1
|
Meng L, Du M, Li H, Kong F, Yang J, Dong R, Zheng S, Chen G, Shen Z, Wang J. Single-cell transcription reveals hepatocyte-to-cholangiocyte reprogramming and biliary gene profile in biliary atresia. Hepatol Commun 2025; 9:e0710. [PMID: 40366121 PMCID: PMC12055120 DOI: 10.1097/hc9.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Ductular reaction (DR), characterized by the expansion of biliary epithelial cells in the portal area, is a typical hepatic pathology for biliary atresia (BA). The cellular source and function of DR remain poorly understood. Herein, we performed single-cell RNA sequencing (scRNA-seq) in BA to resolve the complexity of DR in BA. METHODS A total of 4 BA and 3 normal control livers underwent scRNA-seq. The epithelial cells were extracted from all cells for further analysis. The cell types, functions, and differentiational trajectory of epithelial cells were determined. The biliary markers and transcription factors (TFs) were identified by combing public bulk and scRNA-seq data and validated by immunohistochemistry. RESULTS ScRNA-seq identified the existence of biliary reprogramming in BA, and the reprogrammed cells expressed both hepatocyte and cholangiocyte markers. When compared with hepatocytes, genes of epithelial-mesenchymal transition, fibrosis, inflammation, and RNA metabolism were enriched in cholangiocytes and upregulated in BA. Pseudotime analysis depicted a differentiation trajectory from hepatocytes across reprogrammed cells to cholangiocytes in BA. Matrix metalloproteinase 7 (MMP7), VTCN1, and LAMC2 were identified as the biliary markers, and KLF5 and HNF1B were determined as the biliary TFs in BA. All the biliary markers and TFs were upregulated in BA when compared with controls. CONCLUSIONS Dissecting the cellular source and function of cholangiocytes is essential to understand the pathological role of DR in BA. The identified specific biliary markers and TFs provide important insights into its potential diagnosis and mechanism exploration for BA in the future.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Min Du
- Department of Pediatric Gastroenterology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Haodong Li
- Department of Pediatric Orthopedics, Children’s Hospital of Fudan University, Shanghai, P.R. China
| | - Fanyang Kong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Jiajian Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen, P.R. China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Gong Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Zhen Shen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| | - Junfeng Wang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, P.R. China
| |
Collapse
|
2
|
Du Z, Wu G, Cheng H, Han T, Li D, Xie Z. L-Theanine Ameliorates Obesity-Related Complications Induced by High-Fat Diet in Mice: Insights from Transcriptomics and Metabolomics. Foods 2024; 13:2977. [PMID: 39335905 PMCID: PMC11431230 DOI: 10.3390/foods13182977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a major public health concern globally. Plant-based ingredients have been proposed as alternative treatments for obesity. L-Theanine (THE), a unique nutraceutical component of tea, is known for its neuroprotective and cognitive benefits. However, there are few reports on THE's effects and mechanisms in improving obesity and its complications. In this study, the alleviating effects and potential mechanisms of THE on obesity-related complications (ORCs) induced by a high-fat diet(HFD) in mice were explored by performing biochemical, hepatic transcriptomics, and plasma metabolomics analyses. The results indicated THE (900 mg/kg of body weight) was effective in mitigating ORCs by decreasing body weight gain and fat deposition, improving glycolipid metabolism disorders, inflammation dysregulation, and alleviating fatty liver formation due to long-term HFD. The hepatic transcriptomics data suggested that THE intervention suppresses the lipid metabolism and inflammation pathways in HFD-fed mice, thereby inhibiting hepatic steatosis and inflammation. Moreover, plasma metabolomics analysis revealed that THE exhibited positive effects on the homeostasis of plasma metabolite balance, such as phosphatidylcholine (PC(14:0/18:1)), phosphatidylethanolamine (Lyso-PE(14:0)), phosphatidic acid (PA(16:0e/18:0)), stigmasterol, and deoxycholic acid glycine conjugate. These metabolites were strongly correlated with ORC-related indicators. Our results indicated that THE, as a functional food additive, possesses potential for ORC alleviation. However, the exact molecular mechanism of how THE alleviates ORCs needs to be investigated in the future.
Collapse
Affiliation(s)
- Zhaofeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Huijun Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China
| | - Tingting Han
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Chen J, Ma S, Yang H, Liang X, Yao H, Guo B, Chen D, Jiang J, Shi D, Xin J, Ren K, Zhou X, Li Y, Geng L, Li J. Generation and metabolomic characterization of functional ductal organoids with biliary tree networks in decellularized liver scaffolds. Bioact Mater 2023; 26:452-464. [PMID: 37035760 PMCID: PMC10073412 DOI: 10.1016/j.bioactmat.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Developing functional ductal organoids (FDOs) is essential for liver regenerative medicine. We aimed to construct FDOs with biliary tree networks in rat decellularized liver scaffolds (DLSs) with primary cholangiocytes isolated from mouse bile ducts. The developed FDOs were dynamically characterized by functional assays and metabolomics for bioprocess clarification. FDOs were reconstructed in DLSs retaining native structure and bioactive factors with mouse primary cholangiocytes expressing enriched biomarkers. Morphological assessment showed that biliary tree-like structures gradually formed from day 3 to day 14. The cholangiocytes in FDOs maintained high viability and expressed 11 specific biomarkers. Basal-apical polarity was observed at day 14 with immunostaining for E-cadherin and acetylated α-tubulin. The rhodamine 123 transport assay and active collection of cholyl-lysyl-fluorescein exhibited the specific functions of bile secretion and transportation at day 14 compared to those in monolayer and hydrogel culture systems. The metabolomics analysis with 1075 peak pairs showed that serotonin, as a key molecule of the tryptophan metabolism pathway linked to biliary tree reconstruction, was specifically expressed in FDOs during the whole period of culture. Such FDOs with biliary tree networks and serotonin expression may be applied for disease modeling and drug screening, which paves the way for future clinical therapeutic applications.
Collapse
Affiliation(s)
- Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Shiwen Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Heng Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Yun Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Corresponding author.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
- Corresponding author. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
4
|
Little A, Medford A, O'Brien A, Childs J, Pan S, Machado J, Chakraborty S, Glaser S. Recent Advances in Intrahepatic Biliary Epithelial Heterogeneity. Semin Liver Dis 2023; 43:1-12. [PMID: 36522162 DOI: 10.1055/s-0042-1758833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biliary epithelium (i.e., cholangiocytes) is a heterogeneous population of epithelial cells in the liver, which line small and large bile ducts and have individual responses and functions dependent on size and location in the biliary tract. We discuss the recent findings showing that the intrahepatic biliary tree is heterogeneous regarding (1) morphology and function, (2) hormone expression and signaling (3), response to injury, and (4) roles in liver regeneration. This review overviews the significant characteristics and differences of the small and large cholangiocytes. Briefly, it outlines the in vitro and in vivo models used in the heterogeneity evaluation. In conclusion, future studies addressing biliary heterogeneity's role in the pathogenesis of liver diseases characterized by ductular reaction may reveal novel therapeutic approaches.
Collapse
Affiliation(s)
- Ashleigh Little
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Abigail Medford
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - April O'Brien
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jonathan Childs
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sharon Pan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jolaine Machado
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
5
|
Ceci L, Chen L, Baiocchi L, Wu N, Kennedy L, Carpino G, Kyritsi K, Zhou T, Owen T, Kundu D, Sybenga A, Isidan A, Ekser B, Franchitto A, Onori P, Gaudio E, Mancinelli R, Francis H, Alpini G, Glaser S. Prolonged Administration of Melatonin Ameliorates Liver Phenotypes in Cholestatic Murine Model. Cell Mol Gastroenterol Hepatol 2022; 14:877-904. [PMID: 35863741 PMCID: PMC9425041 DOI: 10.1016/j.jcmgh.2022.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is characterized by biliary senescence and hepatic fibrosis. Melatonin exerts its effects by interacting with Melatonin receptor 1 and 2 (MT1/MT2) melatonin receptors. Short-term (1 wk) melatonin treatment reduces a ductular reaction and liver fibrosis in bile duct-ligated rats by down-regulation of MT1 and clock genes, and in multidrug resistance gene 2 knockout (Mdr2-/-) mice by decreased miR200b-dependent angiogenesis. We aimed to evaluate the long-term effects of melatonin on liver phenotype that may be mediated by changes in MT1/clock genes/miR200b/maspin/glutathione-S transferase (GST) signaling. METHODS Male wild-type and Mdr2-/- mice had access to drinking water with/without melatonin for 3 months. Liver damage, biliary proliferation/senescence, liver fibrosis, peribiliary inflammation, and angiogenesis were measured by staining in liver sections, and by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay in liver samples. We confirmed a link between MT1/clock genes/miR200b/maspin/GST/angiogenesis signaling by Ingenuity Pathway Analysis software and measured liver phenotypes and the aforementioned signaling pathway in liver samples from the mouse groups, healthy controls, and PSC patients and immortalized human PSC cholangiocytes. RESULTS Chronic administration of melatonin to Mdr2-/- mice ameliorates liver phenotypes, which were associated with decreased MT1 and clock gene expression. CONCLUSIONS Melatonin improves liver histology and restores the circadian rhythm by interaction with MT1 through decreased angiogenesis and increased maspin/GST activity.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Travis Owen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amelia Sybenga
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Abdulkadir Isidan
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, Texas.
