1
|
Dao Thi VL, Wu X, Belote RL, Andreo U, Takacs CN, Fernandez JP, Vale-Silva LA, Prallet S, Decker CC, Fu RM, Qu B, Uryu K, Molina H, Saeed M, Steinmann E, Urban S, Singaraja RR, Schneider WM, Simon SM, Rice CM. Stem cell-derived polarized hepatocytes. Nat Commun 2020; 11:1677. [PMID: 32245952 PMCID: PMC7125181 DOI: 10.1038/s41467-020-15337-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Human stem cell-derived hepatocyte-like cells (HLCs) offer an attractive platform to study liver biology. Despite their numerous advantages, HLCs lack critical in vivo characteristics, including cell polarity. Here, we report a stem cell differentiation protocol that uses transwell filters to generate columnar polarized HLCs with clearly defined basolateral and apical membranes separated by tight junctions. We show that polarized HLCs secrete cargo directionally: Albumin, urea, and lipoproteins are secreted basolaterally, whereas bile acids are secreted apically. Further, we show that enterically transmitted hepatitis E virus (HEV) progeny particles are secreted basolaterally as quasi-enveloped particles and apically as naked virions, recapitulating essential steps of the natural infectious cycle in vivo. We also provide proof-of-concept that polarized HLCs can be used for pharmacokinetic and drug-drug interaction studies. This novel system provides a powerful tool to study hepatocyte biology, disease mechanisms, genetic variation, and drug metabolism in a more physiologically relevant setting.
Collapse
Affiliation(s)
- Viet Loan Dao Thi
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.
| | - Xianfang Wu
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| | - Rachel L Belote
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84105, USA
| | - Ursula Andreo
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Constantin N Takacs
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Joseph P Fernandez
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Luis Andre Vale-Silva
- Department of Biology, New York University, New York, NY, USA
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, BIOQUANT, IPMB, University of Heidelberg, Heidelberg, Germany
| | - Sarah Prallet
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Charlotte C Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Urban
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Roshni R Singaraja
- A*STAR (Agency for Science, Technology and Research) Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - William M Schneider
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Caballero-Díaz D, Bertran E, Peñuelas-Haro I, Moreno-Càceres J, Malfettone A, López-Luque J, Addante A, Herrera B, Sánchez A, Alay A, Solé X, Serrano T, Ramos E, Fabregat I. Clathrin switches transforming growth factor-β role to pro-tumorigenic in liver cancer. J Hepatol 2020; 72:125-134. [PMID: 31562907 DOI: 10.1016/j.jhep.2019.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Upon ligand binding, tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), are recruited into clathrin-coated pits for internalization by endocytosis, which is relevant for signalling and/or receptor degradation. In liver cells, transforming growth factor-β (TGF-β) induces both pro- and anti-apoptotic signals; the latter are mediated by the EGFR pathway. Since EGFR mainly traffics via clathrin-coated vesicles, we aimed to analyse the potential role of clathrin in TGF-β-induced signalling in liver cells and its relevance in liver cancer. METHODS Real-Time PCR and immunohistochemistry were used to analyse clathrin heavy-chain expression in human (CLTC) and mice (Cltc) liver tumours. Transient knockdown (siRNA) or overexpression of CLTC were used to analyse its role on TGF-β and EGFR signalling in vitro. Bioinformatic analysis was used to determine the effect of CLTC and TGFB1 expression on prognosis and overall survival in patients with hepatocellular carcinoma (HCC). RESULTS Clathrin expression increased during liver tumorigenesis in humans and mice. CLTC knockdown cells responded to TGF-β phosphorylating SMADs (canonical signalling) but showed impairment in the anti-apoptotic signals (EGFR transactivation). Experiments of loss or gain of function in HCC cells reveal an essential role for clathrin in inhibiting TGF-β-induced apoptosis and upregulation of its pro-apoptotic target NOX4. Autocrine TGF-β signalling in invasive HCC cells upregulates CLTC expression, switching its role to pro-tumorigenic. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CONCLUSIONS This work describes a novel role for clathrin in liver tumorigenesis, favouring non-canonical pro-tumorigenic TGF-β pathways. CLTC expression in human HCC samples could help select patients that would benefit from TGF-β-targeted therapy. LAY SUMMARY Clathrin heavy-chain expression increases during liver tumorigenesis in humans (CLTC) and mice (Cltc), altering the cellular response to TGF-β in favour of anti-apoptotic/pro-tumorigenic signals. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CLTC expression in HCC human samples could help select patients that would benefit from therapies targeting TGF-β.
