1
|
Wang C, Yu H, Lu S, Ke S, Xu Y, Feng Z, Qian B, Bai M, Yin B, Li X, Hua Y, Li Z, Chen D, Chen B, Zhou Y, Pan S, Fu Y, Jiang H, Wang D, Ma Y. Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy. Chin Med J (Engl) 2025:00029330-990000000-01399. [PMID: 39820060 DOI: 10.1097/cm9.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI. METHODS In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by Green fluorescent protein-monomeric Red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscope. RESULTS A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent. CONCLUSION Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Collapse
Affiliation(s)
- Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Department of General Surgery, The Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China
| | - Baolin Qian
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Miaoyu Bai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xinglong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhongyu Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Dong Chen
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bangliang Chen
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yongzhi Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yao Fu
- Department of Ultrasound, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Anorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
2
|
Jia D, Zhao M, Luo J, Li S, Gong J, Cheng M. Dimethyloxalylglycine pretreatment of living donor alleviates both donor and graft liver ischemia-reperfusion injury in rats. Front Pharmacol 2024; 14:1341575. [PMID: 38264531 PMCID: PMC10803591 DOI: 10.3389/fphar.2023.1341575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Under the circumstance of the increasing waiting list for liver transplantation, living donor liver transplantation (LDLT) can alleviate the shortage of liver donors to some extent. However, how to reduce both donor and graft ischemia-reperfusion injury (IRI) is still an unsolved problem in LDLT. Hypoxia-induced transcription factor 1 (HIF1) activation is considered an important mechanism of cellular adaptation to hypoxia, and early activation of HIF1 may be a new way to alleviate liver IRI. Therefore, we aimed to investigate the impact of the HIF1 stabilizer dimethyloxalylglycine (DMOG) on IRI and the survival rate of donors and recipients of rat LDLT. Methods: Seventy percent partial liver resection and 30% partial liver transplantation were used to simulate donor and recipient of clinical LDLT. Rats were treated with DMOG (40 mg/kg) or with an equivalent amount of saline. The expression of HIF1 and downstream targets was analyzed after 2 h of reperfusion. Liver function and histopathology, apoptosis and oxidative stress levels were detected 6 h after reperfusion. At the same time, the 7-day survival rate of rats was calculated. Results: DMOG pretreatment significantly reduced IR-induced injury in the donor and recipient, which was manifested by reducing liver function damage and promoting tissue recovery. Meanwhile, compared with the untreated group, the oxidative stress level and the cell apoptosis rate were decreased in the group pretreated with DMOG. In addition, the transcription and expression of HIF1 target genes in the DMOG group were significantly enhanced. Remarkably, DMOG also increased the survival rate of the recipient. Conclusion: This study provides the first evidence that DMOG pretreatment of donors significantly alleviates liver IRI in both donors and recipients and increases the survival rate of recipients in LDLT. Therefore, DMOG may be a promising strategy for improving LDLT in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingxiang Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yang H, Chen J, Li J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure. Front Immunol 2023; 14:1243220. [PMID: 37744328 PMCID: PMC10513107 DOI: 10.3389/fimmu.2023.1243220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Acute liver failure (ALF) is a high-mortality syndrome for which liver transplantation is considered the only effective treatment option. A shortage of donor organs, high costs and surgical complications associated with immune rejection constrain the therapeutic effects of liver transplantation. Recently, mesenchymal stem cell (MSC) therapy was recognized as an alternative strategy for liver transplantation. Bone marrow mesenchymal stem cells (BMSCs) have been used in clinical trials of several liver diseases due to their ease of acquisition, strong proliferation ability, multipotent differentiation, homing to the lesion site, low immunogenicity and anti-inflammatory and antifibrotic effects. In this review, we comprehensively summarized the harvest and culture expansion strategies for BMSCs, the development of animal models of ALF of different aetiologies, the critical mechanisms of BMSC therapy for ALF and the challenge of clinical application.