| |
Collapse
|
6
|
Huang Y, Zhang S, Weng JF, Huang D, Gu WL. Recent discoveries in microbiota dysbiosis, cholangiocytic factors, and models for studying the pathogenesis of primary sclerosing cholangitis. Open Med (Wars) 2022; 17:915-929. [PMID: 35647306 PMCID: PMC9106112 DOI: 10.1515/med-2022-0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a cholangiopathy caused by genetic and microenvironmental changes, such as bile homeostasis disorders and microbiota dysbiosis. Therapeutic options are limited, and proven surveillance strategies are currently lacking. Clinically, PSC presents as alternating strictures and dilatations of biliary ducts, resulting in the typical “beaded” appearance seen on cholangiography. The pathogenesis of PSC is still unclear, but cholangiocytes play an essential role in disease development, wherein a reactive phenotype is caused by the secretion of neuroendocrine factors. The liver–gut axis is implicated in the pathogenesis of PSC owing to the dysbiosis of microbiota, but the underlying mechanism is still poorly understood. Alterations in cholangiocyte responses and related signalling pathways during PSC progression were elucidated by recent research, providing novel therapeutic targets. In this review, we summarise the currently known underlying mechanisms of PSC pathogenesis caused by the dysbiosis of microbiota and newly reported information regarding cholangiocytes in PSC. We also summarise recently reported in vitro and in vivo models for studying the pathogenesis of PSC.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|
7
|
Hypoxia Promotes Glioma Stem Cell Proliferation by Enhancing the 14-3-3β Expression via the PI3K Pathway. J Immunol Res 2022; 2022:5799776. [PMID: 35607406 PMCID: PMC9124136 DOI: 10.1155/2022/5799776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Glioma is a serious fatal type of cancer with the shorter median survival period and poor quality of living. The overall 5-year survival rate remains low due to high recurrence rates. Glioma stem cells (GSCs) play the important roles in the development of gliomas. Examination of the numerous biomarkers or cancer-associated genes involved in the development or prevention of glioma may therefore serve the discovery of novel strategies to treat patients with glioma. Hypoxia induced by using CoCl2 application and 14-3-3β protein knockdown by specific small interfering RNA transfection were performed in GSCs both in vitro and in vivo to observe their role in glioma progression and metastasis occurrence by using western blot analysis and MTT assay. The results demonstrated that CoCl2 application enhanced the 14-3-3β protein expression and mRNA levels via the PI3K pathway in GSCs. Furthermore, hypoxia promoted GSC cell proliferation and activated the expression of proliferating cell nuclear antigen, which was inhibited following 14-3-3β knockdown. In addition, tumor growth in mice was enhanced by CoCl2 application but reversed following 14-3-3β knockdown, which also enhanced GSC cell apoptosis. In conclusion, the present study demonstrated that hypoxia promoted glioma growth both in vitro and in vivo by increasing the 14-3-3β expression via the PI3K signaling pathway. 14-3-3β and HIF-1α may therefore be considered as the potential therapeutic target to treat patients with glioma.
Collapse
|
8
|
Wu N, Carpino G, Ceci L, Baiocchi L, Francis H, Kennedy L, Zhou T, Chen L, Sato K, Kyritsi K, Meadows V, Ekser B, Franchitto A, Mancinelli R, Onori P, Gaudio E, Glaser S, Alpini G. Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology 2022; 75:797-813. [PMID: 34743371 PMCID: PMC8930565 DOI: 10.1002/hep.32233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFβ receptor type I (TGFβRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFβR1 signaling, which was reduced by loss of MT1. CONCLUSIONS Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFβR1 activation. Blocking GPR50/TGFβR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.
Collapse
Affiliation(s)
- Nan Wu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | | | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Tianhao Zhou
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Lixian Chen
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Konstantina Kyritsi
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
9
|
Mechanism of cholangiocellular damage and repair during cholestasis. Ann Hepatol 2021; 26:100530. [PMID: 34509686 DOI: 10.1016/j.aohep.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
The mechanism of damage of the biliary epithelium remains partially unexplored. However, recently many works have offered new evidence regarding the cholangiocytes' damage process, which is the main target in a broad spectrum of pathologies ranging from acute cholestasis, cholangiopathies to cholangiocarcinoma. This is encouraging since some works addressed this epithelium's relevance in health and disease until a few years ago. The biliary tree in the liver, comprised of cholangiocytes, is a pipeline for bile flow and regulates key hepatic processes such as proliferation, regeneration, immune response, and signaling. This review aimed to compile the most recent advances on the mechanisms of cholangiocellular damage during cholestasis, which, although it is present in many cholangiopathies, is not necessarily a common or conserved process in all of them, having a relevant role cAMP and PKA during obstructive cholestasis, as well as Ca2+-dependent PKC in functional cholestasis. Cholangiocellular damage could vary according to the type of cholestasis, the aggressor, or the bile ducts' location where it develops and what kind of damage can favor cholangiocellular carcinoma development.
Collapse
|
10
|
Abdollahzade N, Majidinia M, Babri S. Melatonin: a pleiotropic hormone as a novel potent therapeutic candidate in arsenic toxicity. Mol Biol Rep 2021; 48:6603-6618. [PMID: 34453671 DOI: 10.1007/s11033-021-06669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Arsenic is a natural element which exists in the environment in inorganic and organic forms. In humans, the main reason for the toxicity of arsenic is its uptake via water sources. As polluted water and the problems associated with it can be found in many countries. Therefore, considering all these positive effects of melatonin, this review is aimed at melatonin supplementation therapy on arsenic toxicity which seems to be a suitable therapeutic agent to eliminate the adverse effects of arsenic. METHODS AND RESULTS It is seen in previous studies that chronic exposure to arsenic could cause serious dys functions of organs and induce different degrees of toxicities that is one of the first hazardous materials in the classification of substances by the United States Environmental Protection Agency so leads to costly cleanup operations burdening the economy. Arsenic harmfulness degree depends on the bioavailability, chemical form, valence state, detoxification, and metabolism of human body. The oxidative stress has a major role in arsenic-induced toxicity; on the other hand, it was discovered that melatonin is a powerful scavenger for free radical and it's an extensive-spectrum antioxidant. CONCLUSION Due to its highly lipophilic and small size properties, melatonin accesses all intracellular organs by easily passing via the cell membrane and prevents protein, DNA damage, and lipid peroxidation. In particular, melatonin, by protecting and reducing oxidative stress in mitochondria, can normalize homeostasis and mitochondrial function and ultimately prevent apoptosis and cell death.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Wang J, Zhuo Z, Ma X, Liu Y, Xu J, He C, Fu Y, Wang F, Ji P, Zhang L, Liu G. Melatonin Alleviates the Suppressive Effect of Hypoxanthine on Oocyte Nuclear Maturation and Restores Meiosis via the Melatonin Receptor 1 (MT1)-Mediated Pathway. Front Cell Dev Biol 2021; 9:648148. [PMID: 33937242 PMCID: PMC8083900 DOI: 10.3389/fcell.2021.648148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
It is well known that hypoxanthine (HX) inhibits nuclear maturation of oocytes by elevating the intracellular cAMP level, while melatonin (MT) is a molecule that reduces cAMP production, which may physiologically antagonize this inhibition and restore the meiosis process. We conducted in vitro and in vivo studies to examine this hypothesis. The results showed that 10-3 M MT potentiated the inhibitory effect of HX on mouse oocyte meiosis by lowering the rate of germinal vesicle breakdown (GVBD) and the first polar body (PB1). However, 10-5 M and 10-7 M MT significantly alleviated the nuclear suppression induced by HX and restored meiosis in 3- and 6-week-old mouse oocytes, respectively. We identified that the rate-limiting melatonin synthetic enzyme AANAT and melatonin membrane receptor MT1 were both expressed in oocytes and cumulus cells at the GV and MII stages. Luzindole, a non-selective melatonin membrane receptor antagonist, blocked the activity of MT on oocyte meiotic recovery (P < 0.05). This observation indicated that the activity of melatonin was mediated by the MT1 receptor. To understand the molecular mechanism further, MT1 knockout (KO) mice were constructed. In this MT1 KO animal model, the PB1 rate was significantly reduced with the excessive expression of cAPM synthases (Adcy2, Adcy6, Adcy7, and Adcy9) in the ovaries of these animals. The mRNA levels of Nppc and Npr2 were upregulated while the genes related to progesterone synthesis (Cyp11a11), cholesterol biosynthesis (Insig1), and feedback (Lhcgr, Prlr, and Atg7) were downregulated in the granulosa cells of MT1 KO mice (P < 0.05). The altered gene expression may be attributed to the suppression of oocyte maturation. In summary, melatonin protects against nuclear inhibition caused by HX and restores oocyte meiosis via MT1 by reducing the intracellular concentration of cAMP.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Zhuo
