1
|
Chen L, Tan Y, Li W, Huang L, Li K, Feng Z, Peng C, Mei Y. Pseudouridine synthase 1 promotes progression of hepatocellular carcinoma via mTOR and MYC signaling pathways. Front Oncol 2025; 15:1576651. [PMID: 40171259 PMCID: PMC11959026 DOI: 10.3389/fonc.2025.1576651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Pseudouridine synthases (PUSs) are associated with the development and progression of various cancers. However, the role of pseudouridine synthase 1 (PUS1) on HCC is unclear. The purpose of this study is to explore the biological role and mechanism of PUS1 in HCC growth and progression. We identified the expression of PUS1 in HCC. The biological roles and downstream cell signaling pathways of PUS1 were explored to clarify the molecular mechanism of PUS1 in the growth and development of HCC. The results showed that the expression of PUS1 was correlated with HCC progression, metastasis, and poor survival. In addition, the knockdown of PUS1 dramatically inhibited cell proliferation and colony formation and promoted cell apoptosis. GSEA analysis revealed that c-MYC, DNA repair, and mTORC1 pathways were significantly enriched in patients with high PUS1 expression. An intersection of the PUS1-dependent Ψ modification genes and c-MYC or mTORC1 pathway genes was performed. The expression of a part of these genes changed after PUS1 knockdown. Meanwhile, the expression of c-MYC and mTOR were down-regulated after PUS1 knockdown, but the inhibitory effect of PUS1 on cell growth capacity was not enhanced after inhibiting c-MYC or mTOR pathways. In conclusion, PUS1 regulates the occurrence and development of HCC through c-MYC and mTOR-related signaling pathways. It could be a novel molecule for clinical diagnosis, progression surveillance, prognosis assessment and therapeutic target of HCC.
Collapse
Affiliation(s)
- Li Chen
- Diagnostics Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yonghuang Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weinan Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lunkai Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Kang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zanjie Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Cijun Peng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong Mei
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Xing FL, Li BR, Fang YJ, Liang C, Liu J, Wang W, Xu J, Yu XJ, Qin Y, Zhang B. G3BP2 promotes tumor progression and gemcitabine resistance in PDAC via regulating PDIA3-DKC1-hENT in a stress granules-dependent manner. Acta Pharmacol Sin 2025; 46:474-488. [PMID: 39289547 PMCID: PMC11746999 DOI: 10.1038/s41401-024-01387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is distinguished by its aggressive malignancy, limited treatment avenues and a tendency towards chemotherapy resistance, underscoring the critical need for advanced research to uncover new therapeutic approaches. Stress granules (SGs) that is implicated in cellular self-protection mechanism, along with its associated family molecules have shown pro-cancer effects and are closely related to tumor chemotherapy resistance. In this study we investigated the relationship between Ras GTPase-activating protein-binding proteins 2 (G3BP2), a core component of SGs, and the malignancy of PDAC as well as its resistance to the chemotherapy drug gemcitabine. Analyzing TCGA dataset revealed that the expression of G3BP1 and G3BP2 was significantly upregulated in PDAC compared with adjacent normal pancreatic tissues, and the high expression of G3BP2 rather than G3BP1 was significantly associated with poorer overall survival (OS) in PDAC patients. We demonstrated that knockdown of G3BP2 inhibited the proliferation and invasion of PANC-1 and CFPAC-1 cells in vitro and in vivo. By analyzing the differentially expressed genes in G3BP2 knockdown and overexpressed PANC-1 cells, we identified DKC1 that was associated with RNA stability and regulation as the target of G3BP2. We demonstrated that G3BP2 bound to PDIA3 mRNA and recruited them into SGs, increasing the stability of PDIA3 mRNA and attenuating its translation efficiency, thereby promoting DKC1 expression. Furthermore, DKC1 could bind to hENT mRNA and inhibited its expression, which enhanced gemcitabine resistance of PDAC. Therefore, we propose a novel mechanism wherein G3BP2 facilitates PDAC's resistance to chemotherapy by modulating PDIA3-DKC1-hENT in a SGs-dependent way, suggesting G3BP2 SGs a protentional therapeutic target for the treatment in PDAC.
Collapse
MESH Headings
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Humans
- Drug Resistance, Neoplasm
- Protein Disulfide-Isomerases/metabolism
- Protein Disulfide-Isomerases/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Cell Line, Tumor
- Animals
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Stress Granules/metabolism
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Mice, Nude
- Cell Proliferation/drug effects
- RNA Recognition Motif Proteins/metabolism
- Mice
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- RNA Helicases/metabolism
- RNA Helicases/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Mice, Inbred BALB C
- Female
- RNA-Binding Proteins
Collapse
Affiliation(s)
- Fa-Liang Xing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo-Rui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ying-Jin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Hu YX, Diao LT, Hou YR, Lv G, Tao S, Xu WY, Xie SJ, Ren YH, Xiao ZD. Pseudouridine synthase 1 promotes hepatocellular carcinoma through mRNA pseudouridylation to enhance the translation of oncogenic mRNAs. Hepatology 2024; 80:1058-1073. [PMID: 38015993 DOI: 10.1097/hep.0000000000000702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIMS Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC. APPROACH AND RESULTS By analyzing the TCGA data set, PUS1 was found to be significantly upregulated in human HCC specimens and positively correlated with tumor grade and poor prognosis of HCC. Knockdown of PUS1 inhibited cell proliferation and the growth of tumors in a subcutaneous xenograft mouse model. Accordingly, increased cell proliferation and tumor growth were observed in PUS1-overexpressing cells. Furthermore, overexpression of PUS1 significantly accelerates tumor formation in a mouse HCC model established by hydrodynamic tail vein injection, while knockout of PUS1 decreases it. Additionally, PUS1 catalytic activity is required for HCC tumorigenesis. Mechanistically, we profiled the mRNA targets of PUS1 by utilizing surveying targets by apolipoprotein B mRNA-editing enzyme 1 (APOBEC1)-mediated profiling and found that PUS1 incorporated pseudouridine into mRNAs of a set of oncogenes, thereby endowing them with greater translation capacity. CONCLUSIONS Our study highlights the critical role of PUS1 and pseudouridylation in HCC development, and provides new insight that PUS1 enhances the protein levels of a set of oncogenes, including insulin receptor substrate 1 (IRS1) and c-MYC, by means of pseudouridylation-mediated mRNA translation.
