1
|
Li X, Wu X, Su X. Crosstalk between Exosomes and CAFs During Tumorigenesis, Exosomederived
Biomarkers, and Exosome-mediated Drug Delivery. LETT DRUG DES DISCOV 2023; 20:977-991. [DOI: 10.2174/1570180819666220718121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer‐Associated Fibroblasts (CAFs) originate from the activation of fibroblasts in the
Tumor Microenvironment (TME) during tumorigenesis, resulting in the promotion of tumor growth,
metabolism, and metastasis. Exosomes, which can locally or remotely transfer miRNAs, lncRNAs,
proteins, metabolites, and other substances to other cells, have a size and range distribution of 30 to
150 nm and have been described as new particles that mediate communication among neighboring
and/or distant cells. Exosomes have regulatory roles in the tumor microenvironment that are different
from those in the tumor cells, including mediating the regulation of tumor progression, delivery
of miRNAs involved in reprogramming Normal Fibroblasts (NFs) into CAFs, and the modulation of
tumor initiation and metastasis. Exosomes can be useful biomarkers of the tumor microenvironment
and for the therapy and diagnosis of different diseases. Relevant interactions with cancer cells reprogram
NFs into CAFs or allow cell-to-cell communication between CAFs and cancer cells. Several
researchers have started exploring the precise molecular mechanisms related to exosome secretion,
uptake, composition, and corresponding functions of their "cargo." However, little is known about
the processes by which exosomes affect cancer behavior and their potential use as diagnostic biomarkers
for cancer treatment. Therefore, the crosstalk between CAFs and exosomes during tumorigenesis
and the effects of exosomes as biomarkers and drug carriers for therapy are discussed in this
review.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of
Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery,
The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, Inner Mongolian Autonomous Region,
China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of
Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China
| |
Collapse
|
2
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
3
|
Piechowska A, Kruszniewska-Rajs C, Kimsa-Dudek M, Kołomańska M, Strzałka-Mrozik B, Gola J, Głuszek S. The role of miR-370 and miR-138 in the regulation of BMP2 suppressor gene expression in colorectal cancer: preliminary studies. J Cancer Res Clin Oncol 2022; 148:1569-1582. [PMID: 35292840 DOI: 10.1007/s00432-022-03977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is the fourth-most common cancer worldwide and the second most common cancer cause of death in the world. The components of the TGFβ-signalling pathway, which are often affected by miRNAs, are involved in the regulation of apoptosis and cell cycle. Therefore, in the current study, the expression of BMP2 gene in CRC tissues at different clinical stages compared to the non-tumour tissues has been assessed. Moreover, the plasma BMP2 protein concentration in the same group of CRC patients has been validated. Due to the constant necessity to conduct further research of the correlation between specific miRNAs and mRNAs in CRC, in silico analysis has been performed to select miRNAs that regulate BMP2 mRNA. METHODS The cDNA samples from tumor and non-tumor tissue were used in a qPCR reaction to determine the mRNA expression of the BMP2 gene and the expression of selected miRNAs. The concentration of BMP2 protein in plasma samples was also measured. RESULTS It was indicated that BMP2 was downregulated in CRC tissue. Moreover, miR-370 and miR-138 expression showed an upward trend. Decreased BMP2 with accompanied increasing miR-370 and miR-138 expression was relevant to the malignant clinicopathological features of CRC and consequently poor patient prognosis. CONCLUSION Our data suggest that miR-370 with its clear expression in plasma samples may be a potential diagnostic marker to determine the severity of the disease in patients at a later stage of colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka Piechowska
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kołomańska
- Department of Anatomy, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland.,Department of Clinic General Oncological and Endocrinological Surgery, Regional Hospital, Kielce, Poland
| |
Collapse
|
4
|
Chen W, Lv X, Zhang W, Hu T, Cao X, Ren Z, Getachew T, Mwacharo JM, Haile A, Sun W. Non-Coding Transcriptome Provides Novel Insights into the Escherichia coli F17 Susceptibility of Sheep Lamb. BIOLOGY 2022; 11:348. [PMID: 35336723 PMCID: PMC8945857 DOI: 10.3390/biology11030348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In this study, RNA sequencing was performed to explore the expression profiles of circRNAs and miRNAs in the jejunum of E. coli F17-antagonism (AN) and -sensitive (SE) lambs. A total of 16,534 circRNAs and 271 miRNAs (125 novel miRNAs and 146 annotated miRNAs) were screened, and 214 differentially expressed (DE) circRNAs and 53 DE miRNAs were detected between the AN and SE lambs (i.e., novel_circ_0025840, novel_circ_0022779, novel_miR_107, miR-10b). Functional enrichment analyses showed that source genes of DE circRNAs were mainly involved in metabolic-related pathways, while target genes of DE miRNAs were mainly enriched in the immune response pathways. Then, a two-step machine learning approach combining Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers (i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection. Furthermore, circRNA-related and lncRNA-related ceRNA networks were constructed, containing 46 circRNA-miRNA-mRNA competing triplets and 630 lncRNA-miRNA-mRNA competing triplets, respectively. By conducting a serious of bioinformatic analyses, our results revealed important circRNAs and miRNAs that could be potentially developed as candidate biomarkers for intestinal inflammatory response against E. coli F17 infection; our study can provide novel insights into the underlying mechanisms of intestinal immunity.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Ziming Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| |
Collapse
|
5
|
Ali MM, Mohamed RH, Sayed AA, Ahmed S, Yassin DA, El-Sayed WM. miR-370 is better than miR-375 as a non-invasive diagnostic biomarker for pediatric acute myeloid leukemia patients. Cancer Biomark 2022; 34:403-411. [PMID: 35094987 DOI: 10.3233/cbm-210360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by heterogeneity in phenotypic, genotypic, and clinical traits. miRNAs play an important role in pathogenesis and diagnosis of adult AML. Such information is not available about miRNA expression role in pediatric AML. OBJECTIVE We aimed to investigate the expression of miR-370 and miR-375 as new diagnostic biomarkers to discriminate pediatric AML patients and to predict their roles in the disease molecular basis. METHODS The expression of both miR-370 and miR-375 in peripheral blood (PB) of pediatric AML patients was assessed by QPCR; their impact for diagnosis was evaluated by ROC curve and their roles in pediatric AML development were predicted by bioinformatics analysis. RESULTS The expression of miR-370 and miR-375 levels was significantly decreased in pediatric AML patients, suggesting them as tumor suppressor miRNAs as supported by bioinformatics analysis. miR-370 showed better potential and sensitivity toscreen pediatric AML patients and more significant correlation with AML risk than miR-375. This is the first study to report the positive correlation between both miR-370 and miR-375. CONCLUSION miR-370 level in peripheral blood can serve as a potential non-invasive diagnostic biomarker and was significantly correlated with AML risk. We strongly recommend PB miRNAs as diagnostic biomarkers for pediatric AML.
Collapse
Affiliation(s)
- Mona Mostafa Ali
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed A Sayed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
- Department of Basic Research, Genomics and epigenomics program, Childrenâs Cancer Hospital Egypt, Cairo, Egypt
| | - Sonia Ahmed
- Department of Pediatric Oncology, National Cancer Institute, Cairo University/Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Dina A Yassin
- Department of Clinical Pathology, National Cancer Institute, Cairo University/Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Zhang Y, Shao J, Li S, Liu Y, Zheng M. The Crosstalk Between Regulatory Non-Coding RNAs and Nuclear Factor Kappa B in Hepatocellular Carcinoma. Front Oncol 2021; 11:775250. [PMID: 34804980 PMCID: PMC8602059 DOI: 10.3389/fonc.2021.775250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal type of malignancies that possesses great loss of life safety to human beings worldwide. However, few effective means of curing HCC exist and its specific molecular basis is still far from being fully elucidated. Activation of nuclear factor kappa B (NF-κB), which is often observed in HCC, is considered to play a significant part in hepatocarcinogenesis and development. The emergence of regulatory non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is a defining advance in cancer biology, and related research in this branch has yielded many diagnostic and therapeutic opportunities. Recent studies have suggested that regulatory ncRNAs act as inhibitors or activators in the initiation and progression of HCC by targeting components of NF-κB signaling or regulating NF-κB activity. In this review, we attach importance to the role and function of regulatory ncRNAs in NF-κB signaling of HCC and NF-κB-associated chemoresistance in HCC, then propose future research directions and challenges of regulatory ncRNAs mediated-regulation of NF-κB pathway in HCC.
Collapse
Affiliation(s)
- Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Plasma miR-370-3P as a Biomarker of Sepsis-Associated Encephalopathy, the Transcriptomic Profiling Analysis of Microrna-Arrays From Mouse Brains. Shock 2021; 54:347-357. [PMID: 31743302 DOI: 10.1097/shk.0000000000001473] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of sepsis-associated encephalopathy (SAE), an alteration of conscious from sepsis, is difficult due to the similarity to altered states of conscious that occur from other causes. Transcriptomic analyses between mouse brains at 24 h after cecal ligation and puncture (CLP) (SAE brain as evaluated by SHIRPA score) and at 120 h post-CLP (survivor) were performed to discover the SAE biomarker. Then, candidate microRNAs were validated in mouse and patient samples.As such, increased miR-370-3p in SAE mouse-brains (compared with recovery phase) was demonstrated by transcriptomic miR-profiling and was highly expressed in brain (but not other organs) of 24 h post-CLP mice. Plasma miR-370-3p also increased in CLP but was non-detectable in bilateral-nephrectomy (BiNx, a representative model of acute uremic encephalopathy) despite blood brain barrier permeability defect (determined by plasma s100β and Evan blue dye assay) in both conditions. In parallel, high plasma miR-370-3p was demonstrated in patients with SAE (but not sepsis alone or uremia) suggesting the specificity toward SAE. The association among TNF-α, miR-370-3p and brain apoptosis was demonstrated by high serum TNF-α and increased brain apoptosis in SAE mice, TNF-α (but not other cytokines) activated miR-370-3p expression in PC-12 neuron cell, and increased cell apoptosis in miR-370-3p transfected PC-12 after incubation with TNF-α.In conclusion, miR-370-3p increased in brain and plasma of SAE mice but not uremic encephalopathy. Perhaps, TNF-α enhances cell susceptibility toward brain apoptosis in SAE, in part, through miR-370-3p induction in neuron. Our pilot results in patients with SAE supported the possibility that plasma miR-370-3p is an interesting SAE biomarker candidate. Further studies are warranted.
