM, Labex LERMIT, 91191 Gif-sur-Yvette, France.
| | - Jordan Goncalves
- BERTIN Pharma, 10 Avenue Claude Guillemin, 45071 Orléans, France.
| | - Hélène Chacun
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | | | - Pascal Clayette
- BERTIN Pharma, 10 Avenue Claude Guillemin, 45071 Orléans, France.
| | - Didier Desmaële
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | - Bernard Rousseau
- CEA Saclay, iBiTecS-S/SCBM, Labex LERMIT, 91191 Gif-sur-Yvette, France.
| | - Karine Andrieux
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| | - Patrick Couvreur
- Institut Galien Paris-Sud UMR CNRS 8612, Faculty of Pharmacy, University of Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
14
|
Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation. J Hepatol 2015; 62:573-80. [PMID: 25315650 DOI: 10.1016/j.jhep.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/11/2014] [Accepted: 10/02/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Ischemia-reperfusion (IR) of liver results in hepatocytes (HP) and sinusoidal endothelial cells (LSEC) irreversible damage. Ischemic preconditioning protects IR damage upon adenosine A2a receptor (A2aR) stimulation. Understanding the phenotypic changes that underlie hepatocellular damage and protection is critical to optimize strategies against IR. METHODS The proteome of HP and LSEC, isolated from sham or IR exposed mice, receiving or not the A2aR agonist CGS21680 (0.5mg/kg b.w.), was analyzed by 2-D DIGE/MALDI-TOF. RESULTS We identified 64 proteins involved in cytoprotection, regeneration, energy metabolism and response to oxidative stress; among them, 34 were associated with IR injury and A2aR protection. The main pathways, downregulated by IR and upregulated by CGS21680 in HP and LSEC, were related to carbohydrate, protein and lipid supply and metabolism. In LSEC, IR reduced stress response enzymes that were instead upregulated by CGS21680 treatment. Functional validation experiments confirmed the metabolic involvement and showed that inhibition of pyruvate kinase, 3-chetoacylCoA thiolase, and arginase reduced the protection by CGS21680 of in vitro hypoxia-reoxygenation injury, whereas their metabolic products induced liver cell protection. Moreover, LSEC, but not HP, were sensitive to H2O2-induced oxidative damage and CGS21680 protected against this effect. CONCLUSIONS IR and A2aR stimulation produces pathological and protected liver cell phenotypes, respectively characterized by down- and upregulation of proteins involved in the response to O2 and nutrients deprivation during ischemia, oxidative stress, and reactivation of aerobic energy synthesis at reperfusion. This provides novel insights into IR hepatocellular damage and protection, and suggests additional therapeutic options.
Collapse
|
15
|
Jia JJ, Li JH, Jiang L, Lin BY, Wang L, Su R, Zhou L, Zheng SS. Liver protection strategies in liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14:34-42. [PMID: 25655288 DOI: 10.1016/s1499-3872(15)60332-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver transplantation is the therapy of choice for patients with end-stage liver diseases. However, the gap between the low availability of organs and high demand is continuously increasing. Innovative strategies for organ protection are necessary to expand donor pool and to achieve better outcomes for liver transplantation. The present review analyzed and compared various strategies of liver protection. DATA SOURCES Databases such as PubMed, Embase and Ovid were searched for the literature related to donor liver protection strategies using following key words: "ischemia reperfusion injury", "graft preservation", "liver transplantation", "machine perfusion" and "conditioning". Of the 146 studies identified, only those with cutting edge strategies were analyzed. RESULTS A variety of therapeutic approaches were proposed to alleviate graft ischemia/reperfusion injury, which included static cold storage, machine perfusion (hypothermic, normothermic and subnormothermic), manual conditioning (pre, post and remote), and pharmacological conditioning. Evidences from animal experiments and clinical trials suggested that all these strategies could potentially protect liver graft; however, their clinical applications are limited partially due to their own disadvantages. CONCLUSIONS There are a plenty of methods suggested to decrease the degree of donor liver transplantation-related injury. However, none of these approaches is perfect in clinical practice. More translational researches (molecular and clinical studies) are needed to improve the techniques in liver graft protection.
Collapse
Affiliation(s)
- Jun-Jun Jia
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wilson GK, Tennant DA, McKeating JA. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J Hepatol 2014; 61:1397-406. [PMID: 25157983 DOI: 10.1016/j.jhep.2014.08.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/07/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible transcription factors (HIFs) activate diverse pathways that regulate cellular metabolism, angiogenesis, proliferation, and migration, enabling a cell to respond to a low oxygen or hypoxic environment. HIFs are regulated by oxygen-dependent and independent signals including: mitochondrial dysfunction, reactive oxygen species, endoplasmic reticular stress, and viral infection. HIFs have been reported to play a role in the pathogenesis of liver disease of diverse aetiologies. This review explores the impact of HIFs on hepatocellular biology and inflammatory responses, highlighting the therapeutic potential of targeting HIFs for an array of liver pathologies.