Collapse
Affiliation(s)
| | | | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Bao Q, Wang Z, Cheng S, Zhang J, Liu Q, Zhang Y, Cheng D, Guo X, Wang X, Han B, Sun P. Peptidomic Analysis Reveals that Novel Peptide LDP2 Protects Against Hepatic Ischemia/Reperfusion Injury. J Clin Transl Hepatol 2023; 11:405-415. [PMID: 36643038 PMCID: PMC9817043 DOI: 10.14218/jcth.2022.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND AIMS Hepatic ischemia/reperfusion (I/R) injury has become an inevitable issue during liver transplantation, with no effective treatments available. However, peptide drugs provide promising regimens for the treatment of this injury and peptidomics has gradually attracted increasing attention. This study was designed to analyze the spectrum of peptides in injured livers and explore the potential beneficial peptides involved in I/R injury. METHODS C57BL/6 mice were used to establish a liver I/R injury animal model. Changes in peptide profiles in I/R-injured livers were analyzed by mass spectrometry, and the functions of the identified peptides were predicted by bioinformatics. AML12 cells were used to simulate hepatic I/R injury in vitro. After treatment with candidate liver-derived peptides (LDPs) 1-10, the cells were collected at various reperfusion times for further study. RESULTS Our preliminary study demonstrated that 6 h of reperfusion caused the most liver I/R injury. Peptidomic results suggested that 10 down-regulated peptides were most likely to alleviate I/R injury by supporting mitochondrial function. Most importantly, a novel peptide, LDP2, was identified that alleviated I/R injury of AML12 cells. It increased cell viability and reduced the expression of inflammation- and apoptosis-related proteins. In addition, LDP2 inhibited the expression of proteins related to autophagy. CONCLUSIONS Investigation of changes in the profiles of peptides in I/R-injured livers led to identification of a novel peptide, LDP2 with potential function in liver protection by inhibiting inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Qun Bao
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Sheng Cheng
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuli Liu
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunpeng Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daqing Cheng
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirong Guo
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyun Wang
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence to: Peng Sun, Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0003-4031-6889. Tel: +86-18121225835, Fax: +86-21- 52039999, E-mail: ; Bo Han, Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 720 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0002-9882-7166. Tel: +86-18017337189, Fax: +86-21- 52039999, E-mail:
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence to: Peng Sun, Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0003-4031-6889. Tel: +86-18121225835, Fax: +86-21- 52039999, E-mail: ; Bo Han, Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 720 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0002-9882-7166. Tel: +86-18017337189, Fax: +86-21- 52039999, E-mail:
| |
Collapse
|
5
|
Li XM, Zhao ZY, Yu X, Xia QD, Zhou P, Wang SG, Wu HL, Hu J. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy. Exp Hematol Oncol 2023; 12:34. [PMID: 36998063 DOI: 10.1186/s40164-023-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractTumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.
Collapse
|
6
|
Pydyn N, Kadluczka J, Major P, Hutsch T, Belamri K, Malczak P, Radkowiak D, Budzynski A, Miekus K, Jura J, Kotlinowski J. Hepatic MCPIP1 protein levels are reduced in NAFLD patients and are predominantly expressed in cholangiocytes and liver endothelium. Hepatol Commun 2023; 7:e0008. [PMID: 36809310 PMCID: PMC9949814 DOI: 10.1097/hc9.0000000000000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND AND AIMS NAFLD is characterized by the excessive accumulation of fat in hepatocytes. NAFLD can range from simple steatosis to the aggressive form called NASH, which is characterized by both fatty liver and liver inflammation. Without proper treatment, NAFLD may further progress to life-threatening complications, such as fibrosis, cirrhosis, or liver failure. Monocyte chemoattractant protein-induced protein 1 (MCPIP1, alias Regnase 1) is a negative regulator of inflammation, acting through the cleavage of transcripts coding for proinflammatory cytokines and the inhibition of NF-κB activity. METHODS In this study, we investigated MCPIP1 expression in the liver and peripheral blood mononuclear cells (PBMCs) collected from a cohort of 36 control and NAFLD patients hospitalized due to bariatric surgery or primary inguinal hernia laparoscopic repair. Based on liver histology data (hematoxylin and eosin and Oil Red-O staining), 12 patients were classified into the NAFL group, 19 into the NASH group, and 5 into the control (non-NAFLD) group. Biochemical characterization of patient plasma was followed by expression analysis of genes regulating inflammation and lipid metabolism. The MCPIP1 protein level was reduced in the livers of NAFL and NASH patients in comparison to non-NAFLD control individuals. In addition, in all groups of patients, immunohistochemical staining showed that the expression of MCPIP1 was higher in the portal fields and bile ducts in comparison to the liver parenchyma and central vein. The liver MCPIP1 protein level negatively correlated with hepatic steatosis but not with patient body mass index or any other analyte. The MCPIP1 level in PBMCs did not differ between NAFLD patients and control patients. Similarly, in patients' PBMCs there were no differences in the expression of genes regulating β-oxidation (ACOX1, CPT1A, and ACC1) and inflammation (TNF, IL1B, IL6, IL8, IL10, and CCL2), or transcription factors controlling metabolism (FAS, LCN2, CEBPB, SREBP1, PPARA, and PPARG). CONCLUSION We have demonstrated that MCPIP1 protein levels are reduced in NAFLD patients, but further research is needed to investigate the specific role of MCPIP1 in NAFL initiation and the transition to NASH.