Collapse
|
8
|
Zhang J, Li H, Dong J, Zhang N, Liu Y, Luo X, Chen J, Wang J, Wang A. Omics-Based Identification of Shared and Gender Disparity Routes in Hras12V-Induced Hepatocarcinogenesis: An Important Role for Dlk1-Dio3 Genomic Imprinting Region. Front Genet 2021; 12:620594. [PMID: 34135934 PMCID: PMC8202007 DOI: 10.3389/fgene.2021.620594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of gender disparity is very profound in hepatocellular carcinoma (HCC). Although previous research has revealed important roles of microRNA (miRNA) in HCC, there are no studies investigating the role of miRNAs in gender disparity observed hepatocarcinogenesis. In the present study, we investigated the global miRNAomics changes related to Ras-induced male-prevalent hepatocarcinogenesis in a Hras12V-transgenic mouse model (Ras-Tg) by next-generation sequencing (NGS). We identified shared by also unique changes in miRNA expression profiles in gender-dependent hepatocarcinogenesis. Two hundred sixty-four differentially expressed miRNAs (DEMIRs) with q value ≤0.05 and fold change ≥2 were identified. A vertical comparison revealed that the lower numbers of DEMIRs in the hepatic tumor (T) compared with the peri-tumor precancerous tissue (P) of Ras-Tg and normal liver tissue of wild-type C57BL/6J mice (W) in males indicated that males are more susceptible to develop HCC. The expression pattern analysis revealed 43 common HCC-related miRNAs and 4 Ras-positive-related miRNAs between males and females. By integrating the mRNA transcriptomic data and using 3-node FFL analysis, a group of significant components commonly contributing to HCC between sexes were filtered out. A horizontal comparison showed that the majority of DEMIRs are located in the Dlk1-Dio3 genomic imprinting region (GIR) and that they are closely related to not only hepatic tumorigenesis but also to gender disparity in hepatocarcinogenesis. This is achieved by regulating multiple metabolic pathways, including retinol, bile acid, and steroid hormones. In conclusion, the identification of shared and gender-dependent DEMIRs in hepatocarcinogenesis provides valuable insights into the mechanisms that contribute to male-biased Ras-induced hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jianyi Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Gaza A, Fritz V, Malek L, Wormser L, Treiber N, Danner J, Kremer AE, Thasler WE, Siebler J, Meister G, Neurath MF, Hellerbrand C, Bosserhoff AK, Dietrich P. Identification of novel targets of miR-622 in hepatocellular carcinoma reveals common regulation of cooperating genes and outlines the oncogenic role of zinc finger CCHC-type containing 11. Neoplasia 2021; 23:502-514. [PMID: 33901943 PMCID: PMC8099721 DOI: 10.1016/j.neo.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
The poor prognosis of advanced hepatocellular carcinoma (HCC) is driven by diverse features including dysregulated microRNAs inducing drug resistance and stemness. Lin-28 homolog A (LIN28A) and its partner zinc finger CCHC-type containing 11 (ZCCHC11) cooperate in binding, oligouridylation and subsequent degradation of tumorsuppressive let-7 precursor microRNAs. Functionally, activation of LIN28A was recently shown to promote stemness and chemoresistance in HCC. However, the expression and regulation of LIN28A in HCC had been unclear. Moreover, the expression, regulation and function of ZCCHC11 in liver cancer remained elusive. In contrast to "one-microRNA-one-target" interactions, we identified common binding sites for miR-622 in both LIN28A and ZCCHC11, suggesting miR-622 to function as a superior pathway regulator. Applying comprehensive microRNA database screening, human hepatocytes and HCC cell lines, patient-derived tissue samples as well as "The Cancer Genome Atlas" (TCGA) patient cohorts, we demonstrated that loss of tumorsuppressive miR-622 mediates derepression and overexpression of LIN28A in HCC. Moreover, the cooperator of LIN28A, ZCCHC11, was newly identified as a prognostic and therapeutic target of miR-622 in liver cancer. Together, identification of novel miR-622 target genes revealed common regulation of cooperating genes and outlines the previously unknown oncogenic role of ZCCHC11 in liver cancer.
Collapse
Affiliation(s)
- Anne Gaza
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Valerie Fritz
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lara Malek
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Wormser
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Johannes Danner
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Andreas E Kremer
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital of Munich, Germany
| | - Jürgen Siebler
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Markus F Neurath
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
10
|
Li Y, Zong J, Zhao C. lncRNA CTBP1-AS2 promotes proliferation and migration of glioma by modulating miR-370-3p-Wnt7a-mediated epithelial-mesenchymal transition. Biochem Cell Biol 2020; 98:661-668. [PMID: 33150795 DOI: 10.1139/bcb-2020-0065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioma is one of the most common and aggressive malignant primary brain tumors, with a poor 5-year survival rate. The long noncoding RNA (lncRNA) CTBP1-AS2 has been shown to be correlated with the prognosis of cancer, but the role of CTBP1-AS2 in glioma and its concrete mechanism is fully unknown. The clinical data and tissues of glioma patients were analyzed. Cell viability and migration assays were performed. Western blotting and qRT-PCR were adopted for investigation of target protein expressions. Double luciferase assay was used to investigate the interaction between different elements. The lncRNA CTBP1-AS2 had increased expression profiles in tumor tissues, which is associated with poor prognosis. In detail, CTBP1-AS2 knockdown decreased proliferation and migration phenotypes in both U87-MG and LN229 cells. Moreover, CTBP1-AS2 knockdown suppressed the key epithelial-mesenchymal transition (EMT) markers by downregulating Wnt7a-mediated signaling. Furthermore, miR-370-3p functioned as a link that could be absorbed by CTBP1-AS2, thus regulating Wnt7a expression. Lastly, the CTBP1-AS2-miR-370-3p-Wnt7a axis modulated EMT in glioma cells in vitro and in vivo. This study provides new insights that a novel lncRNA, CTBP1-AS2, regulates EMT of glioma by modulating the miR-370-3p-Wnt7a axis.
Collapse
Affiliation(s)
- Yongfeng Li
- Department of Neurology, Sishui County People's Hospital, Jining, Shandong Province 273200, People's Republic of China
| | - Jin Zong
- Department of Neurosurgery, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, Shandong Province 252004, People's Republic of China
| | - Cong Zhao
- Department of Oncology, Jining No. 1 People's Hospital, Jining, Shandong Province 272000, People's Republic of China
| |
Collapse
|
11
|
Jin Y, Zhang M, Duan R, Yang J, Yang Y, Wang J, Jiang C, Yao B, Li L, Yuan H, Zha X, Ma C. Long noncoding RNA FGF14-AS2 inhibits breast cancer metastasis by regulating the miR-370-3p/FGF14 axis. Cell Death Discov 2020; 6:103. [PMID: 33083023 PMCID: PMC7548970 DOI: 10.1038/s41420-020-00334-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators in cancers, including breast cancer. However, the overall biological roles and clinical significance of most lncRNAs are not fully understood. This study aimed to elucidate the potential role of a novel lncRNA FGF14-AS2 and the mechanisms underlying metastasis in breast cancer. The lncRNA FGF14-AS2 was significantly downregulated in breast cancer tissues; patients with lower FGF14-AS2 expression had advanced clinical stage. In vitro and in vivo assays of FGF14-AS2 alterations revealed a complex integrated phenotype affecting breast cancer cell migration, invasion, and tumor metastasis. Mechanistically, FGF14-AS2 functioned as a competing endogenous RNA of miR-370-3p, thereby leading to the activation of its coding counterpart, FGF14. Clinically, we observed increased miR-370-3p expression in breast cancer tissues, whereas FGF14 expression was decreased in breast cancer tissues compared to the adjacent normal breast tissues. FGF14-AS2 expression was significantly negatively correlated with miR-370-3p expression, and correlated positively to FGF14 expression. Collectively, our findings support a model in which the FGF14-AS2/miR-370-3p/FGF14 axis is a critical regulator in breast cancer metastasis, suggesting a new therapeutic direction in breast cancer.
Collapse
Affiliation(s)
- Yucui Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China.,Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| | - Ming Zhang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| | - Rui Duan
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| | - Jiashu Yang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| | - Ying Yang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| | - Jue Wang
- Division of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chaojun Jiang
- Division of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bing Yao
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| | - Lingyun Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China.,Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Washington, DC USA
| | - Xiaoming Zha
- Division of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Changyan Ma
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China.,Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Shen L, Zeng J, Ma L, Li S, Chen C, Jia J, Liang X. Helicobacter pylori Induces a Novel NF-kB/LIN28A/let-7a/hTERT Axis to Promote Gastric Carcinogenesis. Mol Cancer Res 2020; 19:74-85. [PMID: 33004623 DOI: 10.1158/1541-7786.mcr-19-0678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/18/2019] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
Reactivated telomerase is a crucial event in the development and progression of a variety of tumors. However, how telomerase is activated in gastric carcinogenesis has not been fully uncovered yet. Here, we identified a key role of the NF-κB/LIN28A/let-7a axis to promote human telomerase reverse transcriptase (hTERT) expression for gastric cancer initiation. Mechanistically, LIN28A expression was upregulated by H. pylori-induced NF-κB activation. And LIN28A, in turn, suppressed let-7a expression, forming the NF-κB/LIN28A/let-7a axis to regulate gene expression upon H. pylori infection. Of note, we first discovered hTERT as a direct target of let-7a, which inhibited hTERT expression by binding to its 3'UTR of mRNA. Therefore, H. pylori-triggered let-7a downregulation enhanced hTERT protein translation, resulting in telomerase reactivation. Furthermore, hTERT enhanced LIN28A expression, forming the positive feedback regulation between hTERT and NF-κB/LIN28A/let-7a axis to maintain the sustained overexpression of hTERT in gastric cancer. IMPLICATIONS: The NF-κB/LIN28A/Let-7a axis was crucial for the overexpression of hTERT upon H. pylori infection during gastric cancer development and may serve as a potential target to suppress hTERT expression for gastric cancer prevention and treatment.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Jiping Zeng
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Cancer Research Laboratory, Shandong University-Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China. .,Cancer Research Laboratory, Shandong University-Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
13
|
Rzeszutek I, Singh A. Small RNAs, Big Diseases. Int J Mol Sci 2020; 21:E5699. [PMID: 32784829 PMCID: PMC7460979 DOI: 10.3390/ijms21165699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aditi Singh
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Xu WP, Liu JP, Feng JF, Zhu CP, Yang Y, Zhou WP, Ding J, Huang CK, Cui YL, Ding CH, Zhang X, Lu B, Xie WF. miR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy. Gut 2020; 69:1309-1321. [PMID: 31727683 DOI: 10.1136/gutjnl-2019-318830] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Autophagy participates in the progression of hepatocellular carcinoma (HCC) and the resistance of HCC cells to sorafenib. We investigated the feasibility of sensitising HCC cells to sorafenib by modulating miR-541-initiated microRNA-autophagy axis. DESIGN Gain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the malignant properties and autophagy of human HCC cells. Autophagy was quantified by western blotting of LC3, transmission electron microscopy analyses and confocal microscopy scanning of mRFP-GFP-LC3 reporter construct. Luciferase reporter assays were conducted to confirm the targets of miR-541. HCC xenograft tumours were established to analyse the role of miR-541 in sorafenib-induced lethality. RESULTS The expression of miR-541 was downregulated in human HCC tissues and was associated with malignant clinicopathologic phenotypes, recurrence and survival of patients with HCC. miR-541 inhibited the growth, metastasis and autophagy of HCC cells both in vitro and in vivo. Prediction software and luciferase reporter assays identified autophagy-related gene 2A (ATG2A) and Ras-related protein Rab-1B (RAB1B) as the direct targets of miR-541. Consistent with the effects of the miR-541 mimic, inhibition of ATG2A or RAB1B suppressed the malignant phenotypes and autophagy of HCC cells. Furthermore, siATG2A and siRAB1B partially reversed the enhancement of the malignant properties and autophagy in HCC cells mediated by the miR-541 inhibitor. More interestingly, higher miR-541 expression predicted a better response to sorafenib treatment, and the combination of miR-541 and sorafenib further suppressed the growth of HCC cells in vivo compared with the single treatment. CONCLUSIONS Dysregulation of miR-541-ATG2A/RAB1B axis plays a critical role in patients' responses to sorafenib treatment. Manipulation of this axis might benefit survival of patients with HCC, especially in the context of the highly pursued strategies to eliminate drug resistance.