Collapse
Affiliation(s)
- Garrick K Wilson
- Viral Hepatitis Research Group, Centre for Human Virology, University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Jane A McKeating
- Viral Hepatitis Research Group, Centre for Human Virology, University of Birmingham, Birmingham, UK; NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Ryzhov S, Biktasova A, Goldstein AE, Zhang Q, Biaggioni I, Dikov MM, Feoktistov I. Role of JunB in adenosine A2B receptor-mediated vascular endothelial growth factor production. Mol Pharmacol 2014; 85:62-73. [PMID: 24136993 PMCID: PMC3868903 DOI: 10.1124/mol.113.088567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 12/23/2022] Open
Abstract
Interstitial adenosine stimulates neovascularization in part through A2B adenosine receptor-dependent upregulation of vascular endothelial growth factor (VEGF). In the current study, we tested the hypothesis that A2B receptors upregulate JunB, which can contribute to stimulation of VEGF production. Using the human microvascular endothelial cell line, human mast cell line, mouse cardiac Sca1-positive stromal cells, and mouse Lewis lung carcinoma (LLC) cells, we found that adenosine receptor-dependent upregulation of VEGF production was associated with an increase in VEGF transcription, activator protein-1 (AP-1) activity, and JunB accumulation in all cells investigated. Furthermore, the expression of JunB, but not the expression of other genes encoding transcription factors from the Jun family, was specifically upregulated. In LLC cells expressing A2A and A2B receptor transcripts, only the nonselective adenosine agonist NECA (5'-N-ethylcarboxamidoadenosine), but not the selective A2A receptor agonist CGS21680 [2-p-(2-carboxyethyl) phenylethylamino-5'-N-ethylcarboxamidoadenosine], significantly increased JunB reporter activity and JunB nuclear accumulation, which were inhibited by the A2B receptor antagonist PSB603 [(8-[4-[4-((4-chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine]. Using activators and inhibitors of intracellular signaling, we demonstrated that A2B receptor-dependent accumulation of JunB protein and VEGF secretion share common intracellular pathways. NECA enhanced JunB binding to the murine VEGF promoter, whereas mutation of the high-affinity AP-1 site (-1093 to -1086) resulted in a loss of NECA-dependent VEGF reporter activity. Finally, NECA-dependent VEGF secretion and reporter activity were inhibited by the expression of a dominant negative JunB or by JunB knockdown. Thus, our data suggest an important role of the A2B receptor-dependent upregulation of JunB in VEGF production and possibly other AP-1-regulated events.
Collapse
Affiliation(s)
- Sergey Ryzhov
- Divisions of Cardiovascular Medicine (S.R., Q.Z., I.F.) and Clinical Pharmacology (A.E.G., I.B.), and Departments of Cancer Biology (A.B., M.M.D.), Medicine (S.R., A.E.G., Q.Z., I.B., I.F.), and Pharmacology (I.B., I.F.), Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | | | |
Collapse
|
18
|
Nikitina AA, Egorova VV, Dmitrieva JV, Bagaeva TR. Immediate and delayed effects of hypobaric hypoxia during early postnatal period on the functioning of digestive enzymes. Bull Exp Biol Med 2012; 152:35-7. [PMID: 22803034 DOI: 10.1007/s10517-011-1447-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied immediate and delayed effects of hypobaric hypoxic stress experienced by rat pups in the early postnatal period on the digestive system. It was shown that hypoxia leads to remarkable changes in the functioning of the small intestine, as well as liver and kidney, especially in adult animals.
Collapse
Affiliation(s)
- A A Nikitina
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | | | | | | |
Collapse
|
19
|
Imarisio C, Alchera E, Sutti S, Valente G, Boccafoschi F, Albano E, Carini R. Adenosine A(2a) receptor stimulation prevents hepatocyte lipotoxicity and non-alcoholic steatohepatitis (NASH) in rats. Clin Sci (Lond) 2012; 123:323-332. [PMID: 22439844 DOI: 10.1042/cs20110504] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
NEFA (non-esterified 'free' fatty acid)-mediated lipotoxicity plays a critical role in the pathogenesis of NASH (non-alcoholic steatohepatitis). In the light of the growing need for new therapeutic options for NASH, we investigated the action of A2aR (adenosine A(2a) receptor) stimulation against lipotoxicity. The effects of the A(2a)R agonist CGS21680 [2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine] were evaluated 'in vitro' in liver cells exposed to SA (stearic acid) and 'in vivo' in rats with NASH induced by 8 weeks of feeding with an MCD diet (methionine/choline-deficient diet). In cultured hepatocytes, SA promoted apoptosis by inducing MKK4 (mitogen-activated protein kinase kinase 4)/SEK1 (stress-activated protein kinase/extracellular-signal-regulated kinase kinase-1) and JNK-1/2 (c-Jun N-terminal kinase-1/2) activation. CGS21680 addition prevented JNK-1/2 activation and reduced apoptosis without interfering with lipid accumulation. CGS21680 action required PI3K (phosphoinositide 3-kinase)/Akt-mediated block of MKK4/SEK1. Consistently, PI3K inhibition with wortmannin abolished the cytoprotective action of CGS21680 and reverted MKK4 inhibition. SA lipotoxicity was also prevented by transfecting HTC cells with a specific MKK4/SEK1 siRNA (small interfering RNA). In rats receiving the MCD diet, the development of NASH was associated with MKK4/SEK1 and JNK-1/2 activation. CGS21680 (0.5 mg/kg of body weight, intraperitoneal) administration to MCD-fed rats prevented JNK-1/2 activation by acting on MKK4/SEK1. CGS21680 also effectively reduced NASH-associated ALT (alanine aminotransferase) release, hepatocyte apoptosis, liver inflammation and fibrosis without affecting hepatic steatosis. Taken together, these results demonstrate that, by inhibiting JNK-1/2, A(2a)R stimulation reduces lipotoxicity and ameliorates NASH, giving a rationale to investigate A(2a)R agonists as possible new therapeutic agents in preventing fatty liver progression to NASH.