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Keao Xieli Feed Co., Ltd., Beijing, China
| | - Xiao Ma
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunjie Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Xu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changjiu He
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Melatonin Protects Cholangiocytes from Oxidative Stress-Induced Proapoptotic and Proinflammatory Stimuli via miR-132 and miR-34. Int J Mol Sci 2020; 21:ijms21249667. [PMID: 33352965 PMCID: PMC7766218 DOI: 10.3390/ijms21249667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Biosynthesis of melatonin by cholangiocytes is essential for maintaining the function of biliary epithelium. However, this cytoprotective mechanism appears to be impaired in primary biliary cholangitis (PBC). MiR-132 has emerged as a mediator of inflammation in chronic liver diseases. The effect of melatonin on oxidative stress and bile acid-induced apoptosis was also examined in cholangiocyes overexpressing miR506, as a PBC-like cellular model. In PBC patients the serum levels of melatonin were found increased in comparison to healthy controls. Whereas, in cholangiocytes within cirrhotic PBC livers the melatonin biosynthetic pathway was substantially suppressed even though the expressions of melatonin rate-limiting enzyme aralkylamine N-acetyltransferase (AANAT), and CK-19 (marker of cholangiocytes) were enhanced. In cholangiocytes exposed to mitochondrial oxidative stress melatonin decreased the expression of proapoptotic stimuli (PTEN, Bax, miR-34), which was accompanied by the inhibition of a pivotal mediator of inflammatory response Nf-κB-p65 and the activation of antiapoptotic signaling (miR-132, Bcl2). Similarly, melatonin reduced bile acid-induced proapoptotic caspase 3 and Bim levels. In summary, the insufficient hepatic expression of melatonin in PBC patients may predispose cholangiocytes to oxidative stress-related damage. Melatonin, via epigenetic modulation, was able to suppress NF-κB signaling activation and protect against biliary cells apoptotic signaling.
Collapse
|
13
|
Sato K, Meng F, Francis H, Wu N, Chen L, Kennedy L, Zhou T, Franchitto A, Onori P, Gaudio E, Glaser S, Alpini G. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. J Pineal Res 2020; 68:e12639. [PMID: 32061110 PMCID: PMC8682809 DOI: 10.1111/jpi.12639] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms and clock gene expressions are regulated by the suprachiasmatic nucleus in the hypothalamus, and melatonin is produced in the pineal gland. Although the brain detects the light through retinas and regulates rhythms and melatonin secretion throughout the body, the liver has independent circadian rhythms and expressions as well as melatonin production. Previous studies indicate the association between circadian rhythms with various liver diseases, and disruption of rhythms or clock gene expression may promote liver steatosis, inflammation, or cancer development. It is well known that melatonin has strong antioxidant effects. Alcohol drinking or excess fatty acid accumulation produces reactive oxygen species and oxidative stress in the liver leading to liver injuries. Melatonin administration protects these oxidative stress-induced liver damage and improves liver conditions. Recent studies have demonstrated that melatonin administration is not limited to antioxidant effects and it has various other effects contributing to the management of liver conditions. Accumulating evidence suggests that restoring circadian rhythms or expressions as well as melatonin supplementation may be promising therapeutic strategies for liver diseases. This review summarizes recent findings for the functional roles and therapeutic potentials of circadian rhythms and melatonin in liver diseases.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
14
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Baiocchi L, Zhou T, Liangpunsakul S, Ilaria L, Milana M, Meng F, Kennedy L, Kusumanchi P, Yang Z, Ceci L, Glaser S, Francis H, Alpini G. Possible application of melatonin treatment in human diseases of the biliary tract. Am J Physiol Gastrointest Liver Physiol 2019; 317:G651-G660. [PMID: 31509434 PMCID: PMC6879895 DOI: 10.1152/ajpgi.00110.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023]
Abstract
Melatonin was discovered in 1958 by Aaron Lerner. Its name comes from the ability of melatonin to change the shape of amphibian melanophores from stellate to roundish. Starting from the 1980s, the role of melatonin in the regulation of mammalian circadian and seasonal clocks has been elucidated. Presently, several other effects have been identified in different organs. For example, the beneficial effects of melatonin in models of liver damage have been described. This review gives first a general background on experimental and clinical data on the use of melatonin in liver damage. The second part of the review focuses on the findings related to the role of melatonin in biliary functions, suggesting a possible use of melatonin therapy in human diseases of the biliary tree.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A & M University, College of Medicine, Bryan, Texas
| | - Suthat Liangpunsakul
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lenci Ilaria
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martina Milana
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fanyin Meng
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shannon Glaser
- Department of Medical Physiology, Texas A & M University, College of Medicine, Bryan, Texas
| | - Heather Francis
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gianfranco Alpini
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
16
|
Yan M, Shen G, Zhou Y, Meng X, Han X. The role of ERK-RSK signaling in the proliferation of intrahepatic biliary epithelial cells exposed to microcystin-leucine arginine. Biochem Biophys Res Commun 2019; 521:492-498. [PMID: 31677783 DOI: 10.1016/j.bbrc.2019.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022]
Abstract
Microcystin-leucine arginine (MC-LR) is a potent specific hepatotoxin produced by cyanobacteria in diverse water systems, and it has been documented to induce liver injury and hepatocarcinogenesis. However, its toxic effects on intrahepatic biliary epithelial cells have not been invested in detail. In this study, we aimed to investigate the effects of MC-LR exposure on the intrahepatic biliary epithelial cells in the liver. MC-LR was orally administered to mice at 1 μg/L, 7.5 μg/L, 15 μg/L, or 30 μg/L for 180 consecutive days for histopathological and immunoblot analysis. We observed that MC-LR can enter intrahepatic bile duct tissue and induce hyperplasia of mice. Human primary intrahepatic biliary epithelial cells (HiBECs) were cultured with various concentrations of MC-LR for 24 h, meanwhile the cell viability and proteins level were detected. Western blotting analysis revealed that MC-LR increased RSK phosphorylation via ERK signaling. RSK participated in cell proliferation and cell cycle progression. Taken together, after chronic exposure, MC-LR-treated mice exhibited abnormal bile duct hyperplasia and thickened bile duct morphology through activating the ERK-RSK signaling. These data support the potential toxic effects of MC-LR on bile duct tissue of the liver.
Collapse
Affiliation(s)
- Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Gu Shen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
17
|
Zhou T, Kyritsi K, Wu N, Francis H, Yang Z, Chen L, O'Brien A, Kennedy L, Ceci L, Meadows V, Kusumanchi P, Wu C, Baiocchi L, Skill NJ, Saxena R, Sybenga A, Xie L, Liangpunsakul S, Meng F, Alpini G, Glaser S. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2 -/- mouse model of primary sclerosing cholangitis (PSC). EBioMedicine 2019; 48:130-142. [PMID: 31522982 PMCID: PMC6838376 DOI: 10.1016/j.ebiom.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Konstantina Kyritsi
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Nan Wu
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Lixian Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - April O'Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Ludovica Ceci
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Vik Meadows
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | | | - Nicholas J Skill
- Department of Surgery, Indiana University, Indianapolis, IN, United States of America
| | - Romil Saxena
- Department of Pathology, Indiana University, Indianapolis, IN, United States of America
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America.
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America.
| |
Collapse
|
18
|
Abstract
Angiogenesis plays a fundamental role in tumor growth and progression. It is regulated by several growth factors, including vascular endothelial growth factor protein family (VEGF) and its receptors, which are probably the most important factors responsible for the development of new vessels. The VEGF family includes several members: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth factor (PlGF), and their receptors VEGFR-1, VEGFR-2 and VEGFR-3. Other relevant factors are represented by angiopoietins, thrombospondin-1, and endothelins. However, since the therapeutic benefit associated with VEGF-targeted therapy is really complex, a better understanding of these pathways will lead to future advances in the use of these agents for clinic management of tumors. Here we present a review regarding the role of angiogenic factors in cholangiocarcinoma, which arise from cholangiocytes, the epithelial cells of bile ducts. They are rare and aggressive neoplasms with a poor prognosis and limited treatment options, classified as intrahepatic, perihilar, and distal cholangiocarcinoma based on their anatomical location. Therefore, the identification of specific signaling pathways or new tumor biomarkers is crucial in order to develop more effective anti-angiogenic therapies.