Collapse
Affiliation(s)
- Wen-Ping Xu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jin-Pei Liu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ji-Feng Feng
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Peng Zhu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jin Ding
- The International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Institute, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chen-Kai Huang
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ya-Lu Cui
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Wang C, Chen Y, Chen K, Zhang L. Long Noncoding RNA LINC01134 Promotes Hepatocellular Carcinoma Metastasis via Activating AKT1S1 and NF-κB Signaling. Front Cell Dev Biol 2020; 8:429. [PMID: 32656205 PMCID: PMC7325970 DOI: 10.3389/fcell.2020.00429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with poor outcomes. The main causes of HCC-related deaths are recurrence and metastasis. Long noncoding RNAs (lncRNAs) are recently identified as critical regulators in cancers. However, the lncRNAs involved in HCC recurrence and metastasis are poorly understood. In this study, via analyzing The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset, we identified a novel lncRNA LINC01134, which is highly expressed in HCC tissues and correlated with microvascular invasion, macrovascular invasion, recurrence, and poor overall survival of HCC patients. Functional experiments revealed that ectopic expression of LINC01134 promotes HCC cell migration and invasion in vitro and HCC liver metastasis and lung metastasis in vivo. Knockdown of LINC01134 represses HCC cell migration and invasion in vitro and HCC liver metastasis and lung metastasis in vivo. Mechanistically, we found that LINC01134 directly binds the promoter of AKT1S1 and activates AKT1S1 expression. Via activating AKT1S1, LINC01134 further activates NF-κB signaling. The expression of LINC01134 is significantly positively correlated with that of AKT1S1 in HCC tissues. In line with LINC01134, AKT1S1 is also highly expressed in HCC tissues and correlated with poor survival of HCC patients. Functional rescue experiments showed that repressing AKT1S1 or NF-κB signaling abrogates the roles of LINC01134 in HCC. Taken together, these findings recognized LINC01134 as a novel oncogenic lncRNA, which indicates vascular invasion, recurrence, and poor overall survival of HCC patients. LINC01134 promotes HCC metastasis via activating AKT1S1 expression and subsequently activating NF-κB signaling. This study suggested LINC01134 as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Chao Wang
- Department of General Surgery, Clinical Research Center of Geriatric Diseases in Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Hepatic Surgery Center, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Lulli V, Buccarelli M, Ilari R, Castellani G, De Dominicis C, Di Giamberardino A, D′Alessandris QG, Giannetti S, Martini M, Stumpo V, Boe A, De Luca G, Biffoni M, Marziali G, Pallini R, Ricci-Vitiani L. Mir-370-3p Impairs Glioblastoma Stem-Like Cell Malignancy Regulating a Complex Interplay between HMGA2/HIF1A and the Oncogenic Long Non-Coding RNA (lncRNA) NEAT1. Int J Mol Sci 2020; 21:ijms21103610. [PMID: 32443824 PMCID: PMC7279259 DOI: 10.3390/ijms21103610] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and prevalent form of a human brain tumor in adults. Several data have demonstrated the implication of microRNAs (miRNAs) in tumorigenicity of GBM stem-like cells (GSCs). The regulatory functions of miRNAs in GSCs have emerged as potential therapeutic candidates for glioma treatment. The current study aimed at investigating the function of miR-370-3p in glioma progression, as aberrant expression of miR-370-3p, is involved in various human cancers, including glioma. Analyzing our collection of GBM samples and patient-derived GSC lines, we found the expression of miR-370-3p significantly downregulated compared to normal brain tissues and normal neural stem cells. Restoration of miR-370-3p expression in GSCs significantly decreased proliferation, migration, and clonogenic abilities of GSCs, in vitro, and tumor growth in vivo. Gene expression analysis performed on miR-370-3p transduced GSCs, identified several transcripts involved in Epithelial to Mesenchymal Transition (EMT), and Hypoxia signaling pathways. Among the genes downregulated by the restored expression of miR-370-3p, we found the EMT-inducer high-mobility group AT-hook 2 (HMGA2), the master transcriptional regulator of the adaptive response to hypoxia, Hypoxia-inducible factor (HIF)1A, and the long non-coding RNAs (lncRNAs) Nuclear Enriched Abundant Transcript (NEAT)1. NEAT1 acts as an oncogene in a series of human cancers including gliomas, where it is regulated by the Epidermal Growth Factor Receptor (EGFR) pathways, and contributes to tumor growth and invasion. Noteworthy, the expression levels of miR-370-3p and NEAT1 were inversely related in both GBM tumor specimens and GSCs, and a dual-luciferase reporter assay proved the direct binding between miR-370-3p and the lncRNAs NEAT1. Our results identify a critical role of miR-370-3p in the regulation of GBM development, indicating that miR-370-3p acts as a tumor-suppressor factor inhibiting glioma cell growth, migration and invasion by targeting the lncRNAs NEAT1, HMGA2, and HIF1A, thus, providing a potential candidate for GBM patient treatment.
Collapse
Affiliation(s)
- Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Chiara De Dominicis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Alessandra Di Giamberardino
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Quintino Giorgio D′Alessandris
- Department of Neuroscience, Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS; 00168 Rome, Italy; (Q.G.D.); (V.S.); (R.P.)
| | - Stefano Giannetti
- Department of Neuroscience, Institute of Anatomy, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Maurizio Martini
- Department of Health Science and Public Health, Institute of Pathology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Vittorio Stumpo
- Department of Neuroscience, Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS; 00168 Rome, Italy; (Q.G.D.); (V.S.); (R.P.)
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
- Correspondence: (G.M.); (L.R.-V.)
| | - Roberto Pallini
- Department of Neuroscience, Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS; 00168 Rome, Italy; (Q.G.D.); (V.S.); (R.P.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (V.L.); (M.B.); (R.I.); (G.C.); (C.D.D.); (A.D.G.); (G.D.L.); (M.B.)
- Correspondence: (G.M.); (L.R.-V.)
| |
Collapse
|
17
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
18
|
Zheng H, Bi FR, Yang Y, Hong YG, Ni JS, Ma L, Liu MH, Hao LQ, Zhou WP, Song LH, Yan HL. Downregulation of miR-196-5p Induced by Hypoxia Drives Tumorigenesis and Metastasis in Hepatocellular Carcinoma. HORMONES & CANCER 2019; 10:177-189. [PMID: 31713780 PMCID: PMC10355717 DOI: 10.1007/s12672-019-00370-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/09/2019] [Indexed: 02/04/2023]
Abstract
In hepatocellular carcinoma (HCC), the hypoxic tumor microenvironment can drive enhance tumor malignancy and recurrence. The microRNA (miRNA) miR-196-5p has been shown to modulate the progression of several cancer types, but its roles in HCC remain uncertain. In the present report we observed significant miR-196-5p downregulation in HCC tissues and cells, and we found that the expression of this miRNA significantly impaired the proliferation and metastatic potential of HCC in vitro and in vivo. We identified high-mobility group AT-hook 2 (HMGA2) as a miR-196-5p target gene that was associated with the ability of miR-196-5p to modulate the progression of HCC. Expression of miR-196-5p and HMGA2 were correlated with the clinical characteristics and poor outcomes in patients with HCC. Finally, we found that hypoxic conditions were linked with reduced miR-196-5p expression in the context of HCC. Together these results highlight the role for miR-196-5p as an inhibitor of the proliferation and metastasis of HCC via the targeting of HMGA2, with this novel hypoxia/miR-196-5p/HMGA2 pathway serving as a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Feng-Rui Bi
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Yong-Gang Hong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jun-Sheng Ni
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China
| | - Long Ma
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ming-Hua Liu
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Li-Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China.