Collapse
Affiliation(s)
- Chiara Imarisio
- Department of Health Sciences, University 'A. Avogadro', Novara 28100, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Nath B, Szabo G. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. HEPATOLOGY (BALTIMORE, MD.) 2012. [PMID: 22120903 DOI: 10.1002/hep.25497]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The hypoxia inducible factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the HIFs and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models.
Collapse
Affiliation(s)
- Bharath Nath
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
21
|
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The hypoxia inducible factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the HIFs and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models.
Collapse
Affiliation(s)
- Bharath Nath
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
22
|
Guo JY, Yang T, Sun XG, Zhou NY, Li FS, Long D, Lin T, Li PY, Feng L. Ischemic postconditioning attenuates liver warm ischemia-reperfusion injury through Akt-eNOS-NO-HIF pathway. J Biomed Sci 2011; 18:79. [PMID: 22035453 PMCID: PMC3212808 DOI: 10.1186/1423-0127-18-79] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/28/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ischemic postconditioning (IPO) has been demonstrated to attenuate ischemia/reperfusion (I/R) injury in the heart and brain, its roles to liver remain to be defined. The study was undertaken to determine if IPO would attenuate liver warm I/R injury and its protective mechanism. METHODS Mice were divided into sham, I/R, IPO+I/R (occlusing the porta hepatis for 60 min, then treated for three cycles of 10 sec brief reperfusion consecutively, followed by a persistent reperfusion); L-NAME+ sham (L-NAME, 16 mg/kg, i.v., 5 min before repefusion); L-NAME+I/R; and L-NAME+ IPO. Blood flow of caudate and left lobe of the liver was blocked. Functional and morphologic changes of livers were evaluated. Contents of nitric oxide, eNOS and iNOS in serum were assayed. Concentration of eNOS, iNOS, malondialdehyde (MDA) and activity of superoxide dismutase (SOD) in hepatic tissue were also measured. Expressions of Akt, p-Akt and HIF-1α protein were determined by western blot. Expressions of TNF-α and ICAM-1 were measured by immunohistochemistry and RT-PCR. RESULTS IPO attenuated the dramatically functional and morphological injuries. The levels of ALT was significantly reduced in IPO+I/R group (p < 0.05). Contents of nitric oxide and eNOS in serum were increased in the IPO+I/R group (p < 0.05). IPO also up-regulated the concentration of eNOS, activity of SOD in hepatic tissue (p < 0.05), while reduced the concentration of MDA (p < 0.05). Moreover, protein expressions of HIF-1α and p-Akt were markedly enhanced in IPO+I/R group. Protein and mRNA expression of TNF-α and ICAM-1 were markedly suppressed by IPO (p < 0.05). These protective effects of IPO could be abolished by L-NAME. CONCLUSIONS We found that IPO increased the content of NO and attenuated the overproduction of ROS and I/R-induced inflammation. Increased NO contents may contribute to increasing HIF-1α level, and HIF-1α and NO would simultaneously protect liver from I/R injury. These findings suggested IPO may have the therapeutic potential through Akt-eNOS-NO-HIF pathway for the better management of liver I/R injury.