Collapse
|
19
|
Chen L, Zhou T, Wu N, O'Brien A, Venter J, Ceci L, Kyritsi K, Onori P, Gaudio E, Sybenga A, Xie L, Wu C, Fabris L, Invernizzi P, Zawieja D, Liangpunsakul S, Meng F, Francis H, Alpini G, Huang Q, Glaser S. Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1525-1539. [PMID: 30890428 DOI: 10.1016/j.bbadis.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Melatonin, a neuroendocrine hormone synthesized by the pineal gland and cholangiocytes, decreases biliary hyperplasia and liver fibrosis during cholestasis-induced biliary injury via melatonin-dependent autocrine signaling through increased biliary arylalkylamine N-acetyltransferase (AANAT) expression and melatonin secretion, downregulation of miR-200b and specific circadian clock genes. Melatonin synthesis is decreased by pinealectomy (PINX) or chronic exposure to light. We evaluated the effect of PINX or prolonged light exposure on melatonin-dependent modulation of biliary damage/ductular reaction/liver fibrosis. Studies were performed in male rats with/without BDL for 1 week with 12:12 h dark/light cycles, continuous light or after 1 week of PINX. The expression of AANAT and melatonin levels in serum and cholangiocyte supernatant were increased in BDL rats, while decreased in BDL rats following PINX or continuous light exposure. BDL-induced increase in serum chemistry, ductular reaction, liver fibrosis, inflammation, angiogenesis and ROS generation were significantly enhanced by PINX or light exposure. Concomitant with enhanced liver fibrosis, we observed increased biliary senescence and enhanced clock genes and miR-200b expression in total liver and cholangiocytes. In vitro, the expression of AANAT, clock genes and miR-200b was increased in PSC human cholangiocyte cell lines (hPSCL). The proliferation and activation of HHStecs (human hepatic stellate cell lines) were increased after stimulating with BDL cholangiocyte supernatant and further enhanced when stimulated with BDL rats following PINX or continuous light exposure cholangiocyte supernatant via intracellular ROS generation. Conclusion: Melatonin plays an important role in the protection of liver against cholestasis-induced damage and ductular reaction.
Collapse
Affiliation(s)
- Lixian Chen
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America; Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, PR China
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Nan Wu
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - April O'Brien
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Julie Venter
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Ludovica Ceci
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Konstantina Kyritsi
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; Digestive Disease Section, Yale University School of Medicine, New Haven, CT, United States of America
| | | | - David Zawieja
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Research, United States of America; Indiana University, Gastroenterology, Medicine, United States of America
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, PR China
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, United States of America.
| |
Collapse
|
20
|
Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G. Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology 2019; 69:420-430. [PMID: 30070383 PMCID: PMC6324973 DOI: 10.1002/hep.30150] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Ductular reaction (DR) is characterized by the proliferation of reactive bile ducts induced by liver injuries. DR is pathologically recognized as bile duct hyperplasia and is commonly observed in biliary disorders. It can also be identified in various liver disorders including nonalcoholic fatty liver disease. DR is associated with liver fibrosis and damage, and the extent of DR parallels to patient mortality. DR raises scientific interests because it is associated with transdifferentiation of liver cells and may play an important role in hepatic regeneration. The origin of active cells during DR can be cholangiocytes, hepatocytes, or hepatic progenitor cells, and associated signaling pathways could differ depending on the specific liver injury or animal models used in the study. Although further studies are needed to elucidate detailed mechanisms and the functional roles in liver diseases, DR can be a therapeutic target to inhibit liver fibrosis and to promote liver regeneration. This review summarizes previous studies of DR identified in patients and animal models as well as currently understood mechanisms of DR.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
- Academic Research Integration, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| |
Collapse
|
21
|
Esmaeili A, Namazi S. Is melatonin effective for pruritus caused by liver disease? Med Hypotheses 2018; 121:177-179. [PMID: 30396475 DOI: 10.1016/j.mehy.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
There is still no definitive treatment to relieve pruritus associated with liver disease, because the precise mechanism of itching has not yet been determined. Different mechanisms have been proposed. One recent explanation is thought to be the rise in serum levels of lysophosphatidic acid which is a metabolite of lysophosphatidyl choline conversion by autotaxin enzyme in liver disease is. Over expression of autotaxin which occurs in atopic dermatitis has been shown to be involved in itching pathology. Importantly, gene amplification of autotaxin also occurs in cholestasis. Melatonin has pleiotropic properties such as suppressive effects on serum level of autotaxin which relieves itching of atopic dermatitis. Due to some similarities in mechanism of itching, it is hypothesized that melatonin may improve itching of liver diseases.
Collapse
Affiliation(s)
- Ayda Esmaeili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1419733141, Iran.
| | - Soha Namazi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1419733141, Iran.
| |
Collapse
|
22
|
Kennedy L, Hargrove L, Demieville J, Karstens A, Jones H, DeMorrow S, Meng F, Invernizzi P, Bernuzzi F, Alpini G, Smith S, Akers A, Meadows V, Francis H. Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2 -/- mice and human cholangiocarcinoma tumorigenesis. Hepatology 2018; 68:1042-1056. [PMID: 29601088 PMCID: PMC6165706 DOI: 10.1002/hep.29898] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) patients are at risk of developing cholangiocarcinoma (CCA). We have shown that (1) histamine increases biliary hyperplasia through H1/H2 histamine receptors (HRs) and (2) histamine levels increase and mast cells (MCs) infiltrate during PSC and CCA. We examined the effects of chronic treatment with H1/H2HR antagonists on PSC and CCA. Wild-type and multidrug-resistant knockout (Mdr2-/- ) mice were treated by osmotic minipumps with saline, mepyramine, or ranitidine (10 mg/kg body weight/day) or a combination of mepyramine/ranitidine for 4 weeks. Liver damage was assessed by hematoxylin and eosin. We evaluated (1) H1/H2HR expression, (2) MC presence, (3) L-histidine decarboxylase/histamine axis, (4) cholangiocyte proliferation/bile duct mass, and (5) fibrosis/hepatic stellate cell activation. Nu/nu mice were implanted with Mz-ChA-1 cells into the hind flanks and treated with saline, mepyramine, or ranitidine. Tumor growth was measured, and (1) H1/H2HR expression, (2) proliferation, (3) MC activation, (4) angiogenesis, and (5) epithelial-mesenchymal transition (EMT) were evaluated. In vitro, human hepatic stellate cells were evaluated for H1HR and H2HR expression. Cultured cholangiocytes and CCA lines were treated with saline, mepyramine, or ranitidine (25 μM) before evaluating proliferation, angiogenesis, EMT, and potential signaling mechanisms. H1/H2HR and MC presence increased in human PSC and CCA. In H1/H2HR antagonist (alone or in combination)-treated Mdr2-/- mice, liver and biliary damage and fibrosis decreased compared to saline treatment. H1/H2HR antagonists decreased tumor growth, serum histamine, angiogenesis, and EMT. In vitro, H1/H2HR blockers reduced biliary proliferation, and CCA cells had decreased proliferation, angiogenesis, EMT, and migration. Conclusion: Inhibition of H1/H2HR reverses PSC-associated damage and decreases CCA growth, angiogenesis, and EMT; because PSC patients are at risk of developing CCA, using HR blockers may be therapeutic for these diseases. (Hepatology 2018).