| | - Li-Hua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hong-Li Yan
- Department of Reproductive Heredity Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
19
|
Pulati N, Zhang Z, Gulimilamu A, Qi X, Yang J. HPV16+‐miRNAs in cervical cancer and the anti‐tumor role played by miR‐5701. J Gene Med 2019; 21:e3126. [PMID: 31498525 DOI: 10.1002/jgm.3126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Nuerbieke Pulati
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Zegao Zhang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Aireti Gulimilamu
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Xiaoli Qi
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Jie Yang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| |
Collapse
|
20
|
Wang X, Zhu W, Xu C, Wang F, Zhu X, Sun Y, Guo Y, Fu X, Zhang Y, Zang Y. MicroRNA-370 functions as a tumor suppressor in hepatocellular carcinoma via inhibition of the MAPK/JNK signaling pathway by targeting BEX2. J Hum Genet 2019; 64:1203-1217. [PMID: 31530937 DOI: 10.1038/s10038-019-0653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Accumulating studies have revealed that microRNAs (miRNAs) play a critical role in the development and progression of HCC. Through microarray-based gene expression profiling of HCC, miR-370, and BEX2 were identified in HCC. Hence, this study aimed to evaluate their abilities on the cellular processes in HCC. It was determined that BEX2 was highly expressed and miR-370 was poorly expressed in HCC cell lines and tissues. Then, the cell line presenting with the highest BEX2 expression and the lowest miR-370 expression was selected for subsequent gain- and loss-of-function experimentation. The antitumor effect of miR-370 on HCC cell proliferation, invasion, migration, and apoptosis, as well as the MAPK/JNK signaling pathway was examined. Meanwhile, the interaction among miR-370, BEX2, and MAPK/JNK signaling pathway was identified. BEX2 is verified to be a target of miR-370. Moreover, miR-370 exerted antitumor effect on HCC development through suppression of the MAPK/JNK signaling pathway by targeting BEX2. Later, it was further verified by in vivo experiment that overexpression of miR-370 inhibited tumor growth. Above results provide evidence that miR-370 could downregulate BEX2 gene and inhibit activation of MAPK/JNK signaling pathway, thus inhibiting the development of HCC. It provides a worth-trying novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Wenyan Zhu
- Operating Room, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Chuanshen Xu
- Transplantation Care Unit, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Feng Wang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Xiaodan Zhu
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yandong Sun
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yuan Guo
- Department of Liver Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Xiaoyue Fu
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yong Zhang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Yunjin Zang
- Department of Liver Transplantation, The Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China.
| |
Collapse
|
21
|
Huang L, Liu X. microRNA-370 Promotes Cell Growth by Targeting WNK2 in Breast Cancer. DNA Cell Biol 2019; 38:501-509. [PMID: 31009242 DOI: 10.1089/dna.2018.4602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Li Huang
- Central Hospital of Zibo, Zhangdian District, Zibo, Shandong, China
| | - Xiangyu Liu
- Central Hospital of Zibo, Zhangdian District, Zibo, Shandong, China
| |
Collapse
|
22
|
Radke DI, Ling Q, Häsler R, Alp G, Ungefroren H, Trauzold A. Downregulation of TRAIL-Receptor 1 Increases TGFβ Type II Receptor Expression and TGFβ Signalling Via MicroRNA-370-3p in Pancreatic Cancer Cells. Cancers (Basel) 2018; 10:399. [PMID: 30366420 PMCID: PMC6267290 DOI: 10.3390/cancers10110399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
The accumulation of perturbations in signalling pathways resulting in an apoptosis-insensitive phenotype is largely responsible for the desperate prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). Accumulating evidence suggests that the death receptors TRAIL-R1 and TRAIL-R2 play important roles in PDAC biology by acting as either tumour suppressors through induction of cell death or tumour promoters through induction of pro-inflammatory signalling, invasion and metastasis. TRAIL-R2 can also associate with nuclear proteins and alter the maturation of micro RNAs (miRs). By genome-wide miR profiling and quantitative PCR analyses we now demonstrate that knockdown of TRAIL-R1 in PDAC cells decreased the level of mature miR-370 and led to an increased abundance of the type II receptor for transforming growth factor β (TGFβ). Transfection of cells with an artificial miR-370-3p decreased the levels of TGFβ-RII. We further show that transient expression of the miR-370 mimic decreased TGFβ1-induced expression of SERPINE1 encoding plasminogen activator-inhibitor 1 and partially relieved TGFβ1-induced growth inhibition. Moreover, stable TRAIL-R1 knockdown in Colo357 cells increased TGFβ1-induced SERPINE1 expression and this effect was partially reversed by transient expression of the miR-370 mimic. Finally, after transient knockdown of TRAIL-R1 in Panc1 cells there was a tendency towards enhanced activation of Smad2 and JNK1/2 signalling by exogenous TGFβ1. Taken together, our study reveals that TRAIL-R1 through regulation of miR-370 can decrease the sensitivity of PDAC cells to TGFβ and therefore represents a potential tumour suppressor in late-stage PDAC.
Collapse
Affiliation(s)
- David I Radke
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
| | - Qi Ling
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31000, China.
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University of Kiel, D-24105 Kiel, Germany.
| | - Gökhan Alp
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
| | - Hendrik Ungefroren
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, D-24105 Kiel, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
23
|
Liu Z, Ma M, Yan L, Chen S, Li S, Yang D, Wang X, Xiao H, Deng H, Zhu H, Zuo C, Xia M. miR-370 regulates ISG15 expression and influences IFN-α sensitivity in hepatocellular carcinoma cells. Cancer Biomark 2018; 22:453-466. [PMID: 29758929 PMCID: PMC6027951 DOI: 10.3233/cbm-171075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND: Interferon-α (IFN-α) is an adjuvant to chemotherapy and radiotherapy for hepatocellular carcinoma (HCC), but some HCC patients do not respond to treatment with IFN-α. METHODS: We performed loss-of-function and gain-of-function experiments to examine the role of ISG15 in the IFN-α sensitivity of LH86, HLCZ01, SMMC7721, and Huh7 cell lines and tumor samples. RESULTS: The overexpression of ISG15 reduced apoptosis in Huh7 and LH86 cells in the presence of IFN-α, whereas the shRNA-mediated knock down of ISG15 expression increased apoptosis in both Huh7 and LH86 cells. We identified a putative miR-370 target site in the 3’-UTR in the ISG15 mRNA, and the level of miR-370 expression in HCC cell lines reflected the level of IFN-α-induced apoptosis exhibited by each. Both HCC cell lines and tumor samples had significantly lower levels of miR-370 than the control cells and tissues (P< 0.05). The overexpression of miR-370 in IFN-α-treated LH86 and Huh7 cells increased apoptosis and reduced the volume of LH86- and Huh7-derived xenograft tumors in mice treated with IFN-α compared with the control tumors. CONCLUSIONS: Our findings suggest that miR-370 functions as an HCC tumor suppressor and regulator of IFN-α sensitivity and that miR-370 might be a useful prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Min Ma
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Lei Yan
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Shilin Chen
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Sha Li
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Darong Yang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Xiaohong Wang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Hua Xiao
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Hongyu Deng
- Department of Laboratory Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Man Xia
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
24
|
Pouché L, Vitobello A, Römer M, Glogovac M, MacLeod AK, Ellinger-Ziegelbauer H, Westphal M, Dubost V, Stiehl DP, Dumotier B, Fekete A, Moulin P, Zell A, Schwarz M, Moreno R, Huang JTJ, Elcombe CR, Henderson CJ, Roland Wolf C, Moggs JG, Terranova R. Xenobiotic CAR Activators Induce Dlk1-Dio3 Locus Noncoding RNA Expression in Mouse Liver. Toxicol Sci 2018; 158:367-378. [PMID: 28541575 DOI: 10.1093/toxsci/kfx104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Derisking xenobiotic-induced nongenotoxic carcinogenesis (NGC) represents a significant challenge during the safety assessment of chemicals and therapeutic drugs. The identification of robust mechanism-based NGC biomarkers has the potential to enhance cancer hazard identification. We previously demonstrated Constitutive Androstane Receptor (CAR) and WNT signaling-dependent up-regulation of the pluripotency associated Dlk1-Dio3 imprinted gene cluster noncoding RNAs (ncRNAs) in the liver of mice treated with tumor-promoting doses of phenobarbital (PB). Here, we have compared phenotypic, transcriptional ,and proteomic data from wild-type, CAR/PXR double knock-out and CAR/PXR double humanized mice treated with either PB or chlordane, and show that hepatic Dlk1-Dio3 locus long ncRNAs are upregulated in a CAR/PXR-dependent manner by two structurally distinct CAR activators. We further explored the specificity of Dlk1-Dio3 locus ncRNAs as hepatic NGC biomarkers in mice treated with additional compounds working through distinct NGC modes of action. We propose that up-regulation of Dlk1-Dio3 cluster ncRNAs can serve as an early biomarker for CAR activator-induced nongenotoxic hepatocarcinogenesis and thus may contribute to mechanism-based assessments of carcinogenicity risk for chemicals and novel therapeutics.
Collapse
Affiliation(s)
- Lucie Pouché
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Antonio Vitobello
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Michael Römer
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Milica Glogovac
- Novartis Business Services, Novartis Pharma, CH-4057 Basel, Switzerland
| | - A Kenneth MacLeod
- Division of Cancer Research, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | - Magdalena Westphal
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Valérie Dubost
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Daniel Philipp Stiehl
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Bérengère Dumotier
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Alexander Fekete
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Pierre Moulin
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Andreas Zell
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | - Rita Moreno
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jeffrey T J Huang
- Biomarker and Drug Analysis Core Facility, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jonathan G Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Rémi Terranova
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| |
Collapse
|
25
|
|
26
|
Panella M, Mosca N, Di Palo A, Potenza N, Russo A. Mutual suppression of miR-125a and Lin28b in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2018; 500:824-827. [PMID: 29689270 DOI: 10.1016/j.bbrc.2018.04.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
MicroRNA-125a exhibits an antiproliferative activity and is downregulated in several types of tumors, including hepatocellular carcinoma where it targets sirtuin-7, matrix metalloproteinase-11, and c-Raf. Another target of miR-125a is Lin28, a pluripotency factor that is generally undetectable in differentiated cells but is often upregulated/reactivated in tumors where it acts as an oncogenic factor promoting cell proliferation and tumor progression. In this study we show that downregulation of Lin28b by miR-125a partially accounts for its antiproliferative activity toward hepatocellular carcinoma cells. We also found that Lin28b is able to bind a conserved GGAG motif of pre-miR-125a and to inhibit its maturation in hepatocellular carcinoma cells. Reciprocal inhibition between miR-125a and Lin28b reasonably generates a positive feedback loop where reactivation of Lin-28b inhibits the expression of both miR-125a and let-7, reinforcing its own expression and leading to a marked overexpression of the mitogenic targets of the two miRNAs. On the other hand, perturbation of these circuits by overexpression of miR-125a suppresses Lin28b leading to a decreased cell proliferation. Overall, these data support a tumor suppressive role for miR-125a and contribute to the elucidation of its molecular targets.