Collapse
Affiliation(s)
- Jia Y Guo
- Key Laboratory of Transplant Engineering and Immunology of Health Ministry of China, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Koos BJ. Adenosine A₂a receptors and O₂ sensing in development. Am J Physiol Regul Integr Comp Physiol 2011; 301:R601-22. [PMID: 21677265 DOI: 10.1152/ajpregu.00664.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O₂ sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(₂A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(₂A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(₂A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(₂A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(₂A) receptors play virtually no role in O₂ sensing by the carotid bodies, but brain A(₂A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(₂A) receptors have been implicated in O₂ sensing by carotid glomus cells, while central A(₂A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(₂A) receptors are crucially involved in the transduction mechanisms of O₂ sensing in fetal carotid bodies and brains. Postnatally, central A(₂A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O₂ sensing in carotid chemoreceptors, particularly in developing lambs.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics and Gynecology; Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
24
|
Ischemia/reperfusion injury in liver resection: a review of preconditioning methods. Surg Today 2011; 41:620-9. [PMID: 21533932 DOI: 10.1007/s00595-010-4444-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 10/18/2010] [Indexed: 02/06/2023]
Abstract
Ischemic preconditioning is one of the therapeutic interventions aiming at preventing ischemia/reperfusion-related injury. Numerous experimental studies and a few clinical series have shown that during liver resections, ischemic preconditioning is a promising strategy for optimizing the postoperative outcome. Moreover, various types of pharmacological intervention as well as different types of preconditioning, such as remote preconditioning, the use of heat shock, and hyperbaric oxygen, have been developed to attenuate the functional impairment accompanying ischemia/reperfusion injury. This review summarizes the various forms of preconditioning, thus suggesting that close cooperation between surgeons and anesthesiologists paves the way to apply novel strategies to improve the outcome of liver resection.
Collapse
|
25
|
Field JJ, Nathan DG, Linden J. Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol 2011; 140:177-83. [PMID: 21429807 DOI: 10.1016/j.clim.2011.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 12/19/2022]
Abstract
Sickle cell disease (SCD) causes widely disseminated vaso-occlusive episodes. Building on evidence implicating invariant NKT (iNKT) cells in the pathogenesis of ischemia/reperfusion injury, recent studies demonstrate that blockade of iNKT cell activation in mice with SCD reduces pulmonary inflammation and injury. In patients with SCD, iNKT cells in blood are increased in absolute number and activated in comparison to healthy controls. iNKT cell activation is reduced by agonists of adenosine 2A receptors (A(2A)Rs) such as the clinically approved coronary vasodilator, regadenoson. An ongoing multi-center, dose-finding and safety trial of infused regadenoson, has been initiated and is providing preliminary data about its safety and efficacy to treat SCD. Very high accumulation of adenosine may have deleterious effects in SCD through activation of adenosine 2B receptors that are insensitive to regadenoson. Future possible therapeutic approaches for treating SCD include selective A(2B)R antagonists and antibodies that deplete iNKT cells.
Collapse
Affiliation(s)
- Joshua J Field
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
26
|
Rb1 postconditioning attenuates liver warm ischemia-reperfusion injury through ROS-NO-HIF pathway. Life Sci 2011; 88:598-605. [PMID: 21300075 DOI: 10.1016/j.lfs.2011.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/27/2010] [Accepted: 01/14/2011] [Indexed: 02/05/2023]
Abstract
AIMS Ginsenoside Rb1 could prevent ischemic neuronal death and focal cerebral ischemia, but its roles to liver warm I/R injury remain to be defined. We determined if Rb1 would attenuate warm I/R injury in mice. MAIN METHODS Mice were divided into sham, I/R, Rb1+I/R (Rb1 postconditioning, 20mg/kg, i.p. after ischemia), sham+L-NAME, I/R+L-NAME, and Rb1+I/R+L-NAME groups using 60min of the liver median and left lateral lobes ischemia. Serum levels of alanine aminotransferase (ALT) were measured and morphology changes of livers were evaluated. Contents of nitric oxide (NO) and nitric oxide synthase (NOS), malondialdehye (MDA) and activity of superoxide dismutase (SOD) were measured. Expressions of Akt, p-Akt, iNOS, HIF-1alpha, tumor necrosis factor-a (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) were also determined by western blot or immunohistochemistry. KEY FINDINGS Rb1 postconditioning attenuated the dramatically functional and morphological injuries. The levels of ALT were significantly reduced in Rb1 group (p<0.05). Rb1 upregulated the concentrations of NO, iNOS in serum, iNOS, and activity of SOD in hepatic tissues (p<0.05), while it dramatically reduced the concentration of MDA (p<0.05). Protein expressions of p-Akt, iNOS and HIF-1alpha were markedly enhanced in Rb1 group. Protein and mRNA expressions of TNF-α and ICAM-1 were markedly suppressed by Rb1 (p<0.05). SIGNIFICANCE We found that Rb1 postconditioning could protect liver from I/R injury by upregulating the content of NO and NOS, and also HIF-1alpha protein expression. These protective effects could be abolished by L-NAME. These findings suggested Rb1 may have the therapeutic potential through ROS-NO-HIF pathway for management of liver warm I/R injury.