Collapse
Affiliation(s)
- Daniel Caballero-Díaz
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain.
| | - Esther Bertran
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Irene Peñuelas-Haro
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Joaquim Moreno-Càceres
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Andrea Malfettone
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Judit López-Luque
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Annalisa Addante
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Blanca Herrera
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Aránzazu Sánchez
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Ania Alay
- Oncology Data Analytics Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBER Epidemiología y Salud Pública (CIBERESP), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Xavier Solé
- Oncology Data Analytics Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBER Epidemiología y Salud Pública (CIBERESP), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Teresa Serrano
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Pathological Anatomy Service, University Hospital of Bellvitge, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain
| | - Emilio Ramos
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Department of Surgery, Liver Transplant Unit, University Hospital of Bellvitge, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain
| | - Isabel Fabregat
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
3
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
4
|
Zeigerer A, Wuttke A, Marsico G, Seifert S, Kalaidzidis Y, Zerial M. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Exp Cell Res 2017; 350:242-252. [DOI: 10.1016/j.yexcr.2016.11.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
|
5
|
Abstract
Hepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (<0.02%/h) in HepG2-N6 cells, arguing against this as a mechanism for differences in membrane envelopment of serum versus fecal virus. High concentrations of human bile acids converted eHAV to nonenveloped virions, whereas virus present in bile from HAV-infected Ifnar1−/−Ifngr1−/− and Mavs−/− mice banded over a range of densities extending from that of eHAV to that of nonenveloped virions. We conclude that nonenveloped virions shed in feces are derived from eHAV released across the canalicular membrane and stripped of membranes by the detergent action of bile acids within the proximal biliary canaliculus. HAV is a hepatotropic, fecally/orally transmitted picornavirus that can cause severe hepatitis in humans. Recent work reveals that it has an unusual life cycle. Virus is found in cell culture supernatant fluids in two mature, infectious forms: one wrapped in membranes (quasi-enveloped) and another that is nonenveloped. Membrane-wrapped virions circulate in blood during acute infection and are resistant to neutralizing antibodies, likely facilitating HAV dissemination within the liver. On the other hand, virus shed in feces is nonenveloped and highly stable, facilitating epidemic spread and transmission to naive hosts. Factors controlling the biogenesis of these two distinct forms of the virus in infected humans are not understood. Here we characterize vectorial release of quasi-enveloped virions from polarized epithelial cell cultures and provide evidence that bile acids strip membranes from eHAV following its secretion into the biliary tract. These results enhance our understanding of the life cycle of this unusual picornavirus.
Collapse
|
6
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
7
|
Gilbert S, Loranger A, Lavoie JN, Marceau N. Cytoskeleton keratin regulation of FasR signaling through modulation of actin/ezrin interplay at lipid rafts in hepatocytes. Apoptosis 2012; 17:880-94. [PMID: 22585043 DOI: 10.1007/s10495-012-0733-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FasR stimulation by Fas ligand leads to rapid formation of FasR microaggregates, which become signaling protein oligomerization transduction structures (SPOTS), through interactions with actin and ezrin, a structural step that triggers death-inducing signaling complex formation, in association with procaspase-8 activation. In some cells, designated as type I, caspase 8 directly activates effector caspases, whereas in others, known as type II, the caspase-mediated death signaling is amplified through mitochondria. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatocyte IFs are made solely of keratins 8/18 (K8/K18), the hallmark of all simple epithelia. We have shown recently that in comparison to type II wild-type (WT) mouse hepatocytes, the absence of K8/K18 IFs in K8-null hepatocytes leads to more efficient FasR-mediated apoptosis, in link with a type II/type I-like switch in FasR-death signaling. Here, we demonstrate that the apoptotic process occurring in type I-like K8-null hepatocytes is associated with accelerated SPOTS elaboration at surface membrane, along with manifestation of FasR cap formation and internalization. In addition, the lipid raft organization is altered in K8-null hepatocytes. While lipid raft inhibition impairs SPOTS formation in both WT and K8-null hepatocytes, the absence of K8/K18 IFs in the latter sensitizes SPOTS to actin de-polymerization, and perturbs ezrin compartmentalization. Overall, the results indicate that the K8/K18 IF loss in hepatocytes alters the initial FasR activation steps through perturbation of ezrin/actin interplay and lipid raft organization, which leads to a type II/type I switch in FasR-death signaling.
Collapse
Affiliation(s)
- Stéphane Gilbert
- Centre de Recherche en Cancérologie de l'Université Laval, and Centre de Recherche du Centre Hospitalier de Québec (CRCHUQ)/HDQ, 9 rue McMahon, Quebec, G1R 2J6, Canada
| | | | | | | |
Collapse
|
8
|
Jozefczuk J, Stachelscheid H, Chavez L, Herwig R, Lehrach H, Zeilinger K, Gerlach JC, Adjaye J. Molecular Characterization of Cultured Adult Human Liver Progenitor Cells. Tissue Eng Part C Methods 2010; 16:821-34. [DOI: 10.1089/ten.tec.2009.0578] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Justyna Jozefczuk
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Harald Stachelscheid
- Division of Experimental Surgery, Berlin Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Chavez
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ralf Herwig
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans Lehrach
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Katrin Zeilinger
- Division of Experimental Surgery, Berlin Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Joerg C. Gerlach
- Division of Experimental Surgery, Berlin Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James Adjaye
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|