Collapse
Affiliation(s)
- Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Guo Lv
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Wan-Yi Xu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Shu-Juan Xie
- Institute of Vaccine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Ya-Han Ren
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
4
|
Ding H, Liu N, Wang Y, Adam SA, Jin J, Feng W, Sun J. Implications of RNA pseudouridylation for cancer biology and therapeutics: a narrative review. J Transl Med 2024; 22:906. [PMID: 39375731 PMCID: PMC11457414 DOI: 10.1186/s12967-024-05687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Pseudouridine (Ψ), a C5-glycoside isomer of uridine, stands as one of the most prevalent RNA modifications in all RNA types. Distinguishing from the C-N bond linking uridine to ribose, the link between Ψ and ribose is a C-C bond, endowing Ψ modified RNA distinct properties and functions in various biological processes. The conversion of uridine to Ψ is governed by pseudouridine synthases (PUSs). RNA pseudouridylation is implicated in cancer biology and therapeutics. OBJECTIVES In this review, we will summarize the methods for detecting Ψ, the process of Ψ generation, the impact of Ψ modification on RNA metabolism and gene expression, the roles of dysregulated Ψ and pseudouridine synthases in cancers, and the underlying mechanism. METHODS We conducted a comprehensive search of PubMed from its inception through February 2024. The search terms included "pseudouridine"; "pseudouridine synthase"; "PUS"; "dyskerin"; "cancer"; "tumor"; "carcinoma"; "malignancy"; "tumorigenesis"; "biomarker"; "prognosis" and "therapy". We included studies published in peer-reviewed journals that focused on Ψ detection, specific mechanisms involving Ψ and PUSs, and prognosis in cancer patients with high Ψ expression. We excluded studies lacking sufficient methodological details or appropriate controls. RESULTS Ψ has been recognized as a significant biomarker in cancer diagnosis and prognosis. Abnormal Ψ modifications mediated by various PUSs result in dysregulated RNA metabolism and impaired RNA function, promoting the development of various cancers. Overexpression of PUSs is common in cancer cells and predicts poor prognosis. PUSs inhibition arrests cell proliferation and enhances apoptosis in cancer cells, suggesting PUS-targeting cancer therapy may be a potential strategy in cancer treatment. DISCUSSION High Ψ levels in serum, urine, and saliva may suggest cancer, but do not specify the type, requiring additional lab markers and imaging for accurate diagnosis. Standardized detection methods are also crucial for reliable results. PUSs are linked to cancer, but more researches are needed to understand their mechanisms in different cancers. Anticancer treatments targeting PUSs are still under developed.
Collapse
Affiliation(s)
- Hanyi Ding
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Na Liu
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res 2024; 206:107280. [PMID: 38914382 DOI: 10.1016/j.phrs.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of public administration, Hangzhou Normal University, Hangzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyv Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruonan Lu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Jalan A, Jayasree PJ, Karemore P, Narayan KP, Khandelia P. Decoding the 'Fifth' Nucleotide: Impact of RNA Pseudouridylation on Gene Expression and Human Disease. Mol Biotechnol 2024; 66:1581-1598. [PMID: 37341888 DOI: 10.1007/s12033-023-00792-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Cellular RNAs, both coding and noncoding are adorned by > 100 chemical modifications, which impact various facets of RNA metabolism and gene expression. Very often derailments in these modifications are associated with a plethora of human diseases. One of the most oldest of such modification is pseudouridylation of RNA, wherein uridine is converted to a pseudouridine (Ψ) via an isomerization reaction. When discovered, Ψ was referred to as the 'fifth nucleotide' and is chemically distinct from uridine and any other known nucleotides. Experimental evidence accumulated over the past six decades, coupled together with the recent technological advances in pseudouridine detection, suggest the presence of pseudouridine on messenger RNA, as well as on diverse classes of non-coding RNA in human cells. RNA pseudouridylation has widespread effects on cellular RNA metabolism and gene expression, primarily via stabilizing RNA conformations and destabilizing interactions with RNA-binding proteins. However, much remains to be understood about the RNA targets and their recognition by the pseudouridylation machinery, the regulation of RNA pseudouridylation, and its crosstalk with other RNA modifications and gene regulatory processes. In this review, we summarize the mechanism and molecular machinery involved in depositing pseudouridine on target RNAs, molecular functions of RNA pseudouridylation, tools to detect pseudouridines, the role of RNA pseudouridylation in human diseases like cancer, and finally, the potential of pseudouridine to serve as a biomarker and as an attractive therapeutic target.