Collapse
Affiliation(s)
- Natalia Pydyn
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Kadluczka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Hutsch
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Kinga Belamri
- Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Piotr Malczak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Radkowiak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Budzynski
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
8
|
Wang C, Yu H, Lu S, Ke S, Xu Y, Feng Z, Qian B, Bai M, Yin B, Li X, Hua Y, Dong L, Li Y, Zhang B, Li Z, Chen D, Chen B, Zhou Y, Pan S, Fu Y, Jiang H, Wang D, Ma Y. LncRNA Hnf4αos exacerbates liver ischemia/reperfusion injury in mice via Hnf4αos/Hnf4α duplex-mediated PGC1α suppression. Redox Biol 2022; 57:102498. [PMID: 36242914 PMCID: PMC9576992 DOI: 10.1016/j.redox.2022.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
LncRNAs are involved in the pathophysiologic processes of multiple diseases, but little is known about their functions in hepatic ischemia/reperfusion injury (HIRI). As a novel lncRNA, the pathogenetic significance of hepatic nuclear factor 4 alpha, opposite strand (Hnf4αos) in hepatic I/R injury remains unclear. Here, differentially expressed Hnf4αos and Hnf4α antisense RNA 1 (Hnf4α-as1) were identified in liver tissues from mouse ischemia/reperfusion models and patients who underwent liver resection surgery. Hnf4αos deficiency in Hnf4αos-KO mice led to improved liver function, alleviated the inflammatory response and reduced cell death. Mechanistically, we found a regulatory role of Hnf4αos-KO in ROS metabolism through PGC1α upregulation. Hnf4αos also promoted the stability of Hnf4α mRNA through an RNA/RNA duplex, leading to the transcriptional activation of miR-23a and miR-23a depletion was required for PGC1α function in hepatoprotective effects on HIRI. Together, our findings reveal that Hnf4αos elevation in HIRI leads to severe liver damage via Hnf4αos/Hnf4α/miR-23a axis-mediated PGC1α inhibition.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; The First Department of General Surgery, The Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqian Dong
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bao Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Zhongyu Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bangliang Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Anorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China.
| |
Collapse
|
9
|
Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemia–reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps'. Biomaterials 2022; 284:121486. [PMID: 35447404 DOI: 10.1016/j.biomaterials.2022.121486] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
10
|
Zhang A, Huang Z, Tao W, Zhai K, Wu Q, Rich JN, Zhou W, Bao S. USP33 deubiquitinates and stabilizes HIF-2alpha to promote hypoxia response in glioma stem cells. EMBO J 2022; 41:e109187. [PMID: 35191554 PMCID: PMC8982626 DOI: 10.15252/embj.2021109187] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia regulates tumor angiogenesis, metabolism, and therapeutic response in malignant cancers including glioblastoma, the most lethal primary brain tumor. The regulation of HIF transcriptional factors by the ubiquitin-proteasome system is critical in the hypoxia response, but hypoxia-inducible deubiquitinases that counteract the ubiquitination remain poorly defined. While the activation of ERK1/2 also plays an important role in hypoxia response, the relationship between ERK1/2 activation and HIF regulation remains elusive. Here, we identified USP33 as essential deubiquitinase that stabilizes HIF-2alpha protein in an ERK1/2-dependent manner to promote hypoxia response in cancer cells. USP33 is preferentially induced in glioma stem cells by hypoxia and interacts with HIF-2alpha, leading to its stabilization through deubiquitination. The activation of ERK1/2 upon hypoxia promoted HIF-2alpha phosphorylation, enhancing its interaction with USP33. Silencing of USP33 disrupted glioma stem cells maintenance, reduced tumor vascularization, and inhibited glioblastoma growth. Our findings highlight USP33 as an essential regulator of hypoxia response in cancer stem cells, indicating a novel potential therapeutic target for brain tumor treatment.
Collapse
Affiliation(s)
- Aili Zhang
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Zhi Huang
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Weiwei Tao
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kui Zhai
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Qiulian Wu
- Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Jeremy N Rich
- Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Wenchao Zhou
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Shideng Bao
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA,Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA,Center for Cancer Stem Cell ResearchLerner Research InstituteCleveland ClinicClevelandOHUSA
| |
Collapse
|
11
|
Chen Y, Bei J, Liu M, Huang J, Xie L, Huang W, Cai M, Guo Y, Lin L, Zhu K. Sublethal heat stress-induced O-GlcNAcylation coordinates the Warburg effect to promote hepatocellular carcinoma recurrence and metastasis after thermal ablation. Cancer Lett 2021; 518:23-34. [PMID: 34126196 DOI: 10.1016/j.canlet.2021.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
The malignant transformation of residual hepatocellular carcinoma (HCC) cells after thermal ablation is considered as the main factor promoting postoperative HCC progression, which greatly limits the improvement of long-term survival, and at present there is no effective targeted therapeutic strategies. The Warburg effect is a metabolic feature correlated highly with malignant transformation (e.g. epithelial-to-mesenchymal transition [EMT]). Here, we showed that sublethal heat stress triggered a stronger Warburg effect of HCC cells, which contributed to the thermotolerance and invasion of HCC cells. Sublethal heat stress-induced O-GlcNAcylation was involved in this process. Such enhanced Warburg effect in HCC cells may be eliminated through O-GlcNAcylation inhibition, resulting in impaired thermotolerance and EMT, and thereby preventing tumor recurrence and metastasis of HCC-bearing mice after insufficient thermal ablation. Finally, we present evidence that sublethal heat stress-induced O-GlcNAcylation regulates the Warburg effect in HCC cells by promoting hypoxia-inducible factor 1α (HIF-1α) stability. In conclusion, the present study suggests that O-GlcNAcylation coordinates the Warburg effect to promote HCC progression after thermal ablation, which may serve as a novel potential target for controlling postoperative HCC recurrence and metastasis.