Collapse
|
27
|
Linden J. Regulation of leukocyte function by adenosine receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:95-114. [PMID: 21586357 DOI: 10.1016/b978-0-12-385526-8.00004-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune system responds to cues in the microenvironment to make acute and chronic adaptations in response to inflammation and injury. Locally produced purine nucleotides and adenosine provide receptor-mediated signaling to all bone-marrow derived cells of the immune system to modulate their responses. This review summarizes recent advances in our understanding of the effects of adenosine signaling through G protein-coupled adenosine receptors on cells of the immune system. Adenosine A(2A) receptors (A(2A)Rs) have a generally suppressive effect on the activation of immune cells. Moreover, their transcription is strongly induced by signals that activate macrophages or dendritic cells through toll-like receptors, or T cells through T cell receptors. A(2A)R induction is responsible for producing a gradual dissipation of inflammatory responses. A(2A)R activation is particularly effective in limiting the activation of invariant NKT (iNKT) cells that play a central role in acute reperfusion injury. A(2A) agonists have clinical promise for the treatment of vaso-occlusive tissue injury. Blockade of A(2A) receptors may be useful to enhance immune-mediated killing of cancer cells. A(2B)R expression also is transcriptionally regulated by hypoxia, cytokines, and oxygen radicals. Acute A(2B)R activation attenuates the production of proinflammatory cytokines from macrophages, but sustained activation facilitates macrophage and dendritic cell remodeling and the production of acute phase proteins and angiogenic factors that may participate in evoking insulin resistance and tissue fibrosis. A(2B)R activation also influences macrophage and neutrophil function by influencing expression of the anti-inflammatory netrin receptor, UNC5B. The therapeutic significance of adenosine-mediated effects on the immune system is discussed.
Collapse
Affiliation(s)
- Joel Linden
- Division of Inflammation Biology, La Jolla Institute of Allergy and Immunology, California, USA
| |
Collapse
|
28
|
Abstract
Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery.
Collapse
|
29
|
Romanque P, Díaz A, Tapia G, Uribe-Echevarría S, Videla LA, Fernandez V. Delayed ischemic preconditioning protects against liver ischemia-reperfusion injury in vivo. Transplant Proc 2010; 42:1569-75. [PMID: 20620476 DOI: 10.1016/j.transproceed.2009.11.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/18/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Ischemic preconditioning (IP) affords resistance to liver ischemia-reperfusion (IR) injury, providing an early phase of protection. Development of delayed IP against IR injury was assessed using partial IR in rat liver. METHODS The IP manuver (10 minutes of ischemia and up to 72 hours of reperfusion) was induced before 1 hour of ischemia and 20 hours of reperfusion. At the end of the reperfusion period, blood and liver samples were analyzed for serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), haptoglobin and tumor necrosis factor-alpha (TNF-alpha) levels, hepatic histology, protein carbonyl and glutathione (GSH) contents as well as nuclear factor-kappaB (NF-kappaB), and activating protein-1 (AP-1) DNA binding. RESULTS The IP manuver significantly increased protein carbonyl/GSH ratios (275%), serum ALT (42%), and AST (58%); these changes normalized after 12 hours. Serum AST, ALT, and LDH levels were significantly increased by IR (4-, 5.6-, and 7.0-fold, respectively), with significant changes in liver histology, protein carbonyl/GSH ratio (481% enhancement), and serum TNF-alpha (6.1-fold increase). Delayed IP in IR animals reduced serum AST (66%), ALT (57%), and LDH (90%) and liver GSH depletion (89%), with normalization of protein carbonyl content, serum TNF-alpha levels, and liver histology. Enhanced AP-1/NF-kappaB DNA binding ratios and diminished haptoglobin expression induced by IR were normalized by IP. CONCLUSION These data support that delayed IP suppresses IR-induced liver injury, oxidative stress, and TNF-alpha response, which coincide with recovery of IR-altered signaling functions represented by normal AP-1/NF-kappaB DNA binding ratios and acute phase responses.
Collapse
Affiliation(s)
- P Romanque
- Universidad de Chile, Facultad de Medicina, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
30
|
Huber-Ruano I, Pinilla-Macua I, Torres G, Casado FJ, Pastor-Anglada M. Link between high-affinity adenosine concentrative nucleoside transporter-2 (CNT2) and energy metabolism in intestinal and liver parenchymal cells. J Cell Physiol 2010; 225:620-30. [PMID: 20506327 DOI: 10.1002/jcp.22254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Concentrative nucleoside transporter 2 (CNT2) is a high-affinity adenosine transporter that may play physiological roles beyond nucleoside salvage. Previous reports relate CNT2 function to modulation of purinergic signaling and energy metabolism in intestinal and liver parenchymal cells (Duflot et al., 2004, Mol Cell Biol 24:2710-2719; Aymerich et al., 2006, J Cell Sci 119:1612-1621). In the present study, to further examine the link between CNT2 and energy metabolism, CNT2 protein partners were identified using the bacterial two-hybrid and GST pull-down approaches. The N-terminal segment of CNT2 was used as bait, since proteins lacking this domain display impaired plasma membrane insertion and intracellular retention. Glucose-regulated protein 58 (GRP58) was identified as a potential rCNT2 partner in pull-down experiments. Two-hybrid screening performed against a liver human cDNA library led to the identification of aldolase B as another hCNT2 partner. Aldolase B-RFP and endogenous GRP58 separately co-localized with CNT2 in HeLa cells transfected with YFPrCNT2. CNT2 interaction with GRP58 was validated using co-immunoprecipitation experiments. In HeLa cells, fluorescence resonance energy transfer (FRET) efficiency increased upon fructose addition, consistent with a transient interaction between aldolase B and the transporter. The physiological basis for in vivo interactions was derived from experiments in which GRP58 was inhibited or overexpressed and aldolase B activity stimulated towards glycolysis. GRP58 appeared to be a negative effector of CNT2 function, whereas aldolase B flux modulated CNT2 activity via a mechanism involving acquisition of higher affinity for its substrates. These findings support the theory that CNT2 plays roles other than salvage and establishes links with energy metabolism.