Collapse
Affiliation(s)
- Abhishek Jalan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - P J Jayasree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Pragati Karemore
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Telangana, 500078, India.
| |
Collapse
|
8
|
Lu Z, Xie S, Su H, Han S, Huang H, Zhou X. Identification of G-quadruplex-interacting proteins in living cells using an artificial G4-targeting biotin ligase. Nucleic Acids Res 2024; 52:e37. [PMID: 38452210 PMCID: PMC11040147 DOI: 10.1093/nar/gkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures pivotal to cellular processes and disease pathways. Deciphering G4-interacting proteins is imperative for unraveling G4's biological significance. In this study, we developed a G4-targeting biotin ligase named G4PID, meticulously assessing its binding affinity and specificity both in vitro and in vivo. Capitalizing on G4PID, we devised a tailored approach termed G-quadruplex-interacting proteins specific biotin-ligation procedure (PLGPB) to precisely profile G4-interacting proteins. Implementing this innovative strategy in live cells, we unveiled a cohort of 149 potential G4-interacting proteins, which exhibiting multifaceted functionalities. We then substantiate the directly binding affinity of 7 candidate G4-interacting-proteins (SF3B4, FBL, PP1G, BCL7C, NDUV1, ILF3, GAR1) in vitro. Remarkably, we verified that splicing factor 3B subunit 4 (SF3B4) binds preferentially to the G4-rich 3' splice site and the corresponding splicing sites are modulated by the G4 stabilizer PDS, indicating the regulating role of G4s in mRNA splicing procedure. The PLGPB strategy could biotinylate multiple proteins simultaneously, which providing an opportunity to map G4-interacting proteins network in living cells.
Collapse
Affiliation(s)
- Ziang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Shengjie Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Haomiao Su
- Department of Chemistry, Yale University, 600 West Campus Drive West Haven, West Haven, CT 06516, USA
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Haiyan Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
- Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
9
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
10
|
Yuan H, Qin X, Yang Q, Liu L, Fang Z, Fan Y, Xu D. Dyskerin and telomerase RNA component are sex-differentially associated with outcomes and Sunitinib response in patients with clear cell renal cell carcinoma. Biol Sex Differ 2023; 14:46. [PMID: 37434223 DOI: 10.1186/s13293-023-00526-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) displays sex-biased incidence, outcomes, molecular alterations and treatment efficacy; however, clinical managements are largely identical in male and female patients. Moreover, many biomarkers have been identified as predictors for ccRCC outcomes and response to therapeutic drugs, such as multitargeted tyrosine-kinase receptor (TKR) inhibitors, but little is known about their sex-specificity. Dyskerin (DKC1), encoded by the DKC1 gene within Xq28, is a telomerase co-factor stabilizing telomerase RNA component (TERC) and overexpressed in various cancers. Here, we determined whether DKC1 and/or TERC affect ccRCC sex-differentially. METHODS DKC1 and TERC expression in primary ccRCC tumors was assessed using RNA sequencing and qPCR. DKC1 association with molecular alterations and overall or progression-free survival (OS or PFS) was analyzed in the TCGA cohort of ccRCC. The IMmotion 151 and 150 ccRCC cohorts were analyzed to evaluate impacts of DKC1 and TERC on Sunitinib response and PFS. RESULTS DKC1 and TERC expression was significantly upregulated in ccRCC tumors. High DKC1 expression predicts shorter PFS independently in female but not male patients. Tumors in the female DKC1-high group exhibited more frequent alterations in PIK3CA, MYC and TP53 genes. Analyses of the IMmotion 151 ccRCC cohort treated with the TKR inhibitor Sunitinib showed that female patients in the DKC1-high group was significantly associated with lower response rates (P = 0.021) accompanied by markedly shortened PFS (6.1 vs 14.2 months, P = 0.004). DKC1 and TERC expression correlated positively with each other, and higher TERC expression predicted poor Sunitinib response (P = 0.031) and shorter PFS (P = 0.004), too. However, DKC1 rather than TERC acted as an independent predictor (P < 0.001, HR = 2.0, 95% CI 1.480-2.704). In male patients, DKC1 expression was associated with neither Sunitinib response (P = 0.131) nor PFS (P = 0.184), while higher TERC levels did not predict response rates. Similar results were obtained from the analysis of the Sunitinib-treated IMmotion 150 ccRCC patients. CONCLUSIONS DKC1 serves as an independent female-specific predictor for survival and Sunitinib efficacy in ccRCC, which contribute to better understanding of the sex-biased ccRCC pathogenesis and improve personalized interventions of ccRCC.
Collapse
Affiliation(s)
- Huiyang Yuan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xin Qin
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qingya Yang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Li Liu
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 100191, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.
| |
Collapse
|
11
|
Wu X, Li JH, Xu L, Li YX, Zhu XX, Wang XY, Wu X, Zhao W, Ni X, Yin XY. SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1. Cell Death Differ 2023:10.1038/s41418-023-01175-4. [PMID: 37188742 DOI: 10.1038/s41418-023-01175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
In the past few decades, advances in the outcomes of patients suffering from pancreatic ductal adenocarcinoma (PDAC) have lagged behind these gained in the treatment of many other malignancies. Although the pivotal role of the SUMO pathway in PDAC has been illustrated, the underlying molecule drivers have yet to be fully elucidated. In the present study, we identified SENP3 as a potential suppressor of PDAC progression through an in vivo metastatic model. Further studies revealed that SENP3 inhibited PDAC invasion in a SUMO system dependent fashion. Mechanistically, SENP3 interacted with DKC1 and, as such, catalyzed the deSUMOylation of DKC1, which accepted SUMO3 modifiers at three lysine residues. SENP3-mediated deSUMOylation caused DKC1 instability and disruption of the interaction between snoRNP proteins, which contributed to the impaired migration ability of PDAC. Indeed, overexpression of DKC1 abated the anti-metastasis effect of SENP3, and DKC1 was elevated in PDAC specimens and associated with a poor prognosis in PDAC patients. Collectively, our findings shed light on the essential role of SENP3/DKC1 axis in the progression of PDAC.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ya-Xiong Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xingmei Wu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Xiang J, Liu C, He Q, He P, Dong W. Comprehensive analysis of immunogenic cell death associated genes expression, tumor microenvironment, and prognosis in hepatocellular carcinoma. Front Pharmacol 2023; 14:1122011. [PMID: 36998605 PMCID: PMC10045985 DOI: 10.3389/fphar.2023.1122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Immunogenic cell death (ICD) plays an important role in the development of cancers. This study attempted to explore the role of ICD in the prognosis of hepatocellular carcinoma (HCC).Methods: Gene expression and clinical data were downloaded from The Cancer Genome Alas and Gene Expression Omnibus dataset. The immune/stromal/Estimate scores of the tumor microenvironment (TME) were calculated by ESTIMATE and CIBERSORT algorithms. Kaplan-Meier analysis, functional enrichment analysis, least absolute shrinkage and selection operator (LASSO) analysis, and univariate and multivariate Cox regression analysis were used for prognostic gene screening and prognostic model construction. The correlation of immune cell infiltration and risk scores was analyzed as well. Molecular docking was used to explore the relevance of related genes to anti-cancer drugs.Results: Ten ICD associated differentially expressed genes in HCC were found, and all of them had good predictive ability for HCC. ICD gene high amount of expression group was associated with poor prognosis (p = 0.015). The TME, immune cell infiltration and gene expression were different between ICD high and low groups (all p < 0.05). Six ICD associated genes (BAX, CASP8, IFNB1, LY96, NT5E and PIK3CA) which could predict the survival status were identified and used to construct the prognostic model for HCC. A risk score was calculated and it could be used as an independent prognostic factor in HCC patients (p < 0.001). In addition, the risk score had a positive correlation with macrophage M0 (r = 0.33, p = 0.0086). Molecular docking indicated that sorafenib could bind strongly to the target protein, representing that sorafenib may exert anticancer effects through these six ICD associated genes.Conclusion: This study established a prognostic model including six ICD associated genes for HCC, which may deepen our understanding of ICD and guide therapy for HCC patients.