Collapse
MESH Headings
- Acylation/physiology
- Animals
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial-Mesenchymal Transition/physiology
- Heat-Shock Response/physiology
- Humans
- Hyperthermia, Induced/methods
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Warburg Effect, Oncologic
Collapse
Affiliation(s)
- Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jiaxin Bei
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Lulu Xie
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| |
Collapse
|
12
|
Uehata T, Takeuchi O. Post-transcriptional regulation of immunological responses by Regnase-1-related RNases. Int Immunol 2021; 33:859-865. [PMID: 34320195 DOI: 10.1093/intimm/dxab048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Regulation of messenger RNA (mRNA) decay plays a crucial role in the control of gene expression. Canonical mRNA decay pathways are initiated by deadenylation and decapping, and are followed by exonucleolytic degradation. However, recent studies revealed that endoribonucleolytic cleavage also mediates mRNA decay, and both exoribonucleolytic and endoribonucleolytic decay pathways are important for the regulation of immune responses. Regnase-1 functions as an endoribonuclease to control immunity by damping mRNAs. Particularly, Regnase-1 controls cytokines and other inflammatory mediators by recognizing their mRNAs via stem-loop structures present in the 3' untranslated regions. Regnase-1 was found to be critical for human inflammatory diseases such as ulcerative colitis and idiopathic pulmonary fibrosis. Furthermore, a set of Regnase-1-related RNases contribute to immune regulation as well as antiviral host defense. In this review, we provide an overview of recent findings as to immune-related RNA-binding proteins (RBPs) with an emphasis on stem-loop-mediated mRNA decay via Regnase-1 and related RNases and discuss how the function of these RBPs is regulated and contributes to inflammatory disorders.
Collapse
Affiliation(s)
- Takuya Uehata
- Laboratory of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Osamu Takeuchi
- Laboratory of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Yan B, Guo Y, Gui Y, Jiang ZS, Zheng XL. Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases. Curr Med Chem 2021; 28:3385-3405. [PMID: 33191882 DOI: 10.2174/0929867327999201113100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.
Collapse
Affiliation(s)
- Binjie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| |
Collapse
|
14
|
Kim SH, Baek KH. Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. Int J Mol Sci 2021; 22:ijms22126173. [PMID: 34201062 PMCID: PMC8226939 DOI: 10.3390/ijms22126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin-proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.
Collapse
|
15
|
Pydyn N, Żurawek D, Kozieł J, Kus E, Wojnar-Lason K, Jasztal A, Fu M, Jura J, Kotlinowski J. Role of Mcpip1 in obesity-induced hepatic steatosis as determined by myeloid and liver-specific conditional knockouts. FEBS J 2021; 288:6563-6580. [PMID: 34058074 PMCID: PMC8988450 DOI: 10.1111/febs.16040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Monocyte chemoattractant protein-induced protein 1 (MCPIP1, alias Regnase 1) is a negative regulator of inflammation, acting through cleavage of transcripts coding for proinflammatory cytokines and by inhibition of NFκB activity. Moreover, it was demonstrated that MCPIP1 regulates lipid metabolism both in adipose tissue and in hepatocytes. In this study, we investigated the effects of tissue-specific Mcpip1 deletion on the regulation of hepatic metabolism and development of nonalcoholic fatty liver disease (NAFLD). We used control Mcpip1fl/fl mice and animals with deletion of Mcpip1 in myeloid leukocytes (Mcpip1fl/fl LysMCre ) and in hepatocytes (Mcpip1fl/fl AlbCre ), which were fed chow or a high-fat diet (HFD) for 12 weeks. Mcpip1fl/fl LysMCre mice fed a chow diet were characterized by a significantly reduced hepatic expression of genes regulating lipid and glucose metabolism, which subsequently resulted in low plasma glucose level and dyslipidemia. These animals also displayed systemic inflammation, demonstrated by increased concentrations of cytokines in the plasma and high Tnfa, Il6, IL1b mRNA levels in the liver and brown adipose tissue (BAT). Proinflammatory leukocyte infiltration into BAT, together with low expression of Ucp1 and Ppargc1a, resulted in hypothermia of 22-week-old Mcpip1fl/fl LysMCre mice. On the other hand, there were no significant changes in phenotype in Mcpip1fl/fl AlbCre mice. Although we detected a reduced hepatic expression of genes regulating glucose metabolism and β-oxidation in these mice, they remained asymptomatic. Upon feeding with a HFD, Mcpip1fl/fl LysMCre mice did not develop obesity, glucose intolerance, nor hepatic steatosis, but were characterized by low plasma glucose level and dyslipidemia, along with proinflammatory phenotype. Mcpip1fl/fl AlbCre animals, following a HFD, became hypercholesterolemic, but accumulated lipids in the liver at the same level as Mcpip1fl/fl mice, and no changes in the level of soluble factors tested in the plasma were detected. We have demonstrated that Mcpip1 protein plays an important role in the liver homeostasis. Depletion of Mcpip1 in myeloid leukocytes, followed by systemic inflammation, has a more pronounced effect on controlling liver metabolism and homeostasis than the depletion of Mcpip1 in hepatocytes.