Collapse
Affiliation(s)
- Isabel Huber-Ruano
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona and CIBER EHD, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Gammella E, Cairo G, Tacchini L. Adenosine A(2)A receptor but not HIF-1 mediates Tyrosine hydroxylase induction in hypoxic PC12 cells. J Neurosci Res 2010; 88:2007-16. [PMID: 20143408 DOI: 10.1002/jnr.22366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of catecholamines released by oxygen-sensitive cells in response to hypoxic conditions. Adenosine is released in response to hypoxia in the central nervous system and CGS21680, an adenosine A(2)A receptor agonist, induces TH transcription. As we have previously demonstrated the A(2)A receptor-mediated induction of HIF-1 in macrophages and hepatocytes, we investigated the involvement of HIF-1 in the adenosine-mediated activation of TH expression. Exposure to adenosine or CGS21680 increased TH mRNA and protein levels in PC12 cells. Transcription of a reporter gene under the control of the wild type rat TH promoter was induced 3.5-fold in CGS21680-treated cells, but neither the mutation of the hypoxia responsive element in the TH promoter nor the co-transfection of a dominant negative of the HIF-1 beta subunit prevented the increase in transcription; furthermore, CGS21680 increased CREB binding activity but did not induce HIF-1 DNA binding activity or protein levels. To investigate whether HIF-1 was involved in the hypoxia-mediated induction of TH, PC12 cells were exposed to hypoxia in the presence of the A(2)A receptor antagonist ZM241385, which prevented hypoxia-dependent TH induction despite HIF-1 activation; in line with this finding, the inhibition of HIF-1 did not abolish TH induction in hypoxic PC12 cells. These results indicate that, under hypoxic conditions, TH (a key factor in systemic adaptation to reduced oxygen availability) is not regulated by HIF-1, the primary modulator of the response to hypoxia, but by the adenosine A(2)A receptor-mediated signalling pathway.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Human Morphology and Biomedical Sciences, Città Studi, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
32
|
Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res 2010; 88:219-28. [PMID: 20679415 DOI: 10.1093/cvr/cvq256] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under hypoxic conditions, mitochondria can represent a threat to the cell because of their capacity to generate toxic reactive oxygen species (ROS). However, cardiomyocytes are equipped with an oxygen-sensing pathway that involves prolyl hydroxylase oxygen sensors and hypoxia-inducible factors (HIFs), which induces a tightly regulated programme to keep ischaemic mitochondrial activity under control. The aim of this review is to provide an update on the pathways leading to mitochondrial reprogramming, which occurs in the myocardium during ischaemia, with particular emphasis on those induced by HIF activation. We start by studying the mechanisms of mitochondrial damage during ischaemia and upon reperfusion, highlighting the importance of the formation of the mitochondrial permeability transition pore during reperfusion and its consequences for cardiomyocyte survival. Next, we analyse hypoxia-induced metabolic reprogramming through HIF and its important consequences for mitochondrial bioenergetics, as well as the phenomenon known as the hibernating myocardium. Subsequently, we examine the mechanisms underlying ischaemic preconditioning, focusing, in particular, on those that involve the HIF pathway, such as adenosine signalling, sub-lethal ROS generation, and nitric oxide production. Finally, the role of the mitochondrial uncoupling proteins in ischaemia tolerance is discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa , Diego de León 62, 28006 Madrid, Spain.
| | | | | |
Collapse
|
33
|
Espinoza J, Uckele JE, Starr RA, Seubert DE, Espinoza AF, Berry SM. Angiogenic imbalances: the obstetric perspective. Am J Obstet Gynecol 2010; 203:17.e1-8. [PMID: 20231008 DOI: 10.1016/j.ajog.2009.10.891] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/06/2009] [Accepted: 10/29/2009] [Indexed: 12/11/2022]
Abstract
Clinical and experimental evidence indicates that angiogenic imbalances may participate in the mechanisms of disease of several pregnancy complications, some of which may be life threatening. This article reviews current evidence in support of this view and the possibility that the fetus may play a central role in these imbalances; it also reviews recent experimental observations that modulation of angiogenic imbalances during pregnancy may have prophylactic and/or therapeutic value.