Collapse
Affiliation(s)
- Jiankang Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingmin He
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Weiguo Dong,
| |
Collapse
|
13
|
Jin Z, Song M, Wang J, Zhu W, Sun D, Liu H, Shi G. Integrative multiomics evaluation reveals the importance of pseudouridine synthases in hepatocellular carcinoma. Front Genet 2022; 13:944681. [PMID: 36437949 PMCID: PMC9686406 DOI: 10.3389/fgene.2022.944681] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Background: The pseudouridine synthases (PUSs) have been reported to be associated with cancers. However, their involvement in hepatocellular carcinoma (HCC) has not been well documented. Here, we assess the roles of PUSs in HCC. Methods: RNA sequencing data of TCGA-LIHC and LIRI-JP were downloaded from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), respectively. GSE36376 gene expression microarray was downloaded from the Gene Expression Omnibus (GEO). Proteomics data for an HBV-related HCC cohort was obtained from the CPTAC Data Portal. The RT-qPCR assay was performed to measure the relative mRNA expression of genes in clinical tissues and cell lines. Diagnostic efficiency was evaluated by the ROC curve. Prognostic value was assessed using the Kaplan-Meier curve, Cox regression model, and time-dependent ROC curve. Copy number variation (CNV) was analyzed using the GSCA database. Functional analysis was carried out with GSEA, GSVA, and clusterProfiler package. The tumor microenvironment (TME) related analysis was performed using ssGSEA and the ESTIMATE algorithm. Results: We identified 7 PUSs that were significantly upregulated in HCC, and 5 of them (DKC1, PUS1, PUS7, PUSL1, and RPUSD3) were independent risk factors for patients' OS. Meanwhile, the protein expression of DKC1, PUS1, and PUS7 was also upregulated and related to poor survival. Both mRNA and protein of these PUSs were highly diagnostic of HCC. Moreover, the CNV of PUS1, PUS7, PUS7L, and RPUSD2 was also associated with prognosis. Further functional analysis revealed that PUSs were mainly involved in pathways such as genetic information processing, substance metabolism, cell cycle, and immune regulation. Conclusion: PUSs may play crucial roles in HCC and could be used as potential biomarkers for the diagnosis and prognosis of patients.
Collapse
Affiliation(s)
- Zhipeng Jin
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Mengying Song
- Department of Operation Room, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jianping Wang
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Dongxu Sun
- Graduate School of Dalian Medical University, Dalian, China; Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
14
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
15
|
A new quantitative method for pseudouridine and uridine in human serum and its clinical application in acute myeloid leukemia. J Pharm Biomed Anal 2022; 219:114934. [PMID: 35839582 DOI: 10.1016/j.jpba.2022.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
Abstract
Pseudouridine, a C-C glycosidic isomer of uridine, is derived from uridine via isomerization, and pseudouridylation is the most common post-transcriptional modification. Our previous study shows pseudouridine may serve an important role in acute myeloid leukemia (AML). The clinical value of pseudouridine and uridine is hampered by the lack of a quantitative methods with high sensitivity, specificity, and stability. Here, we established a supercritical fluid chromatography-tandem triple quadrupole mass spectrometry (SFC-TQ-MS)-based method to quantitate serum pseudouridine and uridine simultaneously. The procedure involves protein precipitation of sample, extraction with solid phase extraction (SPE) plate, 5-min SFC separation by applying gradient elution on a Acquity UPC2 Torus DIOL column, and analysis by TQ-MS using well-characterized calibration standards. After validation, the method was used to measure pseudouridine and uridine concentrations in 143 serum samples from healthy controls (HCs) and AML patients to evaluate their prognostic potential. The successfully validated assay had a linear range of 5-5000 ng/mL, accuracies between 97 % and 102 %, and intra- and inter-assay imprecision <10 %. Compared to HCs, pseudouridine was raised significantly, while uridine was curtailed severely in patients with AML. With a median concentration of 671.4 ng/mL as the prognostic cut-off value, high level pseudouridine independently predicted poor survival of AML patients. Quantification of serum pseudouridine and uridine by SFC-TQ-MS provides an analytically sensitive and reproducible method for clinical diagnosis, and high concentration of pseudouridine is an independent prognostic factor for patients with AML.