Collapse
Affiliation(s)
- Marta Panella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Armando Di Palo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
27
|
Ge K, Huang J, Wang W, Gu M, Dai X, Xu Y, Wu H, Li G, Lu H, Zhong J, Huang Q. Serine protease inhibitor kazal-type 6 inhibits tumorigenesis of human hepatocellular carcinoma cells via its extracellular action. Oncotarget 2018; 8:5965-5975. [PMID: 27999203 PMCID: PMC5351605 DOI: 10.18632/oncotarget.13983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) causes significant medical burdens worldwide. Diagnosis, especially in the early stages, is still challenging. Therapeutic options are limited and often ineffective. Although several risk factors have been known important for development of HCC, the molecular basis of the process is rather complex and has not been fully understood. We have found that a subpopulation of HCC cells which are resistant to oncolytic parvovirus H1 superinfection highly express serine protease inhibitor Kazal-type 6 (SPINK6). This protein is specifically reduced in all HCC cell lines and tissues we analyzed. When upregulated, SPINK6 could suppress the malignant phenotypes of the HCC cells in several in vitro models. The putative tumor suppression role of SPINK6 is, however, independent of its protease inhibitory activity. To suppress the malignancy of HCC cells, SPINK6 has to be secreted to trigger signals which regulate an intracellular signaling molecule, ERK1/2, as well as a series of downstream factors involved in cell cycle progression, apoptosis and migration. Our study supports that SPINK6 is an important tumor suppressor in liver, and further investigations may help develop more effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Kuikui Ge
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinjiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Meigang Gu
- Laboratory of Virology and Infectious Disease Center for the Study of Hepatitis C, Rockefeller University, New York, NY 10065, USA
| | - Xinchuan Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuqiang Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hongyu Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.,Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai 201206, China
| | - Guodong Li
- Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai 201206, China
| | - Hairong Lu
- Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai 201206, China
| | - Jiang Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingshan Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Ding CH, Yin C, Chen SJ, Wen LZ, Ding K, Lei SJ, Liu JP, Wang J, Chen KX, Jiang HL, Zhang X, Luo C, Xie WF. The HNF1α-regulated lncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1. Mol Cancer 2018; 17:63. [PMID: 29466992 PMCID: PMC5822613 DOI: 10.1186/s12943-018-0813-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study has demonstrated that hepatocyte nuclear factor 1α (HNF1α) exerts potent therapeutic effects on hepatocellular carcinoma (HCC). However, the molecular mechanisms by which HNF1α reverses HCC malignancy need to be further elucidated. METHODS lncRNA microarray was performed to identify the long noncoding RNAs (lncRNAs) regulated by HNF1α. Chromatin immunoprecipitation and luciferase reporter assays were applied to clarify the mechanism of the transcriptional regulation of HNF1α to HNF1A antisense RNA 1 (HNF1A-AS1). The effect of HNF1A-AS1 on HCC malignancy was evaluated in vitro and in vivo. RNA pulldown, RNA-binding protein immunoprecipitation and the Bio-Layer Interferometry assay were used to validate the interaction of HNF1A-AS1 and Src homology region 2 domain-containing phosphatase 1 (SHP-1). RESULTS HNF1α regulated the expression of a subset of lncRNAs in HCC cells. Among these lncRNAs, the expression levels of HNF1A-AS1 were notably correlated with HNF1α levels in HCC cells and human HCC tissues. HNF1α activated the transcription of HNF1A-AS1 by directly binding to its promoter region. HNF1A-AS1 inhibited the growth and the metastasis of HCC cells in vitro and in vivo. Moreover, knockdown of HNF1A-AS1 reversed the suppressive effects of HNF1α on the migration and invasion of HCC cells. Importantly, HNF1A-AS1 directly bound to the C-terminal of SHP-1 with a high binding affinity (KD = 59.57 ± 14.29 nM) and increased the phosphatase activity of SHP-1. Inhibition of SHP-1 enzymatic activity substantially reversed the HNF1α- or HNF1A-AS1-induced reduction on the metastatic property of HCC cells. CONCLUSIONS Our data revealed that HNF1A-AS1 is a direct transactivation target of HNF1α in HCC cells and involved in the anti-HCC effect of HNF1α. HNF1A-AS1 functions as phosphatase activator through the direct interaction with SHP-1. These findings suggest that regulation of the HNF1α/HNF1A-AS1/SHP-1 axis may have beneficial effects in the treatment of HCC.
Collapse
Affiliation(s)
- Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shi-Jie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Present address: Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shu-Juan Lei
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jin-Pei Liu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jian Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Kai-Xian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Hua-Liang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
29
|
Circulating exosomal microRNAs reveal the mechanism of Fructus Meliae Toosendan-induced liver injury in mice. Sci Rep 2018; 8:2832. [PMID: 29434260 PMCID: PMC5809479 DOI: 10.1038/s41598-018-21113-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
The toxicological mechanisms of liver injury caused by most traditional Chinese medicine (TCM) remain largely unknown. Due to the unique features, exosomal microRNAs (miRNAs) are currently attracting major interests to provide further insights into toxicological mechanisms. Thus, taking Fructus Meliae Toosendan as an example of hepatoxic TCM, this study aimed to elucidate its hepatotoxicity mechanisms through profiling miRNAs in circulating exosomes of Fructus Meliae Toosendan water extract (FMT)-exposed mice. Biological pathway analysis of the 64 differentially expressed exosomal miRNAs (DEMs) showed that hepatic dysfunction induced by FMT likely related to apoptosis, mitochondrial dysfunction, and cell cycle dysregulation. Integrated analysis of serum exosomal DEMs and hepatic differentially expressed mRNAs further enriched oxidative stress and apoptosis related pathways. In vitro validation studies for omics results suggested that FMT-induced DNA damage was mediated by generating intracellular reactive oxygen species, leading to cell apoptosis through p53-dependent mitochondrial damage and S-phase arrest. Nrf2-mediated antioxidant response was activated to protect liver cells. Moreover, serum exosomal miR-370-3p, the most down-regulated miRNA involving in these pathways, might be the momentous event in aggravating cytotoxic effect of FMT by elevating p21 and Cyclin E. In conclusion, circulating exosomal miRNAs profiling could contribute to deepen the understanding of TCM-induced hepatotoxicity.
Collapse
|
30
|
Lv Z, Wei J, You W, Wang R, Shang J, Xiong Y, Yang H, Yang X, Fu Z. Disruption of the c-Myc/miR-200b-3p/PRDX2 regulatory loop enhances tumor metastasis and chemotherapeutic resistance in colorectal cancer. J Transl Med 2017; 15:257. [PMID: 29258530 PMCID: PMC5735915 DOI: 10.1186/s12967-017-1357-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Metastasis is a major threat to colorectal cancer (CRC) patients. We have reported that peroxiredoxin-2 (PRDX2) is associated with CRC invasion and metastasis. However, the mechanisms regulating PRDX2 expression remain unclear. We investigate whether microRNAs (miRNAs) regulate PRDX2 expression in CRC progression. METHODS Quantitative real-time polymerase chain reaction (qPCR) was used to measure microRNA-200b-3p (miR-200b-3p) expression. Immunohistochemistry (IHC) was performed to detect c-Myc and PRDX2 protein levels in CRC tissue samples (n = 97). Western blot was used to quantify PRDX2, c-Myc, AKT2/GSK3β pathway-associated proteins and epithelial-mesenchymal transition (EMT)-related proteins in CRC cells. Luciferase reporter assays were used to analyze the interaction between miR-200b-3p and 3'untranslated region (3'UTR) of PRDX2 mRNA and AKT2 mRNA as well as c-Myc and the miR-200b-3p promoter. Chromatin immunoprecipitation (ChIP) assay was used to evaluate binding of c-Myc to the miR-200b-3p promoter. Invasive assay and metastatic model were used to assess invasive and metastatic capacities of CRC cells in vitro and in vivo. Moreover, drug-induced apoptosis was measured by flow cytometry. RESULTS We found that miR-200b-3p was significantly downregulated, whereas c-Myc and PRDX2 were upregulated in metastatic CRC cells and CRC tissues compared to their counterparts. An inverse correlation existed between c-Myc and miR-200b-3p, and between miR-200b-3p and PRDX2. We also found that PRDX2 was a target of miR-200b-3p. Importantly, overexpression of nontargetable PRDX2 eliminated the suppressive effects of miR-200b-3p on proliferation, invasion, EMT, chemotherapeutic resistance and metastasis of CRC cells. Moreover, c-Myc bound to the promoter of miR-200b-3p and repressed its transcription. In turn, miR-200b-3p disrupted the stability of c-Myc protein by inducing c-Myc protein threonine 58 (T58) phosphorylation and serine 62 (S62) dephosphorylation via AKT2/GSK3β pathway. CONCLUSIONS Our findings reveal that the c-Myc/miR-200b/PRDX2 loop regulates CRC progression and its disruption enhances tumor metastasis and chemotherapeutic resistance in CRC.
Collapse
Affiliation(s)
- Zhenbing Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.,Department of Gastrointestinal Surgery, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China.,The Second Clinical School of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Wenxian You
- Department of Gastroenterology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Jingkun Shang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yongfu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Hua Yang
- Department of Gastrointestinal Surgery, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Xuanhua Yang
- The Second Clinical School of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma. Oncotarget 2017; 7:27408-21. [PMID: 27050273 PMCID: PMC5053659 DOI: 10.18632/oncotarget.8478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
Previous studies provided substantial evidence of a striking suppressive effect of hepatocyte nuclear factor 4α (HNF4α) on hepatocellular carcinoma (HCC). Apoptosis signal-regulating kinase 1 (ASK1) is involved in death receptor-mediated apoptosis and may acts as a tumor suppressor in hepatocarcinogenesis. However, the status and function of ASK1 during HCC progression are unclear. In this study, we found that HNF4α increased ASK1 expression by directly binding to its promoter. ASK1 expression was dramatically suppressed and correlated with HNF4α levels in HCC tissues. Reduced ASK1 expression was associated with aggressive tumors and poor prognosis for human HCC. Moreover, ASK1 inhibited the malignant phenotype of HCC cells in vitro. Intratumoral ASK1 injection significantly suppressed the growth of subcutaneous HCC xenografts in nude mice. More interestingly, systemic ASK1 delivery strikingly inhibited the growth of orthotopic HCC nodules in NOD/SCID mice. In addition, inhibition of endogenous ASK1 partially reversed the suppressive effects of HNF4α on HCC. Collectively, this study highlights the suppressive effect of ASK1 on HCC and its biological significance in HCC development. These outcomes broaden the knowledge of ASK1 function in HCC progression, and provide a novel potential prognostic biomarker and therapeutic target for advanced HCC.