Collapse
Affiliation(s)
- Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Laura Hargrove
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | | | - Allen Karstens
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Hannah Jones
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Pietro Invernizzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Francesca Bernuzzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Steven Smith
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Austin Akers
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Victoria Meadows
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| |
Collapse
|
23
|
Sato K, Meng F, Giang T, Glaser S, Alpini G. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1262-1269. [PMID: 28648950 PMCID: PMC5742086 DOI: 10.1016/j.bbadis.2017.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Keisaku Sato
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Academic Research Integration, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Thao Giang
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States.
| |
Collapse
|
24
|
McMillin M, DeMorrow S, Glaser S, Venter J, Kyritsi K, Zhou T, Grant S, Giang T, Greene JF, Wu N, Jefferson B, Meng F, Alpini G. Melatonin inhibits hypothalamic gonadotropin-releasing hormone release and reduces biliary hyperplasia and fibrosis in cholestatic rats. Am J Physiol Gastrointest Liver Physiol 2017; 313:G410-G418. [PMID: 28751425 PMCID: PMC5792219 DOI: 10.1152/ajpgi.00421.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023]
Abstract
Melatonin is a hormone produced by the pineal gland with increased circulating levels shown to inhibit biliary hyperplasia and fibrosis during cholestatic liver injury. Melatonin also has the capability to suppress the release of hypothalamic gonadotropin-releasing hormone (GnRH), a hormone that promotes cholangiocyte proliferation when serum levels are elevated. However, the interplay and contribution of neural melatonin and GnRH to cholangiocyte proliferation and fibrosis in bile duct-ligated (BDL) rats have not been investigated. To test this, cranial levels of melatonin were increased by implanting osmotic minipumps that performed an intracerebroventricular (ICV) infusion of melatonin or saline for 7 days starting at the time of BDL. Hypothalamic GnRH mRNA and cholangiocyte secretion of GnRH and melatonin were assessed. Cholangiocyte proliferation and fibrosis were measured. Primary human hepatic stellate cells (HSCs) were treated with cholangiocyte supernatants, GnRH, or the GnRH receptor antagonist cetrorelix acetate, and cell proliferation and fibrosis gene expression were assessed. Melatonin infusion reduced hypothalamic GnRH mRNA expression and led to decreased GnRH and increased melatonin secretion from cholangiocytes. Infusion of melatonin was found to reduce hepatic injury, cholangiocyte proliferation, and fibrosis during BDL-induced liver injury. HSCs supplemented with BDL cholangiocyte supernatant had increased proliferation, and this increase was reversed when HSCs were supplemented with supernatants from melatonin-infused rats. GnRH stimulated fibrosis gene expression in HSCs, and this was reversed by cetrorelix acetate cotreatment. Increasing bioavailability of melatonin in the brain may improve outcomes during cholestatic liver disease.NEW & NOTEWORTHY We have previously demonstrated that GnRH is expressed in cholangiocytes and promotes their proliferation during cholestasis. In addition, dark therapy, which increases melatonin, reduced cholangiocyte proliferation and fibrosis during cholestasis. This study expands these findings by investigating neural GnRH regulation by melatonin during BDL-induced cholestasis by infusing melatonin into the brain. Melatonin infusion reduced cholangiocyte proliferation and fibrosis, and these effects are due to GNRH receptor 1-dependent paracrine signaling between cholangiocytes and hepatic stellate cells.
Collapse
Affiliation(s)
- Matthew McMillin
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Julie Venter
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Konstantina Kyritsi
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Stephanie Grant
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Thao Giang
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - John F Greene
- Department of Pathology, Baylor Scott & White Health, Temple, Texas; and
| | - Nan Wu
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Brandi Jefferson
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
- Research Foundation, Baylor Scott & White Health, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| |
Collapse
|
25
|
The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. J Transl Med 2017; 97:843-853. [PMID: 28581486 PMCID: PMC5901959 DOI: 10.1038/labinvest.2017.29] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/22/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development.
Collapse
|
26
|
Wu N, Meng F, Zhou T, Han Y, Kennedy L, Venter J, Francis H, DeMorrow S, Onori P, Invernizzi P, Bernuzzi F, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation. FASEB J 2017. [PMID: 28634212 DOI: 10.1096/fj.201700097r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melatonin therapy or prolonged exposure to complete darkness reduces biliary hyperplasia and liver fibrosis in bile-duct-ligated (BDL) rats; however, no information exists in primary sclerosing cholangitis (PSC). Thus, we aimed to determine the therapeutic effects of prolonged dark therapy or melatonin administration on hepatic fibrosis in the multidrug resistance gene 2-knockout (Mdr2-/-) mouse model of PSC. Melatonin levels, biliary mass, liver fibrosis, angiogenesis and miR-200b expression were evaluated in wild-type and Mdr2-/- mice exposed to darkness or melatonin treatment or in male patients with PSC and healthy controls. Mdr2-/- mice were also treated with miR-200b inhibitor or control before evaluating biliary mass, liver fibrosis, and angiogenesis. After overexpression of arylalkylamine N-acetyltransferase (AANAT; the enzyme regulating melatonin synthesis) or inhibition of miR-200b in cholangiocytes and hepatic stellate cells in vitro, we evaluated angiogenesis and fibrosis gene expression. After exposure to darkness or administration of melatonin, Mdr2-/- mice show elevated serum melatonin levels and inhibition of biliary mass, along with reduction of liver fibrosis and angiogenesis. MicroRNA PCR analysis demonstrated that miR-200b expression increased in Mdr2-/- mice and patients with PSC compared with controls and decreased in Mdr2-/- mice subjected to dark exposure or melatonin treatment. Inhibition of miR-200b in Mdr2-/- ablates biliary proliferation, liver fibrosis, and angiogenesis. In vitro, overexpression of AANAT or inhibition of miR-200b in cholangiocytes and hepatic stellate cells decreased the expression of miR-200b, angiogenesis, and fibrosis genes. Dark therapy or targeting melatonin/miR-200b axis may be important in the management of biliary damage and liver fibrosis in cholangiopathies including PSC.-Wu, N., Meng, F., Zhou, T., Han, Y., Kennedy, L., Venter, J., Francis, H., DeMorrow, S., Onori, P., Invernizzi, P., Bernuzzi, F., Mancinelli, R., Gaudio, E., Franchitto, A., Glaser, S., Alpini G. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation.
Collapse
Affiliation(s)
- Nan Wu
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Fanyin Meng
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA.,Digestive Research Center, Baylor Scott & White Health, Temple, Texas, USA.,Research Service, Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Tianhao Zhou
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Yuyan Han
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Lindsey Kennedy
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Julie Venter
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Heather Francis
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA.,Digestive Research Center, Baylor Scott & White Health, Temple, Texas, USA.,Research Service, Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Sharon DeMorrow
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA.,Digestive Research Center, Baylor Scott & White Health, Temple, Texas, USA.,Research Service, Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Paolo Onori
- Department of Anatomical, Histological, and Forensic Medicine and Orthopedic Sciences, La Sapienza, Rome, Italy
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, and Forensic Medicine and Orthopedic Sciences, La Sapienza, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, and Forensic Medicine and Orthopedic Sciences, La Sapienza, Rome, Italy
| | | | - Shannon Glaser
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA; .,Digestive Research Center, Baylor Scott & White Health, Temple, Texas, USA.,Research Service, Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA; .,Digestive Research Center, Baylor Scott & White Health, Temple, Texas, USA.,Research Service, Central Texas Veterans Health Care System, Temple, Texas, USA
| |
Collapse
|
27
|
Hall C, Sato K, Wu N, Zhou T, Kyritsi K, Meng F, Glaser S, Alpini G. Regulators of Cholangiocyte Proliferation. Gene Expr 2017; 17:155-171. [PMID: 27412505 PMCID: PMC5494439 DOI: 10.3727/105221616x692568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, a small population of cells within the normal liver, have been the focus of a significant amount of research over the past two decades because of their involvement in cholangiopathies such as primary sclerosing cholangitis and primary biliary cholangitis. This article summarizes landmark studies in the field of cholangiocyte physiology and aims to provide an updated review of biliary pathogenesis. The historical approach of rodent extrahepatic bile duct ligation and the relatively recent utilization of transgenic mice have led to significant discoveries in cholangiocyte pathophysiology. Cholangiocyte physiology is a complex system based on heterogeneity within the biliary tree and a number of signaling pathways that serve to regulate bile composition. Studies have expanded the list of neuropeptides, neurotransmitters, and hormones that have been shown to be key regulators of proliferation and biliary damage. The peptide histamine and hormones, such as melatonin and angiotensin, angiotensin, as well as numerous sex hormones, have been implicated in cholangiocyte proliferation during cholestasis. Numerous pathways promote cholangiocyte proliferation during cholestasis, and there is growing evidence to suggest that cholangiocyte proliferation may promote hepatic fibrosis. These pathways may represent significant therapeutic potential for a subset of cholestatic liver diseases that currently lack effective therapies.