Collapse
|
16
|
Sumaily KM. The Roles and Pathogenesis Mechanisms of a Number of Micronutrients in the Prevention and/or Treatment of Chronic Hepatitis, COVID-19 and Type-2 Diabetes Mellitus. Nutrients 2022; 14:2632. [PMID: 35807813 PMCID: PMC9268086 DOI: 10.3390/nu14132632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
A trace element is a chemical element with a concentration (or other measures of an amount) that is very low. The essential TEs, such as copper (Cu), selenium (Se), zinc (Zn), iron (Fe) and the electrolyte magnesium (Mg) are among the most commonly studied micronutrients. Each element has been shown to play a distinctive role in human health, and TEs, such as iron (Fe), zinc (Zn) and copper (Cu), are among the essential elements required for the organisms' well-being as they play crucial roles in several metabolic pathways where they act as enzyme co-factors, anti-inflammatory and antioxidant agents. Epidemics of infectious diseases are becoming more frequent and spread at a faster pace around the world, which has resulted in major impacts on the economy and health systems. Different trace elements have been reported to have substantial roles in the pathogenesis of viral infections. Micronutrients have been proposed in various studies as determinants of liver disorders, COVID-19 and T2DM risks. This review article sheds light on the roles and mechanisms of micronutrients in the pathogenesis and prevention of chronic hepatitis B, C and E, as well as Coronavirus-19 infection and type-2 diabetes mellitus. An update on the status of the aforementioned micronutrients in pre-clinical and clinical settings is also briefly summarized.
Collapse
Affiliation(s)
- Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
17
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
18
|
Yu J, Zhang W, Ding D, Hu Y, Guo G, Wang J, Han Y. Bioinformatics Analysis Combined With Experiments Predicts PUDP as a Potential Prognostic Biomarker for Hepatocellular Carcinoma Through Its Interaction With Tumor Microenvironment. Front Oncol 2022; 12:830174. [PMID: 35350563 PMCID: PMC8957838 DOI: 10.3389/fonc.2022.830174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest tumors in the world and is notorious for poor prognosis. There is mounting evidence that pseudouridine performs key functions in the initiation and progression of several cancers. A previous study demonstrated that Pseudouridine 5’-phosphatase (PUDP) may be a novel prognostic biomarker in colorectal cancer. However, in the past, we have paid little attention to PUDP and we are still not clear about its function and role in cancer. In this study, a pan-cancer analysis of PUDP expression and prognosis was performed firstly using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data and we found that PUDP may be a potential oncogene for HCC. Then the most potential upstream microRNA contributing to PUDP was identified as let-7c-5p through expression analysis, correlation analysis, and survival analysis. Subsequently, the result of single cell RNA sequencing (scRNA-seq) demonstrated that PUDP was significantly highly expressed on malignant cells. In addition, there are significantly positive correlations between PUDP and tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression, especially with tumor-promoting immune cells such as T cell regulatory (Treg), Myeloid-derived suppressor cell (MDSC), cancer-associated fibroblast (CAF). Moreover, we found the methylation level of three loci was positively correlated with PUDP expression and four loci were negatively correlated. 15 pairs of HCC and normal adjacent tissues from HCC patients who were treated at our center were used to verify the results of the bioinformatics analysis and the results of experiments are similar to the bioinformatics analysis. Our study demonstrated that HCC patients with high PUDP expression are less likely to benefit from immunotherapy, and in addition, we explored the relationship between PUDP and anticancer drugs. Finally, we explored the clinical relevance of PUDP, identified PUDP as an independent risk factor for HCC patients and constructed a prognostic model, used International Cancer Genome Consortium (ICGC) data to do external validation. Collectively, our study demonstrated that high expression of PUDP suggested a poor prognosis and low response to immunotherapy, providing new insight into the treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Jiahao Yu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Weirui Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Dawei Ding
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
19
|
Lin Y, He F, Lian S, Xie B, Liu T, He J, Liu C. Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14050952. [PMID: 35267927 PMCID: PMC8912406 DOI: 10.3390/nu14050952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Background: The potential role of selenium in preventing chronic liver diseases remains controversial. This meta-analysis aimed to summarize the available evidence from observational studies and intervention trials that had evaluated the associations between body selenium status and chronic liver diseases. Methods: We comprehensively searched MEDLINE, Embase, Web of Science, and Cochrane Library from inception to April 2021. The study protocol was registered at PROSPERO (CRD42020210144). Relative risks (RR) for the highest versus the lowest level of selenium and standard mean differences (SMD) with 95% confidence intervals (CI) were pooled using random-effects models. Heterogeneity and publication bias were evaluated using the I2 statistic and Egger’s regression test, respectively. Results: There were 50 studies with 9875 cases and 12975 population controls in the final analysis. Patients with hepatitis (SMD = −1.78, 95% CI: −2.22 to −1.34), liver cirrhosis (SMD = −2.06, 95% CI: −2.48 to −1.63), and liver cancer (SMD = −2.71, 95% CI: −3.31 to −2.11) had significantly lower selenium levels than controls, whereas there was no significant difference in patients with fatty liver diseases (SMD = 1.06, 95% CI: −1.78 to 3.89). Moreover, the meta-analysis showed that a higher selenium level was significantly associated with a 41% decrease in the incidence of significant advanced chronic liver diseases (RR = 0.59, 95% CI: 0.49 to 0.72). Conclusion: Our meta-analysis suggested that both body selenium status and selenium intake were negatively associated with hepatitis, cirrhosis, and liver cancer. However, the associations for fatty liver diseases were conflicting and need to be established in prospective trials.
Collapse
Affiliation(s)
- Yaduan Lin
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Fanchen He
- Institute of Land and Sea Transport Systems, Faculty of Mechanical Engineering and Transport Systems, Technical University of Berlin, 10623 Berlin, Germany;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Binbin Xie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Ting Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
| | - Jiang He
- Department of Mathematics and Physics, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Correspondence: (J.H.); (C.L.)