Collapse
|
32
|
Zhou C, Yu J, Wang M, Yang J, Xiong H, Huang H, Wu D, Hu S, Wang Y, Chen XZ, Tang J. Identification of glycerol-3-phosphate dehydrogenase 1 as a tumour suppressor in human breast cancer. Oncotarget 2017; 8:101309-101324. [PMID: 29254166 PMCID: PMC5731876 DOI: 10.18632/oncotarget.21087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/27/2017] [Indexed: 12/23/2022] Open
Abstract
In the present study, we found the mRNA expression level of glycerol-3-phosphate dehydrogenase (GPD1) was significantly downregulated in human breast cancer patients. Patients with reduced GPD1 expression exhibited poorer overall metastatic relapse-free survival (p = 0.0013). Further Cox proportional hazard model analysis revealed that the reduced expression of GPD1 is an independent predictor of overall survival in oestrogen receptor-positive (p = 0.0027, HR = 0.91, 95% CI = 0.85-0.97, N = 3,917) and nodal-negative (p = 0.0013, HR = 0.87, 95% CI = 0.80-0.95, N = 2,456) breast cancer patients. We also demonstrated that GPD1 was a direct target of miR-370, which was significantly upregulated in human breast cancer. We further showed that exogenous expression of GPD1 in human MCF-7 and MDA-MB-231 breast cancer cells significantly inhibited cell proliferation, migration, and invasion. Our results, therefore, suggest a novel tumour suppressor function for GPD1 and contribute to the understanding of cancer metabolism.
Collapse
Affiliation(s)
- Cefan Zhou
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jing Yu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Clinical Laboratory, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Yang
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Hui Xiong
- XiLi People's Hospital, Shenzhen, Guangdong, China
| | - Huang Huang
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Dongli Wu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shimeng Hu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yefu Wang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing-Zhen Chen
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget 2017; 8:22145-22165. [PMID: 27888618 PMCID: PMC5400654 DOI: 10.18632/oncotarget.13530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed type of cancer. The tumor inflammatory microenvironment regulates almost every step towards liver tumorigenesis and subsequent progression, and regulation of the inflammation-related signaling pathways, cytokines, chemokines and non-coding RNAs influences the proliferation, migration and metastasis of liver tumor cells. Inflammation fine-tunes the cancer microenvironment to favor epithelial-mesenchymal transition, in which cancer stem cells maintain tumorigenic potential. Emerging evidence points to inflammation-related microRNAs as crucial molecules to integrate the complex cellular and molecular crosstalk during HCC progression. Thus understanding the mechanisms by which inflammation regulates microRNAs might provide novel and admissible strategies for preventing, diagnosing and treating HCC. In this review, we will update three hypotheses of hepatocarcinogenesis and elaborate the most predominant inflammation signaling pathways, i.e. IL-6/STAT3 and NF-κB. We also try to summarize the crucial tumor-promoting and tumor-suppressing microRNAs and detail how they regulate HCC initiation and progression and collaborate with other critical modulators in this review.
Collapse
|
34
|
Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget 2017; 8:107237-107257. [PMID: 29291025 PMCID: PMC5739810 DOI: 10.18632/oncotarget.20883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Numerous articles reported that dysregulated expression levels of miRNAs correlated with survival time of HCC patients. However, there has not been a comprehensive meta-analysis to evaluate the accurate prognostic value of miRNAs in HCC. Design Meta-analysis. Materials and Methods Studies, published in English, estimating expression levels of miRNAs with any survival curves in HCC were identified up until 15 April, 2017 by performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two independent authors. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). Results 54 relevant articles about 16 miRNAs, with 6464 patients, were ultimately included. HCC patients with high expression of tissue miR-9 (HR = 2.35, 95% CI = 1.46–3.76), miR-21 (HR = 1.76, 95% CI = 1.29–2.41), miR-34c (HR = 1.64, 95% CI = 1.05–2.57), miR-155 (HR = 2.84, 95% CI = 1.46–5.51), miR-221 (HR = 1.76, 95% CI = 1.02–3.04) or low expression of tissue miR-22 (HR = 2.29, 95% CI = 1.63–3.21), miR-29c (HR = 1.35, 95% CI = 1.10–1.65), miR-34a (HR = 1.84, 95% CI = 1.30–2.59), miR-199a (HR = 2.78, 95% CI = 1.89–4.08), miR-200a (HR = 2.64, 95% CI = 1.86–3.77), miR-203 (HR = 2.20, 95% CI = 1.61–3.00) have significantly poor OS (P < 0.05). Likewise, HCC patients with high expression of blood miR-21 (HR = 1.73, 95% CI = 1.07–2.80), miR-192 (HR = 2.42, 95% CI = 1.15–5.10), miR-224 (HR = 1.56, 95% CI = 1.14–2.12) or low expression of blood miR-148a (HR = 2.26, 95% CI = 1.11–4.59) have significantly short OS (P < 0.05). Conclusions In conclusion, tissue miR-9, miR-21, miR-22, miR-29c, miR-34a, miR-34c, miR-155, miR-199a, miR-200a, miR-203, miR-221 and blood miR-21, miR-148a, miR-192, miR-224 demonstrate significantly prognostic value. Among them, tissue miR-9, miR-22, miR-155, miR-199a, miR-200a, miR-203 and blood miR-148a, miR-192 are potential prognostic candidates for predicting OS in HCC.
Collapse
|
35
|
Common microRNA-mRNA interactions exist among distinct porcine iPSC lines independent of their metastable pluripotent states. Cell Death Dis 2017; 8:e3027. [PMID: 29048434 PMCID: PMC5596602 DOI: 10.1038/cddis.2017.426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Previous evidences have proved that porcine-induced pluripotent stem cells (piPSCs) could be induced to distinctive metastable pluripotent states. This raises the issue of whether there is a common transcriptomic profile existing among the piPSC lines at distinctive state. In this study, we performed conjoint analysis of small RNA-seq and mRNA-seq for three piPSC lines which represent LIF dependence, FGF2 dependence and LFB2i dependence, respectively. Interestingly, we found there are 16 common microRNAs which potentially target 13 common mRNAs among the three piPSC lines. Dual-luciferase reporter assay validated that miR-370, one of the 16 common microRNAs, could directly target the 3′UTR of LIN28A. When the differentiation occurred, miR-370 could be activated in piPSCs and switched off the expression of LIN28A. Ectopic expression of miR-370 in piPSCs could reduce LIN28A expression, decrease the alkaline phosphatase activity, slow down the proliferation, and further cause the downregulation of downstream pluripotent genes (OCT4, SOX2, NANOG, SALL4 and ESRRB) and upregulation of differentiation relevant genes (SOX9, JARID2 and JMJD4). Moreover, these phenotypes caused by miR-370 could be rescued by overexpressing LIN28A. Collectively, our findings suggest that a set of common miRNA–mRNA interactions exist among the distinct piPSC lines, which orchestrate the self-renewal and differentiation of piPSCs independent of their metastable pluripotent states.
Collapse
|
36
|
Li C, Ge Q, Liu J, Zhang Q, Wang C, Cui K, Chen Z. Effects of miR-1236-3p and miR-370-5p on activation of p21 in various tumors and its inhibition on the growth of lung cancer cells. Tumour Biol 2017. [PMID: 28631573 DOI: 10.1177/1010428317710824] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Chuanchang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangqiang Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jiaxuan Liu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Qingsong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghe Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Wei S, Ma W. MiR-370 functions as oncogene in melanoma by direct targeting pyruvate dehydrogenase B. Biomed Pharmacother 2017; 90:278-286. [PMID: 28364600 DOI: 10.1016/j.biopha.2017.03.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Accumulating evidence has shown that miR-370 play an important role in the development and progression of tumor. However, the role of miR-370 in melanoma remains largely unknown. The present study is designed to investigate the function of miR-370 in melanoma and to explore the molecular mechanism underlying its function. MATERIALS AND METHODS The expression level of miR-370 was detected in melanoma tissues and cell lines by real-time quantitative polymerase chain reaction (qRT-PCR). The effect of overexpression of miR-370 on in vitro cell proliferation, apoptosis, invasion as well as glyclolysis was examined. Western blotting analysis was used to detect the influence of miR-370 on the expression of target genes, and Pearson analysis was used to calculate the correlation between the expression of targets gene and miR-370 in melanoma tissues. RESULTS Our study showed that miR-370 was upregulated in melanoma tissues compared with non-cancerous tissues (P<0.01). In addition, the expression of miR-370 in melanoma cell lines was also significantly higher (P<0.01). Enforced expression of miR-370 promotes melanoma cell proliferation, inhibits apoptosis and enhances invasion and glycolysis and led to downregulation of the PDHB protein. Moreover, the expression level of miR-370 in melanoma tissues showed inverse relationship with the expression level of PDHB protein. CONCLUSIONS In conclusion, our findings suggested that miR-370 represents a potential oncogenic miRNA and plays an important role in melanoma progression by directly targeting PDHB.
Collapse
Affiliation(s)
- Shufang Wei
- Department of Dermatology, Qilu Hospital of Shandong University, China
| | - Weiyuan Ma
- Department of Dermatology, Qilu Hospital of Shandong University, China.