Collapse
Affiliation(s)
- Chad Hall
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- †Baylor Scott & White Digestive Disease Research Center, Temple, TX, USA
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Keisaku Sato
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Nan Wu
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Tianhao Zhou
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | | | - Fanyin Meng
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Shannon Glaser
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Gianfranco Alpini
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
28
|
Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. J Transl Med 2016; 96:1256-1267. [PMID: 27775690 PMCID: PMC5121007 DOI: 10.1038/labinvest.2016.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a condition that leads to chronic hepatobiliary inflammation, fibrosis, and eventually cirrhosis. Many microRNAs (miRs) are known to have a role in fibrosis progression; however, the role of miR-21 during cholestasis remains unknown. Therefore, the aim of this study was to elucidate the role of miR-21 during cholestasis-induced biliary hyperplasia and hepatic fibrosis. Wild-type (WT) and miR-21-/- mice underwent Sham or bile duct ligation (BDL) for 1 week, before evaluating liver histology, biliary proliferation, hepatic stellate cell (HSC) activation, fibrotic response, and small mothers against decapentaplegic 7 (Smad-7) expression. In vitro, immortalized murine biliary cell lines (IMCLs) and human hepatic stellate cell line (hHSC) were treated with either miR-21 inhibitor or control before analyzing proliferation, apoptosis, and fibrotic responses. In vivo, the levels of miR-21 were increased in total liver and cholangiocytes after BDL, and loss of miR-21 decreased the amount of BDL-induced biliary proliferation and intrahepatic biliary mass. In addition, loss of miR-21 decreased BDL-induced HSC activation, collagen deposition, and expression of the fibrotic markers transforming growth factor-β1 and α-smooth muscle actin. In vitro, IMCL and hHSCs treated with miR-21 inhibitor displayed decreased proliferation and expression of fibrotic markers and enhanced apoptosis when compared with control treated cells. Furthermore, mice lacking miR-21 show increased Smad-7 expression, which may be driving the decrease in biliary hyperplasia and hepatic fibrosis. During cholestatic injury, miR-21 is increased and leads to increased biliary proliferation and hepatic fibrosis. Local modulation of miR-21 may be a therapeutic option for patients with cholestasis.
Collapse
|
29
|
Wu N, Meng F, Invernizzi P, Bernuzzi F, Venter J, Standeford H, Onori P, Marzioni M, Alvaro D, Franchitto A, Gaudio E, Glaser S, Alpini G. The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factor-β1 biliary secretion in mice. Hepatology 2016; 64:865-79. [PMID: 27115285 PMCID: PMC4992423 DOI: 10.1002/hep.28622] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/28/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The secretin/secretin receptor (SR) axis is up-regulated by proliferating cholangiocytes during cholestasis. Secretin stimulates biliary proliferation by down-regulation of let-7a and subsequent up-regulation of the growth-promoting factor, nerve growth factor (NGF). It is not known whether the secretin/SR axis plays a role in subepithelial fibrosis observed during cholestasis. Our aim was to determine the role of the secretin/SR axis in activation of biliary fibrosis in animal models and human primary sclerosing cholangitis (PSC). Studies were performed in wild-type (WT) mice with bile duct ligation (BDL), BDL SR(-/-) mice, or Mdr2(-/-) mouse models of cholestatic liver injury. In selected studies, the SR antagonist (Sec 5-27) was used to block the secretin/SR axis. Biliary proliferation and fibrosis were evaluated as well as secretion of secretin (by cholangiocytes and S cells), expression of markers of fibrosis, transforming growth factor-β1 (TGF-β1), transforming growth factor-β1 receptor (TGF-β1R), let-7a, and downstream expression of NGF. Correlative studies were performed in human control and PSC liver tissue biopsies, serum, and bile. SR antagonist reduced biliary proliferation and hepatic fibrosis in BDL WT and Mdr2(-/-) mice. There was decreased expression of let-7a in BDL and Mdr2(-/-) cholangiocytes that was associated with increased NGF expression. Inhibition of let-7a accelerated liver fibrosis was attributed to cholestasis. There was increased expression of TGF-β1 and TGF-β1R. Significantly higher expression of secretin, SR, and TGF-β1 was observed in PSC patient liver samples compared to healthy controls. In addition, there was higher expression of fibrosis genes and remarkably decreased expression of let-7a and increased expression of NGF compared to the control. CONCLUSION The secretin/SR axis plays a key role in regulating the biliary contribution to cholestasis-induced hepatic fibrosis. (Hepatology 2016;64:865-879).
Collapse
Affiliation(s)
- Nan Wu
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Operational Funds, Baylor Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Bernuzzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Julie Venter
- Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Holly Standeford
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Marco Marzioni
- Department of Medicine, Universita’ Politecnica delle Marche, Ancona, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy,Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Department of Medicine and Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| |
Collapse
|
30
|
Gonadotropin-releasing hormone stimulates biliary proliferation by paracrine/autocrine mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1061-72. [PMID: 25794706 PMCID: PMC4380841 DOI: 10.1016/j.ajpath.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022]
Abstract
During cholestatic liver disease, there is dysregulation in the balance between biliary growth and loss in bile duct-ligated (BDL) rats modulated by neuroendocrine peptides via autocrine/paracrine pathways. Gonadotropin-releasing hormone (GnRH) is a trophic peptide hormone that modulates reproductive function and proliferation in many cell types. We evaluated the autocrine role of GnRH in the regulation of cholangiocyte proliferation. The expression of GnRH receptors was assessed in a normal mouse cholangiocyte cell line (NMC), sham, and BDL rats. The effect of GnRH administration was evaluated in normal rats and in NMC. GnRH-induced biliary proliferation was evaluated by changes in intrahepatic bile duct mass and the expression of proliferation and function markers. The expression and secretion of GnRH in NMC and isolated cholangiocytes was assessed. GnRH receptor subtypes GnRHR1 and GnRHR2 were expressed in cholangiocytes. Treatment with GnRH increased intrahepatic bile duct mass as well as proliferation and function markers in cholangiocytes. Transient knockdown and pharmacologic inhibition of GnRHR1 in NMC decreased proliferation. BDL cholangiocytes had increased expression of GnRH compared with normal rats, accompanied by increased GnRH secretion. In vivo and in vitro knockdown of GnRH decreased intrahepatic bile duct mass/cholangiocyte proliferation and fibrosis. GnRH secreted by cholangiocytes promotes biliary proliferation via an autocrine pathway. Disruption of GnRH/GnRHR signaling may be important for the management of cholestatic liver diseases.
Collapse
|
31
|
Development and functional characterization of extrahepatic cholangiocyte lines from normal rats. Dig Liver Dis 2015; 47:964-72. [PMID: 26277684 PMCID: PMC4624466 DOI: 10.1016/j.dld.2015.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Since limited in vitro tools exist for evaluating the pathophysiology of extrahepatic bile ducts, we aim to develop an extrahepatic cholangiocyte culture system from normal rats. METHODS Extrahepatic ducts were dissected from rats, cut in half length-wise and cultured on collagen-I coated plates. Transepithelial electrical resistance was measured. At ∼85% confluence, in extrahepatic cholangiocytes we measured: (i) cell size and distribution, and expression for cytokeratin-19, secretin, secretin receptor and somatostatin receptor type II (SSTR2), cystic fibrosis transmembrane conductance regulator (CFTR), chloride bicarbonate anion exchanger 2 (AE2), vascular endothelial growth factor-A (VEGF-A) and nerve growth factor (NGF); and (ii) the effect of secretin and/or somatostatin on 3'-5'-cyclic adenosine monophosphate (cAMP) levels and proliferation. RESULTS Cytokeratin-positive extrahepatic cholangiocytes were cultured for 6 passages to form a cell monolayer. Cholangiocytes proliferated to confluence over a 2-week period. The size of extrahepatic cholangiocytes averaged ∼16 μm. Extrahepatic ducts and cholangiocytes were positive for secretin, secretin receptor and SSTR2, CFTR, AE2, VEGF-A and NGF. In extrahepatic cholangiocyte cultures, secretin increased cAMP (prevented by somatostatin), chloride efflux and proliferation. CONCLUSIONS Extrahepatic cholangiocyte cultures may be important for studying diseases targeting extrahepatic cholangiocytes such as biliary atresia.
Collapse
|
32
|
Shajari S, Laliena A, Heegsma J, Tuñón MJ, Moshage H, Faber KN. Melatonin suppresses activation of hepatic stellate cells through RORα-mediated inhibition of 5-lipoxygenase. J Pineal Res 2015; 59:391-401. [PMID: 26308880 DOI: 10.1111/jpi.12271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/21/2015] [Indexed: 12/31/2022]
Abstract
Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to proliferative and migratory myofibroblasts that produce excessive amounts of extracellular matrix proteins, in particular collagen 1a1 (COL1A1). Although liver fibrosis is reversible, no effective drug therapy is available to prevent or reverse HSC activation. Melatonin has potent hepatoprotective properties in a variety of acute and chronic liver injury models and suppresses liver fibrosis. However, it remains unclear whether melatonin acts indirectly or directly on HSC to prevent liver fibrosis. Here, we studied the effect of melatonin on culture-activated rat HSC. Melatonin dose-dependently suppressed the expression of HSC activation markers Col1a1 and alpha-smooth muscle actin (αSMA, Acta2), as well as HSC proliferation and loss of lipid droplets. The nuclear melatonin sensor retinoic acid receptor-related orphan receptor-alpha (RORα/Nr1f1) was expressed in quiescent and activated HSC, while the membranous melatonin receptors (Mtrn1a and Mtrn1b) were not. The synthetic RORα agonist SR1078 more potently suppressed Col1a1 and αSma expression, HSC proliferation, and lipid droplet loss, while the RORα antagonist SR1001 blocked the antifibrotic features of melatonin. Melatonin and SR1078 inhibited the expression of Alox5, encoding 5-lipoxygenase (5-LO). The pharmacological 5-LO inhibitor AA861 reduced Acta2 and Col1a1 expression in activated HSC. We conclude that melatonin directly suppresses HSC activation via RORα-mediated inhibition of Alox5 expression, which provides novel drug targets to treat liver fibrosis.