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.L.); (S.L.); (B.X.); (T.L.)
- Correspondence: (J.H.); (C.L.)
| |
Collapse
|
20
|
Chichiarelli S, Altieri F, Paglia G, Rubini E, Minacori M, Eufemi M. ERp57/PDIA3: new insight. Cell Mol Biol Lett 2022; 27:12. [PMID: 35109791 PMCID: PMC8809632 DOI: 10.1186/s11658-022-00315-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Enrico Ed Enrica Sovena" Foundation, Rome, Italy
| | - Marco Minacori
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| |
Collapse
|
21
|
Li L, Cao Y, Fan Y, Li R. Gene signature to predict prognostic survival of hepatocellular carcinoma. Open Med (Wars) 2022; 17:135-150. [PMID: 35071775 PMCID: PMC8742913 DOI: 10.1515/med-2021-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and poor prognosis and is the second most fatal cancer, and certain HCC patients also show high heterogeneity. This study developed a prognostic model for predicting clinical outcomes of HCC. RNA and microRNA (miRNA) sequencing data of HCC were obtained from the cancer genome atlas. RNA dysregulation between HCC tumors and adjacent normal liver tissues was examined by DESeq algorithms. Survival analysis was conducted to determine the basic prognostic indicators. We identified competing endogenous RNA (ceRNA) containing 15,364 pairs of mRNA–long noncoding RNA (lncRNA). An imbalanced ceRNA network comprising 8 miRNAs, 434 mRNAs, and 81 lncRNAs was developed using hypergeometric test. Functional analysis showed that these RNAs were closely associated with biosynthesis. Notably, 53 mRNAs showed a significant prognostic correlation. The least absolute shrinkage and selection operator’s feature selection detected four characteristic genes (SAPCD2, DKC1, CHRNA5, and UROD), based on which a four-gene independent prognostic signature for HCC was constructed using Cox regression analysis. The four-gene signature could stratify samples in the training, test, and external validation sets (p <0.01). Five-year survival area under ROC curve (AUC) in the training and validation sets was greater than 0.74. The current prognostic gene model exhibited a high stability and accuracy in predicting the overall survival (OS) of HCC patients.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University , Nanjing , Jiangsu, 210000 , China
| | - Yundi Cao
- Department of Medical Oncology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University , Nanjing , Jiangsu , China
| | - YingRui Fan
- Department of Medical Oncology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University , Nanjing , Jiangsu , China
| | - Rong Li
- Department of Medical Oncology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University , Nanjing , Jiangsu , China
| |
Collapse
|
22
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
23
|
Zhang M, Zhao W, Liu S, Liu H, Liu L, Peng Q, Du C, Jiang N. H/ACA snoRNP Gene Family as Diagnostic and Prognostic Biomarkers for Hepatocellular Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1331-1345. [PMID: 34703278 PMCID: PMC8541795 DOI: 10.2147/pgpm.s333838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 01/05/2023]
Abstract
Background The H/ACA small nucleolar ribonucleoprotein (snoRNP) gene family, including GAR1 ribonucleoprotein (GAR1), NHP2 ribonucleoprotein (NHP2), NOP10 ribonucleoprotein (NOP10), and dyskerin pseudouridine synthase 1 (DKC1), play important roles in ribosome biogenesis. However, the potential clinical value of the H/ACA snoRNP gene family in hepatocellular carcinoma (HCC) has not yet been reported. Methods Bioinformation databases were used to analyze the expression and roles of the H/ACA snoRNP gene family in HCC. Survival analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes enrichment pathway (KEGG) analyses were performed using R software. Tumor Immune Estimation Resource (TIMER) was used to analyze the correlation between the expression of the H/ACA snoRNP gene family and immune infiltration in HCC. Finally, immunohistochemistry and Western blotting were performed to verify the protein expression of the H/ACA snoRNP gene family in HCC tissues and adjacent tissues. Results The expression of the H/ACA snoRNP gene family was significantly increased in HCC samples compared to normal tissues, and the area under the curve (AUC) of GAR1, NHP2, NOP10, and DKC1 was 0.898, 0.962, 0.884, and 0.911, respectively. Increased expression of the H/ACA snoRNP gene family was associated with poor prognosis in HCC patients (Hazard Ratio, HR = 1.44 [1.02-2.04], 1.70 [1.20-2.40], 1.53 [1.09-2.17], and 1.43 [1.02-2.03], respectively; log-rank P = 0.036, 0.003, 0.014, 0.039, respectively). GO and KEGG analyses showed that co-expressed genes were primarily enriched in ribosome biogenesis. In addition, upregulated expression of H/ACA snoRNP gene family was related to the infiltration of various immune cells and multiple T cell exhaustion markers in HCC patients. Immunohistochemical analysis and Western blotting showed that the protein expression of H/ACA snoRNP gene family was higher in HCC tissues than in adjacent tissues of clinical samples. Conclusion H/ACA snoRNP gene family expression was higher in HCC tissues than in normal or adjacent tissues and was highly associated with poor prognosis of HCC patients and, therefore, has the potential to serve as diagnostic and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haichuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Liang Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
24
|
Mortalin/glucose-regulated protein 75 promotes the cisplatin-resistance of gastric cancer via regulating anti-oxidation/apoptosis and metabolic reprogramming. Cell Death Discov 2021; 7:140. [PMID: 34117210 PMCID: PMC8196146 DOI: 10.1038/s41420-021-00517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Platinum drug treatment is one of the most predominant chemotherapeutic strategies for patients with gastric cancer (GC). However, the therapeutic effect is less than satisfactory, largely due to the acquired resistance to platinum drugs. Therefore, a better understanding of the underlying mechanisms can greatly improve the therapeutic efficacy of GC. In this study, we aimed to investigate the chemo-resistance related functions/mechanisms and clinical significance of glucose-regulated protein 75 (GRP75) in GC. Here, our data showed that compared with SGC7901 cells, the expression of GRP75 was markedly higher in cisplatin-resistance cells (SGC7901CR). Knockdown of GRP75 abolished the maintenance of mitochondrial membrane potential (MMP) and inhibited the nuclear factor erythroid-2-related factor 2 (NRF2), phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), hypoxia-inducible factor 1α (HIF-1α), and c-myc, which resulted in blocking the activation of their downstream targets. These processes attenuated the anti-oxidation/apoptosis abilities and altered the metabolic reprogramming in SGC7901CR cells, leading to re-sensitizing these cells to cisplatin. However, overexpression of GRP75 in SGC7901 cells caused the opposite effects. A xenografts model confirmed the abovementioned results. In GC patients receiving platinum chemotherapy and a meta-analysis, a high level of GRP75 was positively associated with aggressive characteristics and poor prognosis including but not limited to gastrointestinal cancers, and was an independent predictor for overall survival. Collectively, our study indicated that GRP75 was involved in the cisplatin-resistance of GC and that GRP75 could be a potential therapeutic target for restoring the drug response in platinum-resistance cells and a useful additive prognostic tool in guiding clinical management of GC patients.
