1
|
Verrier ER, Colpitts CC, Bach C, Heydmann L, Zona L, Xiao F, Thumann C, Crouchet E, Gaudin R, Sureau C, Cosset FL, McKeating JA, Pessaux P, Hoshida Y, Schuster C, Zeisel MB, Baumert TF. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Rep 2017; 17:1357-1368. [PMID: 27783949 PMCID: PMC5098118 DOI: 10.1016/j.celrep.2016.09.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/10/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. NTCP is involved in hepatocyte infection by multiple viruses via distinct mechanisms NTCP facilitates HCV infection by modulating innate antiviral responses Solute carrier NTCP is a regulator of antiviral immune responses in the liver This function is relevant for infection and therapies for hepatotropic viruses
Collapse
Affiliation(s)
- Eloi R Verrier
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Che C Colpitts
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Charlotte Bach
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laetitia Zona
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Fei Xiao
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Christine Thumann
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Emilie Crouchet
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Raphaël Gaudin
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Camille Sureau
- INTS, Laboratoire de Virologie Moléculaire, 75015 Paris, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, 69364 Lyon Cedex 07, France; INSERM, U1111, 69007 Lyon, France; Ecole Normale Supérieure, 69007 Lyon, France; Centre National de la Recherche Scientifique (CNRS) UMR 5308, 69007 Lyon, France; LabEx Ecofect, University of Lyon, 69007 Lyon, France
| | - Jane A McKeating
- Centre for Human Virology, University of Birmingham, Birmingham, UK; NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Patrick Pessaux
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Schuster
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.
| |
Collapse
|
2
|
Hedegaard DL, Tully DC, Rowe IA, Reynolds GM, Bean DJ, Hu K, Davis C, Wilhelm A, Ogilvie CB, Power KA, Tarr AW, Kelly D, Allen TM, Balfe P, McKeating JA. High resolution sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage liver disease. J Hepatol 2017; 66:28-38. [PMID: 27531641 PMCID: PMC5558612 DOI: 10.1016/j.jhep.2016.07.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The high replication and mutation rate of hepatitis C virus (HCV) results in a heterogeneous population of viral sequences in vivo. HCV replicates in the liver and infected hepatocytes occur as foci surrounded by uninfected cells that may promote compartmentalization of viral variants. Given recent reports showing interferon stimulated gene (ISG) expression in chronic hepatitis C, we hypothesized that local interferon responses may limit HCV replication and evolution. METHODS To investigate the spatial influence of liver architecture on viral replication we measured HCV RNA and ISG mRNA from each of the 8 Couinaud segments of the liver from 21 patients undergoing liver transplant. RESULTS HCV RNA and ISG mRNA levels were comparable across all sites from an individual liver but showed up to 500-fold difference between patients. Importantly, there was no association between ISG and HCV RNA expression across all sites in the liver or plasma. Deep sequencing of HCV RNA isolated from the 8 hepatic sites from two subjects showed a similar distribution of viral quasispecies across the liver and uniform sequence diversity. Single genome amplification of HCV E1E2-envelope clones from 6 selected patients at 2 hepatic sites supported these data and showed no evidence for HCV compartmentalization. CONCLUSIONS We found no differences between the hepatic and plasma viral quasispecies in all patients sampled. We conclude that in end-stage liver disease HCV RNA levels and the genetic pool of HCV envelope sequences are indistinguishable between distant sites in the liver and plasma, arguing against viral compartmentalization. LAY SUMMARY HCV is an RNA virus that exists as a quasispecies of closely related genomes that are under continuous selection by host innate and adaptive immune responses and antiviral drug therapy. The primary site of HCV replication is the liver and yet our understanding of the spatial distribution of viral variants within the liver is limited. High resolution sequencing of HCV and monitoring of innate immune responses at multiple sites across the liver identified a uniform pattern of diversity and argues against viral compartmentalization.
Collapse
Affiliation(s)
| | | | - Ian A. Rowe
- Centre for Human Virology, University of Birmingham, Birmingham, UK
| | - Gary M. Reynolds
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | - David J. Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ke Hu
- Centre for Human Virology, University of Birmingham, Birmingham, UK
| | | | - Annika Wilhelm
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | | | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alexander W. Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Childrens’ Hospital, Birmingham, UK
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Peter Balfe
- Centre for Human Virology, University of Birmingham, Birmingham, UK.
| | - Jane A. McKeating
- Centre for Human Virology, University of Birmingham, Birmingham, UK,NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, D-85748 Garching, Germany
| |
Collapse
|
3
|
Abstract
Mathematically modelling changes in HCV RNA levels measured in patients who receive antiviral therapy has yielded many insights into the pathogenesis and effects of treatment on the virus. By determining how rapidly HCV is cleared when viral replication is interrupted by a therapy, one can deduce how rapidly the virus is produced in patients before treatment. This knowledge, coupled with estimates of the HCV mutation rate, enables one to estimate the frequency with which drug resistant variants arise. Modelling HCV also permits the deduction of the effectiveness of an antiviral agent at blocking HCV replication from the magnitude of the initial viral decline. One can also estimate the lifespan of an HCV-infected cell from the slope of the subsequent viral decline and determine the duration of therapy needed to cure infection. The original understanding of HCV RNA decline under interferon-based therapies obtained by modelling needed to be revised in order to interpret the HCV RNA decline kinetics seen when using direct-acting antiviral agents (DAAs). There also exist unresolved issues involving understanding therapies with combinations of DAAs, such as the presence of detectable HCV RNA at the end of therapy in patients who nonetheless have a sustained virologic response.
Collapse
Affiliation(s)
- Alan S Perelson
- Theoretical Biology and Biophysics, MS-K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeremie Guedj
- INSERM, IAME, UMR 1137, 16 Rue Henri Huchard, F-75018 Paris, France
| |
Collapse
|
4
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|