Collapse
Affiliation(s)
- Jimmy Espinoza
- Department of Obstetrics and Gynecology, William Beaumont Hospital, 3601 West Thirteen Mile Rd., Royal Oak, MI 48073, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Holotnakova T, Tylkova L, Takacova M, Kopacek J, Petrik J, Pastorekova S, Pastorek J. Role of the HBx oncoprotein in carbonic anhydrase 9 induction. J Med Virol 2010; 82:32-40. [PMID: 19950233 DOI: 10.1002/jmv.21671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbonic anhydrase 9 (CA9), as one of the most hypoxia-responsive genes, has been associated almost exclusively with hypoxic tumors. Its principal role is in pH regulation which helps tumor cells overcome intracellular acidosis and survive extended periods of time with low oxygen. Hypoxia-inducible factor 1 (HIF-1) is the main transcriptional activator of CA9. Hepatitis B virus X protein (HBx) has been shown to increase the transcriptional activity of HIF-1. HBx is often expressed from the gene integrated in the hepatocytes infected persistently and contributes significantly to alterations in host gene expression that can lead to the development of hepatocellular carcinoma (HCC) associated with Hepatitis B virus (HBV). The aim of this study was to determine the effect of HBx on expression of CA9. Transient transfection of HBx led to an increase in the expression of CA9 as assessed by RT-PCR and Western blotting. HBx was able to increase CA9 promoter activity significantly in several cell lines. The effect was mediated via HIF-1 and a functional HRE element located -10/-3 bp upstream of the CA9 transcription initiation site. These data suggest that CA9 may be involved in the development of HCC by contributing to the survival of hepatocytes infected with HBV in liver tissue with fibrosis.
Collapse
Affiliation(s)
- Tereza Holotnakova
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
35
|
Negative regulation of diacylglycerol kinase theta mediates adenosine-dependent hepatocyte preconditioning. Cell Death Differ 2010; 17:1059-68. [PMID: 20057501 DOI: 10.1038/cdd.2009.210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In liver ischemic preconditioning (IP), stimulation of adenosine A2a receptors (A2aR) prevents ischemia/reperfusion injury by promoting diacylglycerol-mediated activation of protein kinase C (PKC). By concerting diacylglycerol to phosphatidic acid, diacylglycerol kinases (DGKs) act as terminator of diacylglycerol signalling. This study investigates the role of DGK in the development of hepatocyte IP. DGK activity and cell viability were evaluated in isolated rat hepatocytes preconditioned by 10 min hypoxia followed by 10 min re-oxygenation or by the treatment with the A2aR agonist, CGS21680, and subsequently exposed to prolonged hypoxia. We observed that after IP or A2aR activation, a decrease in DGK activity was associated with the onset of hepatocyte tolerance to hypoxia. CGS21680-induced stimulation of A2aR specifically inhibited DGK isoform theta by activating RhoA-GTPase. Consistently, both siRNA-mediated downregulation of DGK theta and hepatocyte pretreatment with the DGK inhibitor R59949 induced cell tolerance to hypoxia. The pharmacological inhibition of DGK was associated with the diacylglycerol-dependent activation of PKC delta and epsilon and of their downstream target p38 MAPK. In conclusion, we unveil a novel signalling pathway contributing to the onset of hepatocyte preconditioning, which through RhoA-GTPase, couples A2aR to the downregulation of DGK. Such an inhibition is essential for the sustained accumulation of diacylglycerol required for triggering PKC-mediated survival signals.
Collapse
|
36
|
|
37
|
Gessi S, Fogli E, Sacchetto V, Merighi S, Varani K, Preti D, Leung E, Maclennan S, Borea PA. Adenosine modulates HIF-1{alpha}, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler Thromb Vasc Biol 2009; 30:90-7. [PMID: 19834107 DOI: 10.1161/atvbaha.109.194902] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Foam cell (FC) formation by oxidized low-density lipoprotein (oxLDL) accumulation in macrophages is crucial for development of atherosclerosis. Hypoxia has been demonstrated in atherosclerosis and hypoxia-inducible factor-1 (HIF-1) has been shown to promote intraplaque angiogenesis and FC development. As hypoxia induces HIF-1alpha stabilization and adenosine (ado) accumulation, we investigated whether this nucleoside regulates HIF-1alpha in FCs. METHODS AND RESULTS Ado, under hypoxia, stimulates HIF-1alpha accumulation by activating all adenosine receptors (ARs). HIF-1alpha modulation involved extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38 MAPK), and protein kinase B (Akt) phosphorylation in the case of A(1), A(2A), A(2B), and ERK 1/2 phosphorylation in the case of A(3) receptors. Ado, through the activation of A(3) and A(2B) receptors, stimulates vascular endothelial growth factor (VEGF) secretion in a HIF-1alpha-dependent way. Furthermore, ado, through the A(2B) subtype, induces an increase of Interleukin-8 (IL-8) secretion in a ERK 1/2, p38, and Akt kinase-dependent but not HIF-1alpha-mediated way. Finally, ado stimulates FC formation, and this effect is strongly reduced by A(3) and A(2B) blockers and by HIF-1alpha silencing. CONCLUSIONS This study provides the first evidence that A(3,) A(2B), or mixed A(3)/A(2B) antagonists may be useful to block important steps in the atherosclerotic plaque development ado-induced.