Collapse
|
25
|
Kan G, Wang Z, Sheng C, Chen G, Yao C, Mao Y, Chen S. Dual Inhibition of DKC1 and MEK1/2 Synergistically Restrains the Growth of Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004344. [PMID: 34026451 PMCID: PMC8132060 DOI: 10.1002/advs.202004344] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Indexed: 05/09/2023]
Abstract
Colorectal cancer, one of the most commonly diagnosed cancers worldwide, is often accompanied by uncontrolled proliferation of tumor cells. Dyskerin pseudouridine synthase 1 (DKC1), screened using the genome-wide RNAi strategy, is a previously unidentified key regulator that promotes colorectal cancer cell proliferation. Enforced expression of DKC1, but not its catalytically inactive mutant D125A, accelerates cell growth in vitro and in vivo. DKC1 knockdown or its inhibitor pyrazofurin attenuates cell proliferation. Proteomics, RNA immunoprecipitation (RIP)-seq, and RNA decay analyses reveal that DKC1 binds to and stabilizes the mRNA of several ribosomal proteins (RPs), including RPL10A, RPL22L1, RPL34, and RPS3. DKC1 depletion significantly accelerates mRNA decay of these RPs, which mediates the oncogenic function of DKC1. Interestingly, these DKC1-regulated RPs also interact with HRAS and suppress the RAS/RAF/MEK/ERK pathway. Pyrazofurin and trametinib combination synergistically restrains colorectal cancer cell growth in vitro and in vivo. Furthermore, DKC1 is markedly upregulated in colorectal cancer tissues compared to adjacent normal tissues. Colorectal cancer patients with higher DKC1 expression has consistently poorer overall survival and progression-free survival outcomes. Taken together, these data suggest that DKC1 is an essential gene and candidate therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Guangyan Kan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ziyang Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Gong Chen
- Department of Colorectal SurgeryState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Chen Yao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Shuai Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| |
Collapse
|
26
|
Kan G, Wang Z, Sheng C, Yao C, Mao Y, Chen S. Inhibition of DKC1 induces telomere-related senescence and apoptosis in lung adenocarcinoma. J Transl Med 2021; 19:161. [PMID: 33879171 PMCID: PMC8056518 DOI: 10.1186/s12967-021-02827-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Lung cancer is one of the most widely spread cancers in the world and half of the non-small cell lung cancers are lung adenocarcinoma (LUAD). Although there were several drugs been approved for LUAD therapy, a large portion of LUAD still cannot be effectively treated due to lack of available therapeutic targets. Here, we investigated the oncogenic roles of DKC1 in LUAD and its potential mechanism and explored the possibility of targeting DKC1 for LUAD therapy. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Program (TCGA) databases were used to examine the DKC1 transcript levels. Gene expression with clinical information from tissue microarray of LUAD were analyzed for associations between DKC1 expression and LUAD prognosis. In addition, loss- and gain-of-function assays were used for oncogenic function of DKC1 both in vitro and in vivo. Results DKC1 is overexpressed in LUAD compared with adjacent normal tissues. High expression of DKC1 predicts the poor overall survival. DKC1 knockdown in LUAD cell lines induced G1 phase arrest and inhibited cell proliferation. Ectopic expression of DKC1 could rescue the growth of LUAD cell lines. In addition, the abundance of DKC1 is positively correlated with telomerase RNA component (TERC) and telomerase reverse transcriptase (TERT) levels in LUAD. DKC1 downregulation resulted in decreased TERC expression, reduced telomerase activity and shorten telomere, and thus eventually led to cell senescence and apoptosis. Conclusions Our results show that high DKC1 expression indicates poor prognosis of LUAD and DKC1 downregulation could induce telomere-related cell senescence and apoptosis. This study suggests that DKC1 could serve as a candidate diagnostic biomarker and therapeutic target for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02827-0.