Collapse
Affiliation(s)
- Natalia Pydyn
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dariusz Żurawek
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Edyta Kus
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri, Kansas City, MO, USA
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
16
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
17
|
Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22020791. [PMID: 33466790 PMCID: PMC7830467 DOI: 10.3390/ijms22020791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor microenvironments are composed of a myriad of elements, both cellular (immune cells, cancer-associated fibroblasts, mesenchymal stem cells, etc.) and non-cellular (extracellular matrix, cytokines, growth factors, etc.), which collectively provide a permissive environment enabling tumor progression. In this review, we focused on the regulation of tumor microenvironment through ubiquitination. Ubiquitination is a reversible protein post-translational modification that regulates various key biological processes, whereby ubiquitin is attached to substrates through a catalytic cascade coordinated by multiple enzymes, including E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. In contrast, ubiquitin can be removed by deubiquitinases in the process of deubiquitination. Here, we discuss the roles of E3 ligases and deubiquitinases as modulators of both cellular and non-cellular components in tumor microenvironment, providing potential therapeutic targets for cancer therapy. Finally, we introduced several emerging technologies that can be utilized to develop effective therapeutic agents for targeting tumor microenvironment.
Collapse
|
18
|
Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The Role of Ischemia/Reperfusion Injury in Early Hepatic Allograft Dysfunction. Liver Transpl 2020; 26:1034-1048. [PMID: 32294292 DOI: 10.1002/lt.25779] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Liver transplantation (LT) is the only available curative treatment for patients with end-stage liver disease. Early allograft dysfunction (EAD) is a life-threatening complication of LT and is thought to be mediated in large part through ischemia/reperfusion injury (IRI). However, the underlying mechanisms linking IRI and EAD after LT are poorly understood. Most previous studies focused on the clinical features of EAD, but basic research on the underlying mechanisms is insufficient, due, in part, to a lack of suitable animal models of EAD. There is still no consensus on definition of EAD, which hampers comparative analysis of data from different LT centers. IRI is considered as an important risk factor of EAD, which can induce both damage and adaptive responses in liver grafts. IRI and EAD are closely linked and share several common pathways. However, the underlying mechanisms remain largely unclear. Therapeutic interventions against EAD through the amelioration of IRI is a promising strategy, but most approaches are still in preclinical stages. To further study the mechanisms of EAD and promote collaborations between LT centers, optimized animal models and unified definitions of EAD are urgently needed. Because IRI and EAD are closely linked, more attention should be paid to the underlying mechanisms and the fundamental relationship between them. Ischemia/reperfusion-induced adaptive responses may play a crucial role in the prevention of EAD, and more preclinical studies and clinical trials are urgently needed to address the current limitation of available therapeutic interventions.
Collapse
Affiliation(s)
- Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jian Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom.,Cambridge National Institute of Health Research Biomedical research Centre, Cambridge, United Kingdom
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health and Family Planning Commission (NHFPC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
19
|
Inhaled Argon Impedes Hepatic Regeneration after Ischemia/Reperfusion Injury in Rats. Int J Mol Sci 2020; 21:ijms21155457. [PMID: 32751707 PMCID: PMC7432339 DOI: 10.3390/ijms21155457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Organoprotective effects of noble gases are subject of current research. One important field of interest is the effect of noble gases on hepatic regenerative capacity. For the noble gas argon, promising studies demonstrated remarkable experimental effects in neuronal and renal cells. The aim of this study was to investigate the effects of argon on the regenerative capacity of the liver after ischemia/reperfusion injury (IRI). Male, Sprague-Dawley rats underwent hepatic IRI by clamping of the hepatic artery. Expression of hepatoproliferative genes (HGF, IL-1β, IL-6, TNF), cell cycle markers (BrdU, TUNEL, Ki-67), and liver enzymes (ALT, AST, Bilirubin, LDH) were assessed 3, 36, and 96 h after IRI. Expression of IL-1β and IL-6 was significantly higher after argon inhalation after 36 h (IL-1β 5.0 vs. 8.7 fold, p = 0.001; IL-6 9.6 vs. 19.1 fold, p = 0.05). Ki-67 was higher in the control group compared to the argon group after 36 h (214.0 vs. 38.7 positive cells/1000 hepatocytes, p = 0.045). Serum levels of AST and ALT did not differ significantly between groups. Our data indicate that argon inhalation has detrimental effects on liver regeneration after IRI as measured by elevated levels of the proinflammatory cytokines IL-1β and IL-6 after 36 h. In line with these results, Ki-67 is decreased in the argon group, indicating a negative effect on liver regeneration in argon inhalation.