Collapse
Affiliation(s)
- Shiva Shajari
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Almudena Laliena
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Huqi San-Evoked Rat Colonic Anion Secretion through Increasing CFTR Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:301640. [PMID: 26290673 PMCID: PMC4531196 DOI: 10.1155/2015/301640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/12/2014] [Indexed: 02/07/2023]
Abstract
Huqi San (HQS) is a Chinese herbal preparation of eight medicinal herbs that promote diuresis, detoxification, blood circulation, and cholestasis. Defects in transporter expression and function can cause cholestasis and jaundice. However, the mechanism of the cholestasis underlying HQS effects, especially on the gastrointestinal tract ion secretion, has not been elucidated. Real-time RT-PCR and Western blotting were used to study the expression and localization of cystic fibrosis transmembrane conductance regulator (CFTR) and α-ENaC in rat alimentary tract, and then the effect of HQS on the ion transport in rat distal colon mucosa was investigated using the short-circuit current (ISC) technique. The results showed that pretreatment with HQS significantly enhanced mRNA transcripts and protein content of CFTR in liver and distal colon but not α-ENaC in alimentary organs. HQS increases ISC and decreases the transepithelial resistance. Pretreatment with epithelial Na+ channel blocker did not affect the ISC responses elicited by HQS, but removal of extracellular Cl− or pretreatment with Cl− channel or Na+-K+-2Cl− cotransporter blocker inhibited HQS-elicited ISC responses. These findings demonstrated that HQS, RA, and RP can stimulate Cl− secretion in the distal colon by increasing the mRNA transcripts and protein content of CFTR in liver and distal colon.
Collapse
|
34
|
Abstract
Cholangiocytes are the epithelial cells that line the bile ducts. Along the biliary tree, two different kinds of cholangiocytes exist; small and large cholangiocytes. Each type has important differences in their biological role in physiological and pathological conditions. In response to injury, cholangiocytes become reactive and acquire a neuroendocrine-like phenotype with the secretion of a number of peptides. These molecules act in an autocrine/paracrine fashion to modulate cholangiocyte biology and determine the evolution of biliary damage. The failure of such mechanisms is believed to influence the progression of cholangiopathies, a group of diseases that selectively target biliary cells. Therefore, the understanding of mechanisms regulating cholangiocyte response to injury is expected to foster the development of new therapeutic options to treat biliary diseases. In the present review, we will discuss the most recent findings in the mechanisms driving cholangiocyte adaptation to damage, with particular emphasis on molecular pathways that are susceptible of therapeutic intervention. Morphogenic pathways (Hippo, Notch, Hedgehog), which have been recently shown to regulate biliary ontogenesis and response to injury, will also be reviewed. In addition, the results of ongoing clinical trials evaluating new drugs for the treatment of cholangiopathies will be discussed.
Collapse
|
35
|
Han Y, Onori P, Meng F, DeMorrow S, Venter J, Francis H, Franchitto A, Ray D, Kennedy L, Greene J, Renzi A, Mancinelli R, Gaudio E, Glaser S, Alpini G. Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G894-904. [PMID: 25214401 PMCID: PMC4216989 DOI: 10.1152/ajpgi.00288.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary hyperplasia and liver fibrosis are common features in cholestatic liver disease. Melatonin is synthesized by the pineal gland as well as the liver. Melatonin inhibits biliary hyperplasia of bile duct-ligated (BDL) rats. Since melatonin synthesis (by the enzyme serotonin N-acetyltransferase, AANAT) from the pineal gland increases after dark exposure, we hypothesized that biliary hyperplasia and liver fibrosis are diminished by continuous darkness via increased melatonin synthesis from the pineal gland. Normal or BDL rats (immediately after surgery) were housed with light-dark cycles or complete dark for 1 wk before evaluation of 1) the expression of AANAT in the pineal gland and melatonin levels in pineal gland tissue supernatants and serum; 2) biliary proliferation and intrahepatic bile duct mass, liver histology, and serum chemistry; 3) secretin-stimulated ductal secretion (functional index of biliary growth); 4) collagen deposition, liver fibrosis markers in liver sections, total liver, and cholangiocytes; and 5) expression of clock genes in cholangiocytes. In BDL rats exposed to dark there was 1) enhanced AANAT expression/melatonin secretion in pineal gland and melatonin serum levels; 2) improved liver morphology, serum chemistry and decreased biliary proliferation and secretin-stimulated choleresis; and 4) decreased fibrosis and expression of fibrosis markers in liver sections, total liver and cholangiocytes and reduced biliary expression of the clock genes PER1, BMAL1, CLOCK, and Cry1. Thus prolonged dark exposure may be a beneficial noninvasive therapeutic approach for the management of biliary disorders.
Collapse
Affiliation(s)
- Yuyan Han
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Paolo Onori
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Fanyin Meng
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Sharon DeMorrow
- 2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Julie Venter
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Heather Francis
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Antonio Franchitto
- 5Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy; ,7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Debolina Ray
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Lindsey Kennedy
- 1Research, Central Texas Veterans Health Care System, Temple, Texas;
| | - John Greene
- 6Pathology, Baylor Scott & White, Temple, Texas; and
| | - Anastasia Renzi
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Romina Mancinelli
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Shannon Glaser
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| |
Collapse
|
36
|
Afroze S, Meng F, Jensen K, McDaniel K, Rahal K, Onori P, Gaudio E, Alpini G, Glaser SS. The physiological roles of secretin and its receptor. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:29. [PMID: 25332973 DOI: 10.3978/j.issn.2305-5839.2012.12.01] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Secretin is secreted by S cells in the small intestine and affects the function of a number of organ systems. Secretin receptors (SR) are expressed in the basolateral domain of several cell types. In addition to regulating the secretion of a number of epithelia (e.g., in the pancreas and biliary epithelium in the liver), secretin exerts trophic effects in several cell types. In this article, we will provide a comprehensive review on the multiple roles of secretin and SR signaling in the regulation of epithelial functions in various organ systems with particular emphasis in the liver. We will discuss the role of secretin and its receptor in health and biliary disease pathogenesis. Finally, we propose future areas of research for the further evaluation of the secretin/secretin receptor axis in liver pathophysiology.
Collapse
Affiliation(s)
- Syeda Afroze
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Fanyin Meng
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kendal Jensen
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kelly McDaniel
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Kinan Rahal
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Paolo Onori
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Gianfranco Alpini
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| | - Shannon S Glaser
- 1 Department of Medicine, Division Gastroenterology, 2 Research, Central Texas Veterans Health Care System, 3 Scott & White Digestive Disease Research Center, Scott & White, and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA ; 4 Experimental Medicine, University of L'Aquila, L'Aquila, Italy ; 5 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University Sapienza, Rome, Italy
| |
Collapse
|
37
|
Glaser S, Meng F, Han Y, Onori P, Chow BK, Francis H, Venter J, McDaniel K, Marzioni M, Invernizzi P, Ueno Y, Lai JM, Huang L, Standeford H, Alvaro D, Gaudio E, Franchitto A, Alpini G. Secretin stimulates biliary cell proliferation by regulating expression of microRNA 125b and microRNA let7a in mice. Gastroenterology 2014; 146:1795-808.e12. [PMID: 24583060 PMCID: PMC4035389 DOI: 10.1053/j.gastro.2014.02.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Proliferating cholangiocytes secrete and respond to neuroendocrine hormones, including secretin. We investigated whether secretin secreted by S cells and cholangiocytes stimulates biliary proliferation in mice. METHODS Cholestasis was induced in secretin knockout (Sct(-/-)) and wild-type (control) mice by bile duct ligation (BDL). At days 3 and 7 after BDL, control and Sct(-/-) mice received tail-vein injections of morpholinos against microRNA 125b or let7a. One week later, liver tissues and cholangiocytes were collected. Immunohistochemical, immunoblot, luciferase reporter, and real-time polymerase chain reaction assays were performed. Intrahepatic bile duct mass (IBDM) and proliferation were measured. Secretin secretion was measured in conditioned media from cholangiocytes and S cells and in serum and bile. RESULTS Secretin secretion was increased in supernatants from cholangiocytes and S cells and in serum and bile after BDL in control mice. BDL Sct(-/-) mice had lower IBDM, reduced proliferation, and reduced production of vascular endothelial growth factor (VEGF) A and nerve growth factor (NGF) compared with BDL control. BDL and control mice given morpholinos against microRNA 125b or let7a had increased IBDM. Livers of mice given morpholinos against microRNA 125b had increased expression of VEGFA, and those treated with morpholinos against microRNA let7a had increased expression of NGF. Secretin regulated VEGF and NGF expression that negatively correlated with microRNA 125b and let7a levels in liver tissue. CONCLUSIONS After liver injury, secretin produced by cholangiocytes and S cells reduces microRNA 125b and let7a levels, resulting in up-regulation of VEGF and NGF. Modulation of cholangiocyte expression of secretin could be a therapeutic approach for biliary diseases.