| |
Collapse
|
38
|
Wang Y, Shi F, Xing GH, Xie P, Zhao N, Yin YF, Sun SY, He J, Wang Y, Xuan SY. Protein Regulator of Cytokinesis PRC1 Confers Chemoresistance and Predicts an Unfavorable Postoperative Survival of Hepatocellular Carcinoma Patients. J Cancer 2017; 8:801-808. [PMID: 28382142 PMCID: PMC5381168 DOI: 10.7150/jca.17640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Background: PRC1, a microtubules(MTs)-associated protein, is essential in the mitosis and cell cycle regulation. It has been recently linked to chemoresistance and tumorigenesis. The current study sought to explore the role of PRC1 on chemoresistance and postoperative prognosis of hepatocellular carcinoma(HCC). Methods: PRC1 was transfected into HCC cells to detect its effects of chemoresistance to 5-fluorouracil in vitro and in vivo. This study also investigated the impact of PRC1 on 5-FU-induced G2/M phase arrest and the potential molecular mechanism. Surgical specimens from HCC patients were examined immunohistochemically for PRC1 expression. Results: Ectopic expression of PRC1 significantly increased the chemoresistance, promoted the tumor growth and abrogated 5-FU-induced G2/M phase arrest via p21/p27-pRBs pathway. In clinical specimens, high expression of PRC1(immunostaining score≥3) in HCC cells predicted an unfavorable postoperative survival of HCC patients(P=0.019), especially for whom received postoperative chemotherapy(P=0.002). In multivariate Cox analyses, high PRC1 expression significantly predicted an unfavorable postoperative prognosis, not dependent of TNM stage. Conclusion: High PRC1 expression in HCC cells increased chemoresistance, attenuated 5-FU-induced apoptosis, abrogated 5-FU-induced G2/M phase arrest, and predicts an unfavorable survival, especially for the patients who received chemotherapy. PRC1 might be a novel prognostic and predictive marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastroenterology, Qingdao Municipal Hospital, Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Gastroenterology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Feng Shi
- Department of Gastroenterology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Guo-Hui Xing
- Department of Digestive Medicine, Rizhao Traditional Chinese Medicine Hospital, Wanghai Road, Rizhao, Shandong, China
| | - Ping Xie
- Department of Gynaecology and Obstetrics, Rizhao Maternal and Child Health Hospital, Rizhao, Shandong, China
| | - Na Zhao
- Endoscope Center, Rizhao Traditional Chinese Medicine Hospital, Wanghai Road, Rizhao, Shandong, China
| | - Yu-Feng Yin
- Department of Gastroenterology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Shu-Yan Sun
- Department of Pathology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital& Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Shi-Ying Xuan
- Department of Gastroenterology, Qingdao Municipal Hospital, Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
39
|
de Paula Simino LA, de Fante T, Figueiredo Fontana M, Oliveira Borges F, Torsoni MA, Milanski M, Velloso LA, Souza Torsoni A. Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet. Nutr Metab (Lond) 2017; 14:16. [PMID: 28239403 PMCID: PMC5319047 DOI: 10.1186/s12986-017-0168-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Background Nutritional status in early life is critically involved in the metabolic phenotype of offspring. However the changes triggered by maternal consumption of high-fat diet (HFD) in pre- or postnatal period should be better understood. Here we evaluated whether maternal HFD consumption during gestation and lactation could differently affect liver miR-122 and miR-370 expression leading to metabolic damages observed in offspring. Moreover, we investigate whether early overnutrition program offspring to more harmful response to HFD in later life. Methods Female mice were fed either a standard chow (SC) diet or a HFD three weeks before and during mating, gestation and/or lactation. Offspring were evaluated on the delivery day (d0), in a cross-fostering model at day 28 (d28) and in adult life, after a re-challenge with a HFD (d82). Results In vitro analysis using liver cell line showed that palmitate could induced decrease in miR-122 and increase in miR-370 expression. Newborn pups (d0) from obese dams showed a decrease in lipid oxidation markers (Cpt1a and Acadvl), an increase in triacylglycerol synthesis markers (Agpat and Gpam), as well as lower miR-122 and higher miR-370 hepatic content that was inversely correlated to maternal serum NEFA and TAG. Pups fostered to SC dams presented an increase in body weight and Agpat/Gpam expression at d28 compared to pups fostered to HFD dams and an inverse correlation was observed between miR-122 hepatic expression and offspring serum TAG. In adult life (d82), the reintroduction of HFD resulted in higher body weight gain and hepatic lipid content. These effects were accompanied by impairment in lipid and glucose metabolism, demonstrated by reduced Cpt1a/Acadvl and increased Agpat/Gpam expression, lower glucose tolerance and insulin sensitivity. Conclusion Our data suggest that both gestational and lactation overnutrition results in metabolic changes that can permanently alter lipid homeostasis in offspring. The presence of fatty acids in maternal blood and milk seem to be responsible for modulating the expression of miR-122 and miR-370, which are involved in liver metabolism. These alterations significantly increase susceptibility to obesity and ectopic lipid accumulation and lead to a more harmful response to HFD in offspring. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0168-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laís Angélica de Paula Simino
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Thaís de Fante
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Marina Figueiredo Fontana
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Fernanda Oliveira Borges
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Márcio Alberto Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Lício Augusto Velloso
- Laboratory of Cell Signaling, Faculty of Medical Sciences, University Of Campinas - UNICAMP, Campinas, São Paulo Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| |
Collapse
|
40
|
Sharma C, Mohanty D. Molecular Dynamics Simulations for Deciphering the Structural Basis of Recognition of Pre-let-7 miRNAs by LIN28. Biochemistry 2017; 56:723-735. [PMID: 28076679 DOI: 10.1021/acs.biochem.6b00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LIN28 protein inhibits biogenesis of miRNAs belonging to the let-7 family by binding to precursor forms of miRNAs. Overexpression of LIN28 and low levels of let-7 miRNAs are associated with several forms of cancer cells. We have performed multiple explicit solvent molecular dynamics simulations ranging from 200 to 500 ns in length on different isoforms of preE-let-7 in complex with LIN28 and also in isolation to identify structural features and key specificity-determining residues (SDRs) that are important for the inhibitory role of LIN28. Our simulations suggest that a conserved structural feature of the loop regions of preE-let-7 miRNAs is more important for LIN28 recognition than sequence conservation among members of the let-7 family or the presence of the GGAG motif in the 3' region. The loop region consisting of a minimum of five nucleotides helps pre-miRNAs to acquire a conformation ideal for binding to LIN28, but pre-let-7c-2 prefers a conformation with a three-nucleotide loop. Thus, our simulations provide a theoretical rationale for the recent experimental observation of the escape of LIN28-mediated repression by pre-let-7c-2. The essential structural and sequence features highlighted in this study might aid in designing synthetic small molecule inhibitors for modulating LIN28-let-7 interaction in malignant cells. We have also identified crucial SDRs of the LIN28-preE-let-7 complex involving 13 residues of LIN28 and 10 residues of the pre-miRNA. On the basis of the conservation profile of these 13 SDRs, we have identified 10 novel proteins that are not annotated as LIN28 like but are similar in sequence, domain, or fold level to LIN28.
Collapse
Affiliation(s)
- Chhaya Sharma
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
41
|
de Paula Simino LA, de Fante T, Figueiredo Fontana M, Oliveira Borges F, Torsoni MA, Milanski M, Velloso LA, Souza Torsoni A. Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet. Nutr Metab (Lond) 2017. [PMID: 28239403 DOI: 10.1186/sl2986-017-0168-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Nutritional status in early life is critically involved in the metabolic phenotype of offspring. However the changes triggered by maternal consumption of high-fat diet (HFD) in pre- or postnatal period should be better understood. Here we evaluated whether maternal HFD consumption during gestation and lactation could differently affect liver miR-122 and miR-370 expression leading to metabolic damages observed in offspring. Moreover, we investigate whether early overnutrition program offspring to more harmful response to HFD in later life. METHODS Female mice were fed either a standard chow (SC) diet or a HFD three weeks before and during mating, gestation and/or lactation. Offspring were evaluated on the delivery day (d0), in a cross-fostering model at day 28 (d28) and in adult life, after a re-challenge with a HFD (d82). RESULTS In vitro analysis using liver cell line showed that palmitate could induced decrease in miR-122 and increase in miR-370 expression. Newborn pups (d0) from obese dams showed a decrease in lipid oxidation markers (Cpt1a and Acadvl), an increase in triacylglycerol synthesis markers (Agpat and Gpam), as well as lower miR-122 and higher miR-370 hepatic content that was inversely correlated to maternal serum NEFA and TAG. Pups fostered to SC dams presented an increase in body weight and Agpat/Gpam expression at d28 compared to pups fostered to HFD dams and an inverse correlation was observed between miR-122 hepatic expression and offspring serum TAG. In adult life (d82), the reintroduction of HFD resulted in higher body weight gain and hepatic lipid content. These effects were accompanied by impairment in lipid and glucose metabolism, demonstrated by reduced Cpt1a/Acadvl and increased Agpat/Gpam expression, lower glucose tolerance and insulin sensitivity. CONCLUSION Our data suggest that both gestational and lactation overnutrition results in metabolic changes that can permanently alter lipid homeostasis in offspring. The presence of fatty acids in maternal blood and milk seem to be responsible for modulating the expression of miR-122 and miR-370, which are involved in liver metabolism. These alterations significantly increase susceptibility to obesity and ectopic lipid accumulation and lead to a more harmful response to HFD in offspring.
Collapse
Affiliation(s)
- Laís Angélica de Paula Simino
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Thaís de Fante
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Marina Figueiredo Fontana
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Fernanda Oliveira Borges
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Márcio Alberto Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| | - Lício Augusto Velloso
- Laboratory of Cell Signaling, Faculty of Medical Sciences, University Of Campinas - UNICAMP, Campinas, São Paulo Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo Brazil
| |
Collapse
|
42
|
Zhu J, Zhu F, Song W, Zhang B, Zhang X, Jin X, Li H. Altered miR-370 expression in hepatic ischemia-reperfusion injury correlates with the level of nuclear kappa B (NF-κB) related factors. Gene 2016; 607:23-30. [PMID: 28043920 DOI: 10.1016/j.gene.2016.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that regulate gene expression at both the transcription and translation levels. Whether miRNAs have taken part in liver ischemia-reperfusion (IR) injury was rarely reported. The purpose of this article is to investigate the potential role of miR-370 in hepatic IR injury. METHODS Male C57BL/6 mice were divided into 5 groups (sham-operated group, I/R group, IPC group, antagomir-370 group and antagomir-NC), and the expression levels of miR-370 were assessed by quantitative real-time PCR. Serum enzyme analysis and histological examination of liver were used as the index of the effect of miR-370 on hepatic IR injury and following treatment of mice with antagomir-370 or antagomir-NC. The classical pathway factors of NF-κB (TAK1, TAB1, TAB2, IkBα, IKKα, IKKβ, p50, p65) were studied by quantitative real-time PCR and Western blot. RESULTS The results showed that the IR group's miR-370 expression level was significantly upregulated as compared with the sham-operated group and IPC group. Also inhibition of miR-370 led to the low expression levels of miR-370 and low levels of serum aminotransferase and hepatic histological damage as compared with the IR group. Quantitative real-time PCR showed the levels of TAK1, TAB1, TAB2, IkBα, IKKα, p65 was elevated when improving the miR-370 levels, at the same time, Western blot showed the levels of TAK1, TAB1, TAB2, IkBα, IKKα, IKKβ, p50, p65 were all elevated. CONCLUSION miR-370 acting via NF-κB might play a crucial role in hepatic IR injury, and inhibition of miR-370 could alleviate the injury to the liver. And miR-370 might positively regulated the NF-κB pathway.