Collapse
|
20
|
Wu S, Yao W, Chen C, Chen H, Huang F, Liu Y, Cai J, Yuan D, Hei Z. Connexin 32 deficiency protects the liver against ischemia/reperfusion injury. Eur J Pharmacol 2020; 876:173056. [PMID: 32147436 DOI: 10.1016/j.ejphar.2020.173056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a common complication in the clinical setting. Our previous study has shown that connexin 32 (Cx32) plays a major role in renal I/R injury; however, the role of Cx32 in hepatic I/R injury remains unknown. Liver tissue and serum samples from patients undergoing orthotopic liver transplantation (OLT) were used to evaluate the function of Cx32 in OLT post-reperfusion injury. Then, partial hepatic ischemia was established in global Cx32 knockout mice and wild-type mice followed by reperfusion. Hepatic injury markers were examined. Cx32 small interfering RNA and the p53 inhibitor, pifithrin-α, tenovin-1 were used to examine the relationship between Cx32 and the p53/puma pathways in the BRL-3A and murine primary hepatocytes hypoxia/reoxygenation (H/R) model. Corresponding to liver damage, Cx32 was significantly induced both during OLT in human patients and partial hepatic I/R in mice. Cx32 KO mice exhibited less liver injury than controls. Cx32 deficiency significantly suppressed the p53/puma pathways and hepatocyte apoptosis. Similar results were observed in the BRL-3A and murine primary hepatocytes H/R model. Propofol protected against OLT post-reperfusion injury and hepatocyte apoptosis by inhibiting Cx32. In conclusion Cx32 is a novel regulator of hepatic I/R injury through the modulation of hepatocyte apoptosis and damage, largely via the p53/puma signaling pathway.
Collapse
Affiliation(s)
- Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huixin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yiqian Liu
- Southern Medical University, Guangzhou, 510515, China
| | - Jun Cai
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
21
|
Intrabody against prolyl hydroxylase 2 ameliorates acetaminophen-induced acute liver injury in mice via concomitant promotion of angiogenesis and redox homeostasis. Biomed Pharmacother 2020; 123:109783. [DOI: 10.1016/j.biopha.2019.109783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022] Open
|
22
|
Guo J, Zhang T, Gu J, Cai K, Deng X, Chen K, Huang K, Wang G, Li H, Wang J. Oleic Acid Protects against Hepatic Ischemia and Reperfusion Injury in Mice by Inhibiting AKT/mTOR Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4842592. [PMID: 31915509 PMCID: PMC6930725 DOI: 10.1155/2019/4842592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a serious complication in patients who have undergone hepatic surgery such as orthotopic liver transplantation and partial hepatectomy. Recently, a new cytoprotective agent, ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE), was reported to protect against hepatic I/R injury. However, the protective mechanism of UDCA-LPE is not fully understood. Therefore, we conducted this study to explore its underlying mechanism. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the liver lipid metabolism changes in mice during I/R. KEGG enrichment indicated that UDCA-LPE is likely to exert its protective role by regulating fatty acid (FA) metabolism. Further analysis found that UDCA-LPE significantly increased the ratio of oleic acid (OA) to palmitic acid (PA). We found that mice pretreated with OA improved tolerance to hepatic I/R injury. In addition, the phosphorylation level of AKT was markedly upregulated during oxidative stress to promote p65 nuclear translocation, triggering an inflammatory response that exacerbated cell damage and OA treatment significantly inhibited this process. Notably, OA was found to inhibit H2O2-induced oxidative stress, inflammation, and cell death in HepG2 cells. Furthermore, we found that OA supplementation to the medium did not result in a significant increase in intracellular OA, but marked increase in the ratio of OA to PA, which may be an important mechanism for the inflammatory response induced by oxidative stress during I/R. Finally, we demonstrated that OA increased the level of autophagy in HepG2 cells, which may be one of the protective mechanisms against oxidative stress. Collectively, this study revealed that FA metabolism functionally determines the oxidative stress-related inflammation caused by hepatic I/R. We hypothesize that OA treatment may be a promising strategy for preventing and treating I/R-induced liver damage.