Collapse
Affiliation(s)
- Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas; Academic Operations, Scott & White, Temple, Texas
| | - Yuyan Han
- Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Billy K Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas; Academic Operations, Scott & White, Temple, Texas
| | - Julie Venter
- Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Marco Marzioni
- Department of Medicine, Universita' Politecnica delle Marche, Ancona, Italy
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Yoshiyuki Ueno
- Division of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jia-ming Lai
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Holly Standeford
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedics Sciences, Sapienza, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedics Sciences, Sapienza, Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division of Gastroenterology, Texas A&M Health Science Center College of Medicine, Temple, Texas.
| |
Collapse
|
38
|
Renzi A, Mancinelli R, Onori P, Franchitto A, Alpini G, Glaser S, Gaudio E. Inhibition of the liver expression of arylalkylamine N-acetyltransferase increases the expression of angiogenic factors in cholangiocytes. Hepatobiliary Surg Nutr 2014; 3:4-10. [PMID: 24696833 DOI: 10.3978/j.issn.2304-3881.2014.01.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/24/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Reduction of biliary serotonin N-acetyltransferase (AANAT) expression and melatonin administration/secretion in cholangiocytes increases biliary proliferation and the expression of SR, CFTR and Cl(-)/HCO3 (-) AE2. The balance between biliary proliferation/damage is regulated by several autocrine neuroendocrine factors including vascular endothelial growth factor-A/C (VEGF-A/C). VEGFs are secreted by several epithelia, where they modulate cell growth by autocrine and paracrine mechanisms. No data exists regarding the effect of AANAT modulation on the expressions of VEGFs by cholangiocytes. METHODS In this study, we evaluated the effect of local modulation of biliary AANAT expression on the cholangiocytes synthesis of VEGF-A/C. RESULTS The decrease in AANAT expression and subsequent lower melatonin secretion by cholangiocytes was associated with increased expression of VEGF-A/C. Overexpression of AANAT in cholangiocyte lines decreased the expression of VEGF-A/C. CONCLUSIONS Modulation of melatonin synthesis may affect the expression of VEGF-A/C by cholangiocytes and may modulate the hepatic microvascularization through the regulation of VEGF-A/C expression regulating biliary functions.
Collapse
Affiliation(s)
- Anastasia Renzi
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy ; 2 Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, 4 Scott & White Digestive Disease Research Center, Scott & White, Academic Operations, Scott & White, 5 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Romina Mancinelli
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy ; 2 Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, 4 Scott & White Digestive Disease Research Center, Scott & White, Academic Operations, Scott & White, 5 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Paolo Onori
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy ; 2 Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, 4 Scott & White Digestive Disease Research Center, Scott & White, Academic Operations, Scott & White, 5 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Antonio Franchitto
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy ; 2 Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, 4 Scott & White Digestive Disease Research Center, Scott & White, Academic Operations, Scott & White, 5 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Gianfranco Alpini
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy ; 2 Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, 4 Scott & White Digestive Disease Research Center, Scott & White, Academic Operations, Scott & White, 5 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Shannon Glaser
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy ; 2 Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, 4 Scott & White Digestive Disease Research Center, Scott & White, Academic Operations, Scott & White, 5 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| | - Eugenio Gaudio
- 1 Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, Rome, Italy ; 2 Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy ; 3 Research, Central Texas Veterans Health Care System, 4 Scott & White Digestive Disease Research Center, Scott & White, Academic Operations, Scott & White, 5 Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
| |
Collapse
|
39
|
Glaser S, Han Y, Francis H, Alpini G. Melatonin regulation of biliary functions. Hepatobiliary Surg Nutr 2014; 3:35-43. [PMID: 24696836 PMCID: PMC3954997 DOI: 10.3978/j.issn.2304-3881.2013.10.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/20/2013] [Indexed: 12/19/2022]
Abstract
The intrahepatic biliary epithelium is a three-dimensional tubular system lined by cholangiocytes, epithelial cells that in addition to modify ductal bile are also the targets of vanishing bile duct syndromes (i.e., cholangiopathies) such as primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) that are characterized by the damage/proliferation of cholangiocytes. Cholangiocyte proliferation is critical for the maintenance of the biliary mass and secretory function during the pathogenesis of cholangiopathies. Proliferating cholangiocytes serve as a neuroendocrine compartment during the progression of cholangiopathies, and as such secrete and respond to hormones, neurotransmitters and neuropeptides contributing to the autocrine and paracrine pathways that regulate biliary homeostasis. The focus of this review is to summarize the recent findings related to the role of melatonin in the modulation of biliary functions and liver damage in response to a number of insults. We first provide a general background on the general function of cholangiocytes including their anatomic characteristics, their innervation and vascularization as well the role of these cells on secretory and proliferation events. After a background on the synthesis and regulation of melatonin and its role on the maintenance of circadian rhythm, we will describe the specific effects of melatonin on biliary functions and liver damage. After a summary of the topics discussed, we provide a paragraph on the future perspectives related to melatonin and liver functions.
Collapse
|
40
|
Liu WH, Ren LN, Chen T, Liu LY, Tang LJ. Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells. World J Gastroenterol 2013; 19:7032-7041. [PMID: 24222945 PMCID: PMC3819537 DOI: 10.3748/wjg.v19.i41.7032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/01/2013] [Accepted: 09/15/2013] [Indexed: 02/06/2023] Open
Abstract
Except for the most organized mature hepatocytes, liver stem/progenitor cells (LSPCs) can differentiate into many other types of cells in the liver including cholangiocytes. In addition, LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells. Even more, under some bad conditions, these LSPCs could generate liver cancer stem like cells (LCSCs) through malignant transformation. In this review, we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs, especially differentiation of cholangiocytes, insulin-producing cells and LCSCs. First of all, to certificate the cell fates of LSPCs, the following three features need to be taken into account to perform accurate phenotyping: (1) morphological properties; (2) specific markers; and (3) functional assessment including in vivo transplantation. Secondly, to promote LSPCs differentiation, systematical attention should be paid to inductive materials (such as growth factors and chemical stimulators), progressive materials including intracellular and extracellular signaling pathways, and implementary materials (such as liver enriched transcriptive factors). Accordingly, some recommendations were proposed to standardize, optimize, and enrich the effective production of cholangiocyte-like cells out of LSPCs. At the end, the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed. The differentiation of LSPCs is a gradually progressing process, which consists of three main steps: initiation, progression and accomplishment. It's the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs.
Collapse
|
41
|
Han Y, Glaser S, Meng F, Francis H, Marzioni M, McDaniel K, Alvaro D, Venter J, Carpino G, Onori P, Gaudio E, Alpini G, Franchitto A. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp Biol Med (Maywood) 2013; 238:549-65. [PMID: 23856906 DOI: 10.1177/1535370213489926] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the recent advances related to the heterogeneity of different-sized bile ducts with regard to the morphological and phenotypical characteristics, and the differential secretory, apoptotic and proliferative responses of small and large cholangiocytes to gastrointestinal hormones/peptides, neuropeptides and toxins. We describe several in vivo and in vitro models used for evaluating biliary heterogeneity. Subsequently, we discuss the heterogeneous proliferative and apoptotic responses of small and large cholangiocytes to liver injury and the mechanisms regulating the differentiation of small into large (more differentiated) cholangiocytes. Following a discussion on the heterogeneity of stem/progenitor cells in the biliary epithelium, we outline the heterogeneity of bile ducts in human cholangiopathies. After a summary section, we discuss the future perspectives that will further advance the field of the functional heterogeneity of the biliary epithelium.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|