Collapse
Affiliation(s)
- Guangyan Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ziyang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Brochado Ó, Martínez I, Berenguer J, Medrano L, González-García J, Jiménez-Sousa MÁ, Carrero A, Hontañón V, Navarro J, Guardiola JM, Fernández-Rodríguez A, Resino S. HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. J Biomed Sci 2021; 28:23. [PMID: 33785040 PMCID: PMC8010945 DOI: 10.1186/s12929-021-00718-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Objective To evaluate the impact of hepatitis C virus (HCV) elimination via interferon (IFN)-based therapy on gene expression profiles related to the immune system in HIV/HCV-coinfected patients. Methods We conducted a prospective study in 28 HIV/HCV-coinfected patients receiving IFN-based therapy at baseline (HIV/HCV-b) and week 24 after sustained virological response (HIV/HCV-f). Twenty-seven HIV-monoinfected patients (HIV-mono) were included as a control. RNA-seq analysis was performed on peripheral blood mononuclear cells (PBMCs). Genes with a fold-change (FC) ≥ 1.5 (in either direction) and false discovery rate (FDR) ≤ 0.05 were identified as significantly differentially expressed (SDE). Results HIV/HCV-b showed six SDE genes compared to HIV-mono group, but no significantly enriched pathways were observed. For HIV/HCV-f vs. HIV/HCV-b, we found 58 SDE genes, 34 upregulated and 24 downregulated in the HIV/HCV-f group. Of these, the most overexpressed were CXCL2, PDCD6IP, ATP5B, IGSF9, RAB26, and CSRNP1, and the most downregulated were IFI44 and IFI44L. These 58 SDE genes revealed two significantly enriched pathways (FDR < 0.05), one linked to Epstein-Barr virus infection and another related to p53 signaling. For HIV/HCV-f vs. HIV-mono group, we found 44 SDE genes that revealed 31 enriched pathways (FDR < 0.05) related to inflammation, cancer/cell cycle alteration, viral and bacterial infection, and comorbidities associated with HIV/HCV-coinfection. Five genes were overrepresented in most pathways (JUN, NFKBIA, PIK3R2, CDC42, and STAT3). Conclusion HIV/HCV-coinfected patients who eradicated hepatitis C with IFN-based therapy showed profound gene expression changes after achieving sustained virological response. The altered pathways were related to inflammation and liver-related complications, such as non-alcoholic fatty liver disease and hepatocellular carcinoma, underscoring the need for active surveillance for these patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00718-6.
Collapse
Affiliation(s)
- Óscar Brochado
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain.
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Luz Medrano
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Juan González-García
- Unidad de VIH, Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain.,Instituto de Investigacion Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Ana Carrero
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain
| | - Víctor Hontañón
- Unidad de VIH, Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain.,Instituto de Investigacion Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Jordi Navarro
- Servicio de Enfermedades Infecciosas, Hospital Universitari Vall D'Hebron, Barcelona, Spain.,Institut de Recerca Vall D'Hebron, Barcelona, Spain
| | | | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, MajadahondaMadrid, Spain.
| | | |
Collapse
|
28
|
Song D, Liu H, Wu J, Gao X, Hao J, Fan D. Insights into the role of ERp57 in cancer. J Cancer 2021; 12:2456-2464. [PMID: 33758622 PMCID: PMC7974888 DOI: 10.7150/jca.48707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Danyang Song
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jian Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoliang Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
29
|
Yin H, Gao J, Chen X, Ma B, Yang Z, Tang J, Wang B, Chen T, Wang C, Gao S, Zhang J. A Gallium(III) Complex that Engages Protein Disulfide Isomerase A3 (PDIA3) as an Anticancer Target. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao‐Yan Yin
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Jiu‐Jiao Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Xuemin Chen
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bin Ma
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Tianfeng Chen
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Chu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
30
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
31
|
Yin H, Gao J, Chen X, Ma B, Yang Z, Tang J, Wang B, Chen T, Wang C, Gao S, Zhang J. A Gallium(III) Complex that Engages Protein Disulfide Isomerase A3 (PDIA3) as an Anticancer Target. Angew Chem Int Ed Engl 2020; 59:20147-20153. [DOI: 10.1002/anie.202008432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/23/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hao‐Yan Yin
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Jiu‐Jiao Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Xuemin Chen
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bin Ma
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Juan Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Tianfeng Chen
- Department of Chemistry Jinan University Guangzhou 510632 P. R. China
| | - Chu Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
32
|
Ko E, Kim JS, Bae JW, Kim J, Park SG, Jung G. SERPINA3 is a key modulator of HNRNP-K transcriptional activity against oxidative stress in HCC. Redox Biol 2019; 24:101217. [PMID: 31121493 PMCID: PMC6529774 DOI: 10.1016/j.redox.2019.101217] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Most studies about serpin peptidase inhibitor, clade A member 3 (SERPINA3) has been limited to its inhibitory functions and mechanisms. Herein, we report a novel role of SERPINA3 in transcriptional regulation of HCC progression-related genes. Among 19 selected genes through HCC cell isolation system based on telomere length, microarray analyses, and cell-based studies, SERPINA3 was the strongest determinant of increases in telomere length, HCC cell proliferation, survival, migration, and invasion. We also found that SERPINA3 strongly interacted with heterogeneous nuclear ribonucleoprotein K (HNRNP-K) under H2O2 exposure, and the oxidation-elicited SERPINA3-HNRNP-K complex enhanced the promoter activities and transcript levels of a telomere-relating gene (POT1) and HCC-promoting genes (UHRF1 and HIST2H2BE). Intriguingly, the inhibition of SERPINA3 oxidation rendered the transcriptional activity of the SERPINA3-HNRNP-K complex suppressed. Moreover, the co-immunoprecipitated HNRNP-K with SERPINA3 quantitatively correlated with not only the level of SERPINA3 oxidation but also the level of POT1, UHRF1, and HIST2H2BE transcripts and telomere length in HCC tissues. Therefore, the upregulated transcriptional activity of HNRNP-K mediated by SERPINA3 promotes HCC cell survival and proliferation and could be an indicator of poor prognosis for HCC patients. SERPINA3-HNRNP-K complex promotes HCC survival and proliferation. Oxidation of SERPINA3 accentuated the role of complex on target regulatory DNA. Blockade of the SERPINA3-HNRNP-K complex could be valuable in HCC therapy.
Collapse
Affiliation(s)
- Eunkyong Ko
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jong-Seo Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jong Woo Bae
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jeesoo Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Center for RNA Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Guhung Jung
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|