Collapse
Affiliation(s)
- Jianrong Guo
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Jian Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Xiuling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Ke Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| |
Collapse
|
23
|
Peng J, Li J, Huang J, Xu P, Huang H, Liu Y, Yu L, Yang Y, Zhou B, Jiang H, Chen K, Dang Y, Zhang Y, Luo C, Li G. p300/CBP inhibitor A-485 alleviates acute liver injury by regulating macrophage activation and polarization. Am J Cancer Res 2019; 9:8344-8361. [PMID: 31754401 PMCID: PMC6857059 DOI: 10.7150/thno.30707] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/21/2019] [Indexed: 12/21/2022] Open
Abstract
High morbidity and mortality are associated with acute liver injury (ALI) for which no effective targeted drugs or pharmacotherapies are available. Discovery of potential therapeutic targets as well as inhibitors that can alleviate ALI is imperative. As excessive inflammatory cytokines released by macrophages are a critical cause of liver injury, we aimed to find novel compounds that could inhibit macrophage expression of inflammatory cytokines and alleviate liver injury. Methods: A high throughput assay was established to screen a small molecule inhibitor library of epigenetic targets. A highly selective catalytic p300/CBP inhibitor A-485 was identified as a potent hit in vitro and administrated to the lipopolysaccharide (LPS)/D-galactosamine (GalN)-induced mice in vivo. For in vitro analysis, RAW264.7 cells and primary BMDM cells exposed to LPS were co-incubated with A-485. A model of acute liver injury induced by LPS and GalN was used for evaluation of in vivo treatment efficacy. Results: A-485 inhibited LPS-induced inflammatory cytokine expression in a concentration-dependent manner in vitro. Significantly, A-485 administration alleviated histopathological abnormalities, lowered plasma aminotransferases, and improved the survival rate in the LPS/GalN-stimulated mice. Integrative ChIP-Seq and transcriptome analysis in the ALI animal model and macrophages revealed that A-485 preferentially blocked transcriptional activation of a broad set of pathologic genes enriched in inflammation-related signaling networks. Significant inhibition of H3K27ac/H3K18ac at promoter regions of these pivotal inflammatory genes was observed, in line with their suppressed transcription after A-485 treatment. Reduced expression of these pathological pro-inflammatory genes resulted in a decrease in inflammatory pathway activation, M1 polarization as well as reduced leukocyte infiltration in ALI mouse model, which accounted for the protective effects of A-485 on liver injury. Conclusion: Using a novel strategy targeting macrophage inflammatory activation and cytokine expression, we established a high-throughput screening assay to discover potential candidates for ALI treatment. We demonstrated that A-485, which targeted pathological inflammatory signaling networks at the level of chromatin, was pharmacologically effective in vivo and in vitro. Our study thus provided a novel target as well as a potential drug candidate for the treatment of liver injury and possibly for other acute inflammatory diseases.
Collapse
|
24
|
Mennerich D, Kubaichuk K, Kietzmann T. DUBs, Hypoxia, and Cancer. Trends Cancer 2019; 5:632-653. [PMID: 31706510 DOI: 10.1016/j.trecan.2019.08.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
Alterations in protein ubiquitylation and hypoxia are commonly associated with cancer. Ubiquitylation is carried out by three sequentially acting ubiquitylating enzymes and can be opposed by deubiquitinases (DUBs), which have emerged as promising drug targets. Apart from protein localization and activity, ubiquitylation regulates degradation of proteins, among them hypoxia-inducible factors (HIFs). Thereby, various E3 ubiquitin ligases and DUBs regulate HIF abundance. Conversely, several E3s and DUBs are regulated by hypoxia. While hypoxia is a powerful HIF regulator, less is known about hypoxia-regulated DUBs and their impact on HIFs. Here, we review current knowledge about the relationship of E3s, DUBs, and hypoxia signaling. We also discuss the reciprocal regulation of DUBs by hypoxia and use of DUB-specific drugs in cancer.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland; Biocenter Oulu, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
25
|
Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance. Cells 2019; 8:cells8060598. [PMID: 31208103 PMCID: PMC6627837 DOI: 10.3390/cells8060598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin and hypoxia-inducible factor (HIF) pathways are cellular processes involved in the regulation of a variety of cellular functions. Enzymes called ubiquitin E3 ligases perform protein ubiquitylation. The action of these enzymes can be counteracted by another group of enzymes called deubiquitinases (DUBs), which remove ubiquitin from target proteins. The balanced action of these enzymes allows cells to adapt their protein content to a variety of cellular and environmental stress factors, including hypoxia. While hypoxia appears to be a powerful regulator of the ubiquitylation process, much less is known about the impact of DUBs on the HIF system and hypoxia-regulated DUBs. Moreover, hypoxia and DUBs play crucial roles in many diseases, such as cancer. Hence, DUBs are considered to be promising targets for cancer cell-specific treatment. Here, we review the current knowledge about the role DUBs play in the control of HIFs, the regulation of DUBs by hypoxia, and their implication in cancer progression.
Collapse
|
26
|
Shu S, Zhang Y, Li W, Wang L, Wu Y, Yuan Z, Zhou J. The role of monocyte chemotactic protein-induced protein 1 (MCPIP1) in angiotensin II-induced macrophage apoptosis and vulnerable plaque formation. Biochem Biophys Res Commun 2019; 515:378-385. [PMID: 31155290 DOI: 10.1016/j.bbrc.2019.05.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022]
Abstract
Atherosclerotic plaque rupture is the main cause of acute coronary syndrome (ACS). Angiotensin II (Ang II) and macrophage apoptosis are involved in the pathogenesis of atherosclerosis. However, the underlying mechanisms remain unclear. We aimed to address the role of monocyte chemotactic protein-induced protein 1 (MCPIP1) in Ang II-induced macrophage apoptosis and vulnerable plaque formation. In mouse peritoneal macrophages, Ang II promoted endoplasmic reticulum (ER) stress-dependent macrophage apoptosis. Ang II markedly upregulated the expression of MCPIP1 via activating p38 mitogen-activated protein kinase (p38 MAPK). Treatment with MCPIP1 shRNA downregulated ER stress-related proteins and decreased macrophage apoptosis induced by Ang II. Ang II also activated the AMP-activated protein kinase (AMPK) signaling in macrophages. Inhibition of AMPK reduced macrophage apoptosis by inhibiting the p38 MAPK/MCPIP1/ER stress pathway. Furthermore, blocking the Ang II type 1 receptor (AT1R) with losartan effectively inhibited Ang II-induced macrophage apoptosis and AMPK/p38 MAPK/MCPIP1/ER pathway activation. In the atherosclerotic vulnerable plaque model in mice, losartan inhibited the progression of atherosclerosis and transformed vulnerable plaque into a more stable phenotype. Moreover, losartan markedly decreased the number of CD68+TUNEL+, CD68+MCPIP1+, CD68+p-eIF2α+ and CD68+CHOP+ cells in the lesion area. Taken together, Ang II promotes macrophage apoptosis via the AMPK/p38 MAPK/MCPIP1/ER stress pathway in macrophages via its receptor AT1R, which may contribute to vulnerable plaque formation. Our study clarifies a novel regulatory role of MCPIP1 in Ang II-induced macrophage apoptosis and plaque instability, providing a potential therapeutic target for prevention of ACS.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Disease Models, Animal
- Endoplasmic Reticulum Stress
- Losartan/pharmacology
- MAP Kinase Signaling System
- Macrophages, Peritoneal/pathology
- Macrophages, Peritoneal/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/physiopathology
- RAW 264.7 Cells
- RNA, Small Interfering/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Ribonucleases/antagonists & inhibitors
- Ribonucleases/genetics
- Ribonucleases/physiology
Collapse
Affiliation(s)
- Shan Shu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yan Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenyuan Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lijun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China.