Collapse
Affiliation(s)
- Stefania Gessi
- Chair of Pharmacology, Faculty of Medicine, University of Ferrara, Department of Clinical and Experimental Medicine, Pharmacology Unit, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Variable activation of phosphoinositide 3-kinase influences the response of liver grafts to ischemic preconditioning. J Hepatol 2009; 50:937-47. [PMID: 19303157 DOI: 10.1016/j.jhep.2008.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/07/2008] [Accepted: 11/25/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The efficacy of ischemic preconditioning (IPC) in preventing reperfusion injury in human liver transplants is still questioned. Phosphoinositide-3-kinase (PI3K) is essential for IPC development in rodent livers. This work investigates whether PI3K-dependent signals might account for the inconsistent responses to IPC of transplanted human livers. METHODS Forty livers from deceased donors were randomized to receive or not IPC before recovery. PI3K activation was evaluated in biopsies obtained immediately before IPC and 2 h after reperfusion by measuring the phosphorylation of the PI3K downstream kinase PKB/Akt and the levels of the PI3K antagonist phosphatase tensin-homologue deleted from chromosome 10 (PTEN). RESULTS IPC increased PKB/Akt phosphorylation (p = 0.01) and decreased PTEN levels (p = 0.03) in grafts, but did not significantly ameliorate post-transplant reperfusion injury. By calculating T(2h)/T(0) PKB/Akt phosphorylation ratios, 10/19 (53%) of the preconditioned grafts had ratios above the control threshold (IPC-responsive), while the remaining nine grafts showed ratios comparable to controls (IPC-non-responsive). T(2h)/T(0) PTEN ratios were also decreased (p < or = 0.03) only in IPC-responsive grafts. The patients receiving IPC-responsive organs had ameliorated (p < or = 0.05) post-transplant aminotransferase and bilirubin levels, while prothrombin activity was unchanged. CONCLUSIONS Impaired PI3K signaling might account for the variability in the responses to IPC of human grafts from deceased donors.
Collapse
|
39
|
Adams JM, Difazio LT, Rolandelli RH, Luján JJ, Haskó G, Csóka B, Selmeczy Z, Németh ZH. HIF-1: a key mediator in hypoxia. ACTA ACUST UNITED AC 2009; 96:19-28. [PMID: 19264039 DOI: 10.1556/aphysiol.96.2009.1.2] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transcription factor HIF-1 is one of the principal mediators of homeostasis in human tissues exposed to hypoxia. It is implicated in virtually every process of rapid gene expression in response to low oxygen levels. The most common causes of tissue hypoxia are inflammation and/or insufficient circulation or a combination of both. Inflamed tissues and the areas surrounding malignant tumors are characterized by hypoxia and low concentrations of glucose. Serious and generalized inflammation can lead to sepsis and circulatory collapse resulting in acute or chronic tissue hypoxia in various vital organs which induces a rapid homeostatic process in all nucleated cells of affected organs in the human body. Under hypoxic conditions the alpha and beta subunits of HIF-1 make an active heterodimer and drive the transcription of over 60 genes important for cell survival, adaptation, anaerobic metabolism, immune reaction, cytokine production, vascularization and general tissue homeostasis. In addition, HIF-1 plays a key role in the development of physiological systems in fetal and postnatal life. It is also a critical mediator of cancer, lung and cardiovascular diseases. The better understanding of the functions of HIF-1 and the pharmacological modulation of its activity could mean a successful therapeutic approach to these diseases.
Collapse
Affiliation(s)
- J M Adams
- Department of Surgery, Morristown Memorial Hospital, Morristown, NJ 07960, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 2009; 8:139-52. [PMID: 19165233 DOI: 10.1038/nrd2761] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells in the human body need oxygen to function and survive, and severe deprivation of oxygen, as occurs in ischaemic heart disease and stroke, is a major cause of mortality. Nevertheless, other organisms, such as the fossorial mole rat or diving seals, have acquired the ability to survive in conditions of limited oxygen supply. Hypoxia tolerance also allows the heart to survive chronic oxygen shortage, and ischaemic preconditioning protects tissues against lethal hypoxia. The recent discovery of a new family of oxygen sensors--including prolyl hydroxylase domain-containing proteins 1-3 (PHD1-3)--has yielded exciting novel insights into how cells sense oxygen and keep oxygen supply and consumption in balance. Advances in understanding of the role of these oxygen sensors in hypoxia tolerance, ischaemic preconditioning and inflammation are creating new opportunities for pharmacological interventions for ischaemic and inflammatory diseases.
Collapse
|