Collapse
Affiliation(s)
- Jie Zhu
- College of Medicine, Ningbo University, China
| | - Fangfang Zhu
- Ningbo Medical Centre of LIHuiLi Hospital, China
| | - Wenfeng Song
- The First Affiliated Hospital, College Of Medicine, Zhejiang University
| | - Bin Zhang
- Ningbo Medical Centre of LIHuiLi Hospital, China
| | - Xie Zhang
- Ningbo Medical Centre of LIHuiLi Hospital, China
| | | | - Hong Li
- Ningbo Medical Centre of LIHuiLi Hospital, China.
| |
Collapse
|
43
|
Fan H, Lv P, Lv J, Zhao X, Liu M, Zhang G, Tang H. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA. J Med Virol 2016; 89:834-844. [PMID: 27664977 DOI: 10.1002/jmv.24695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongxia Fan
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ping Lv
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Lv
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaopei Zhao
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guangling Zhang
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Zhu J, Zhang B, Song W, Zhang X, Wang L, Yin B, Zhu F, Yu C, Li H. A literature review on the role of miR-370 in disease. GENE REPORTS 2016; 4:37-44. [DOI: 10.1016/j.genrep.2016.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Tsang DPF, Wu WKK, Kang W, Lee YY, Wu F, Yu Z, Xiong L, Chan AW, Tong JH, Yang W, Li MSM, Lau SS, Li X, Lee SD, Yang Y, Lai PBS, Yu DY, Xu G, Lo KW, Chan MTV, Wang H, Lee TL, Yu J, Wong N, Yip KY, To KF, Cheng ASL. Yin Yang 1-mediated epigenetic silencing of tumour-suppressive microRNAs activates nuclear factor-κB in hepatocellular carcinoma. J Pathol 2016; 238:651-64. [PMID: 26800240 DOI: 10.1002/path.4688] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/19/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) catalyses histone H3 lysine 27 trimethylation (H3K27me3) to silence tumour-suppressor genes in hepatocellular carcinoma (HCC) but the process of locus-specific recruitment remains elusive. Here we investigated the transcription factors involved and the molecular consequences in HCC development. The genome-wide distribution of H3K27me3 was determined by chromatin immunoprecipitation coupled with high-throughput sequencing or promoter array analyses in HCC cells from hepatitis B virus (HBV) X protein transgenic mouse and human cell models. Transcription factor binding site analysis was performed to identify EZH2-interacting transcription factors followed by functional characterization. Our cross-species integrative analysis revealed a crucial link between Yin Yang 1 (YY1) and EZH2-mediated H3K27me3 in HCC. Gene expression analysis of human HBV-associated HCC specimens demonstrated concordant overexpression of YY1 and EZH2, which correlated with poor survival of patients in advanced stages. The YY1 binding motif was significantly enriched in both in vivo and in vitro H3K27me3-occupied genes, including genes for 15 tumour-suppressive microRNAs. Knockdown of YY1 reduced not only global H3K27me3 levels, but also EZH2 and H3K27me3 promoter occupancy and DNA methylation, leading to the transcriptional up-regulation of microRNA-9 isoforms in HCC cells. Concurrent EZH2 knockdown and 5-aza-2'-deoxycytidine treatment synergistically increased the levels of microRNA-9, which reduced the expression and transcriptional activity of nuclear factor-κB (NF-κB). Functionally, YY1 promoted HCC tumourigenicity and inhibited apoptosis of HCC cells, at least partially through NF-κB activation. In conclusion, YY1 overexpression contributes to EZH2 recruitment for H3K27me3-mediated silencing of tumour-suppressive microRNAs, thereby activating NF-κB signalling in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Daisy P F Tsang
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William K K Wu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying-Ying Lee
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feng Wu
- Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhuo Yu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lei Xiong
- Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony W Chan
- Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joanna H Tong
- Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiqin Yang
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - May S M Li
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Suki S Lau
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangchun Li
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sau-Dan Lee
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yihua Yang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul B S Lai
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Aging Research Center and World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Wai Lo
- Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huating Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin L Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nathalie Wong
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alfred S L Cheng
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
46
|
Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF, Zhang X. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett 2016; 379:49-59. [DOI: 10.1016/j.canlet.2016.05.022] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
|
47
|
Mollainezhad H, Eskandari N, Pourazar A, Salehi M, Andalib A. Expression of microRNA-370 in human breast cancer compare with normal samples. Adv Biomed Res 2016; 5:129. [PMID: 27563639 PMCID: PMC4976524 DOI: 10.4103/2277-9175.186987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
Background: Breast cancer is the second leading cause of deaths from cancer in the woman. MicroRNAs (miRNAs) are endogenous noncoding RNAs that are known critical player in carcinogenesis. The role of miR-370 in malignancies remains controversial because of its levels varying in different cancers according to its targets while the role of miR-370 in breast cancer has not been addressed so far. The aim of this study was to identify the expression pattern of miR-370 in human breast cancer tissue compared to adjacent healthy tissue. Materials and Methods: Twenty-two fresh frozen tissues (normal and malignant) from patients with breast cancer were examined for miR-370 by quantitative real-time polymerase chain reaction method at 2013. Results: We observed up-regulation (six-fold higher) of miR-370 in breast cancer tissue compared with normal adjacent tissue. Tumor samples in stage III, invasive ductal type, larger tumor size, human epidermal growth-factor receptor 2+, estrogen receptor/progesterone receptor−, P53 − status showed significantly increased expression in miR-370. Conclusion: Together, miR-370 may acts as an onco-miRNA, and it may have a novel role in breast cancer. Detection of miR-370 and its targets could be helpful as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Halimeh Mollainezhad
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Pourazar
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
An ANCCA/PRO2000-miR-520a-E2F2 regulatory loop as a driving force for the development of hepatocellular carcinoma. Oncogenesis 2016; 5:e229. [PMID: 27239961 PMCID: PMC4945746 DOI: 10.1038/oncsis.2016.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in Asia especially in China. We previously identified that ANCCA/PRO2000 as an important proliferation-associated protein predicted poor prognosis of patients with HCC. However, the molecular mechanisms of ANCCA/PRO2000 leading to hepatocarcinogenesis and progression are still obscure. In the present study, we found that ANCCA/PRO2000 overexpression in HCC specimens correlated with aggressive tumor behavior and poor survival. Furthermore, ANCCA/PRO2000 exerts strong oncogenic function in HCC and promotes cell proliferation by regulating E2F2 expression, a critical cell cycle regulator. Notably, miR-520a is an intermediate regulator between ANCCA/PRO2000 and E2F2. Mechanistically, ANCCA/PRO2000 not only interacts with E2F2 but also negatively regulates miR-520a that inhibits E2F2 to cooperatively promote in vitro and in vivo growth of HCC cells. Moreover, we demonstrated that ANCCA/PRO2000 enhances the migratory capacity of HCC cells partially by suppressing ERO1L and G3BP2 expression. Additional research identified that miR-372, as a prognostic factor for HCC, could directly target ANCCA/PRO2000. Our results suggest the ANCCA/PRO2000-miR-520a-E2F2 regulatory loop as a driving force for HCC development and ANCCA/PRO2000 as a potential therapeutic target for HCC.
Collapse
|
49
|
Histone demethylase RBP2 promotes malignant progression of gastric cancer through TGF-β1-(p-Smad3)-RBP2-E-cadherin-Smad3 feedback circuit. Oncotarget 2016; 6:17661-74. [PMID: 25974964 PMCID: PMC4627336 DOI: 10.18632/oncotarget.3756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/25/2015] [Indexed: 12/24/2022] Open
Abstract
Some feedback pathways are critical in the process of tumor development or malignant progression. However the mechanisms through which these pathways are epigenetically regulated have not been fully elucidated. Here, we demonstrated that the histone demethylase RBP2 was crucial for TGF-β1-(p-Smad3)-RBP2-E-cadherin-Smad3 feedback circuit that was implicated in malignant progression of tumors and its knockdown significantly inhibited gastric cancer (GC) metastasis both in vitro and in vivo. Mechanistically, RBP2 can directly bind to E-cadherin promoter and suppress its expression, facilitating EMT and distant metastasis of GC. RBP2 can also be induced by TGF-β1, a key inducer of EMT, through phosphorylated Smad3 (p-Smad3) pathway in GC. The upregulated RBP2 can be recruited by p-smad3 to E-cadherin promoter and enhance its suppression, contributing to the promotion of metastasis of GC. In addition, the suppression of E-cadherin by RBP2 attenuated inhibition of Smad3 phosphorylation (exerted by E-cadherin), resulting further induction of RBP2 expression, and thus constituting positive feedback regulation during GC malignant progression. This TGF-β1-(p-Smad3)-RBP2- E-cadherin-Smad3 feedback circuit may be a novel mechanism for GC malignant progression and suppression of RBP2 expression may serve as a new strategy for the prevention of tumor distant metastasis.
Collapse
|
50
|
Peng Z, Wu T, Li Y, Xu Z, Zhang S, Liu B, Chen Q, Tian D. MicroRNA-370-3p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting β-catenin. Brain Res 2016; 1644:53-61. [PMID: 27138069 DOI: 10.1016/j.brainres.2016.04.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this study was to explore the expression and biological role of miR-370-3p in human gliomas. METHODS Clinical specimens from the brains of 20 glioma patients and 10 healthy controls were obtained to quantify the expression level of miR-370-3p using quantitative real-time PCR. Oligonucleotide mimics of miR-370-3p were transfected into U251 and U87-MG cells for a gain of function assay. The CCK-8 assay, colony formation assay, EdU assay and flow cytometry were used to evaluate the roles of miR-370-3p in cell proliferation and the cell cycle regulation. Western blot and luciferase activity assays were used to investigate the reciprocal relationship between miR-370-3p and its predicted target, β-catenin. RESULTS miR-370-3p expression was frequently found to be decreased in glioma tissues, and its expression level was negatively correlated with the malignant degree of the glioma. Overexpression of miR-370-3p showed a significant inhibitory effect on cell proliferation and accompanied cell cycle G0/G1 arrest in U251 and U87-MG cells. Furthermore, miR-370-3p inhibited the expression of the canonical Wnt pathway downstream targets cyclin D1 and c-myc via direct binding interaction with the 3'-untranslated region of β-catenin mRNA. Reintroduction of β-catenin could partially reverse the anti-proliferation effect of miR-370-3p. Finally, in 20 glioma tissues the expression of miR-370-3p was negatively correlated with both protein and mRNA levels of β-catenin. CONCLUSION miR-370-3p suppresses glioma cell growth by directly targeting β-catenin, suggesting that the miR-370-3p/β-catenin axis may be a target for glioma therapy.
Collapse
Affiliation(s)
- Zesheng Peng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Tingfeng Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|