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Key Laboratory of Molecular Cardiology of Shannxi Province, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
27
|
Huang X, Gao Y, Qin J, Lu S. miR-214 Down-Regulation Promoted Hypoxia/Reoxygenation-Induced Hepatocyte Apoptosis Through TRAF1/ASK1/JNK Pathway. Dig Dis Sci 2019; 64:1217-1225. [PMID: 30560327 DOI: 10.1007/s10620-018-5405-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study investigated the role of miR-214 in the hepatocyte apoptosis induced by hypoxia/reoxygenation (H/R) injury. MATERIALS AND METHODS In vivo hepatic ischemia/reperfusion (HIR) injury, mice model and in vitro HR model were established. miR-214, TRAF1, ASK1, and JNK expression levels were detected by qRT-PCR and western blot. The apoptosis of mouse hepatocyte AML12 was detected by flow cytometry analysis. The interaction between miR-214 and TRAF1 was confirmed by dual-luciferase reporter gene assay. RESULTS Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were elevated in HIR injury mice compared with sham mice. miR-214 expression was down-regulated in liver tissues of HIR and H/R-induced hepatocytes, whereas TRAF1, ASK1, and JNK expressions were up-regulated in HIR and H/R groups. H/R stimulation promoted the apoptosis of hepatocytes, and miR-214 overexpression inhibited the apoptosis of hepatocytes. Besides, TRAF1 was a target of miR-214 and negatively regulated by miR-214. miR-214/TRAF1 pathway involved in the modulation of H/R-induced apoptosis of hepatocytes. In vivo study proved miR-214 reduced hepatic injury of HIR mice. CONCLUSION miR-214 overexpression reduces hepatocyte apoptosis after HIR injury through negatively regulating TRAF1/ASK1/JNK pathway.
Collapse
Affiliation(s)
- Xinli Huang
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yun Gao
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jianjie Qin
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Sen Lu
- Center of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, The Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
28
|
Hou Y, Wang J, Feng J. The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1α in cerebral ischemia-reperfusion injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1135-1144. [PMID: 31040648 PMCID: PMC6461000 DOI: 10.2147/dddt.s194182] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose The beneficial, neuroprotective effects of curcumin against ischemia-reperfusion injury have been demonstrated. In the present study, whether curcumin exerts neuroprotective effects associated with the inhibition of autophagy and hypoxia inducible factor-1α (HIF-1α) was investigated. Materials and methods PC12 cellular model of oxygen glucose deprivation/reperfusion (OGD/R) has been developed to mimic cerebral ischemia-reperfusion injury. Cell viability was evaluated using the CellTiter 96® AQueous One Solution Cell Proliferation Assay. Apoptosis was assessed using flow cytometry. The expression levels of HIF-1α and autophagy-associated proteins, LC3 and P62, were examined using Western blot. The autophagy flux was quantitatively estimated based on the number of autophagic compartments using fluorescence microscopy. In addition, 3-methyladenine (3-MA) was administered to PC12 cells to investigate how autophagy affects HIF-1α. Moreover, the inhibitory effects of HIF-1α on autophagy activation level were examined. Results In this study, curcumin decreased the death and apoptosis of cells, and inhibited autophagy and HIF-1α under OGD/R conditions, consistent with 3-MA treatment or HIF-1α downregulation. Moreover, inhibition of autophagy caused a decrease in HIF-1α, and the attenuation of HIF-1α induced autophagy suppression under OGD/R conditions. Conclusion The results of this study showed that curcumin exerts neuroprotective effects against ischemia-reperfusion, which is associated with the regulation of the reciprocal function between autophagy and HIF-1α.
Collapse
Affiliation(s)
- Yang Hou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| |
Collapse
|