1
|
Liu L, Che B, Zhang W, Du D, Zhang D, Li J, Chen Z, Yu X, Ye M, Wang W, Li Z, Xie F, Wang Q, Chen L, Shao J. Mechanistic insights into the role of FAT10 in modulating NCOA4-mediated ferroptosis in pancreatic acinar cells during acute pancreatitis. Cell Death Dis 2025; 16:385. [PMID: 40374601 DOI: 10.1038/s41419-025-07715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/17/2025]
Abstract
Acute pancreatitis (AP) is characterised by inflammation and cell death in pancreatic tissue, with ferroptosis playing a critical role in its pathophysiology by mediating cellular damage and exacerbating inflammation. This study investigated the role of human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) in AP, specifically its involvement in ferroptosis within pancreatic acinar cells. We observed that FAT10 expression was significantly elevated in AP tissues, which correlated with increased ferroptosis. Overexpression of FAT10 in pancreatic acinar cells enhances ferroptosis, whereas its knockdown reduced levels of ferroptosis markers. Furthermore, we confirmed that FAT10 enhanced ferroptosis in pancreatic acinar cells primarily by upregulating nuclear receptor coactivator 4 (NCOA4) expression. Mechanistic investigations revealed that FAT10 regulates NCOA4 expression to promote ferroptosis in a complex manner. FAT10 inhibits NCOA4 ubiquitination by reducing ubiquitin-NCOA4 complexes. Meanwhile, NCOA4 expression increased alongside the increase in FAT10-NCOA4 complexes, which are resistant to proteasomal degradation. Notably, we identified silibinin, a natural compound, as an effective inhibitor of the FAT10-NCOA4 axis, leading to reduced ferroptosis and alleviation of pancreatic damage in vivo. Silibinin treatment decreased the levels of ferroptosis-related proteins and inflammatory markers in both cell and animal models. Our findings highlight the FAT10-NCOA4 axis as a crucial regulator of ferroptosis in pancreatic acinar cells and suggest that targeting this pathway could offer a therapeutic strategy for mitigating AP. This study provides new insights into the regulatory mechanisms of ferroptosis in pancreatic acinar cells, identifying FAT10 as a potential therapeutic target for AP management.
Collapse
Affiliation(s)
- Lingpeng Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben Che
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongnian Du
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiajuan Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zehao Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuzhe Yu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Ye
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Wang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zijing Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Wang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Precision Oncology Medicine Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Liver Cancer Institute, Nanchang University, Nanchang, China.
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Wang J, Liao J, Cheng Y, Chen M, Huang A. LAPTM4B enhances the stemness of CD133 + liver cancer stem-like cells via WNT/β-catenin signaling. JHEP Rep 2025; 7:101306. [PMID: 40171299 PMCID: PMC11960653 DOI: 10.1016/j.jhepr.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 04/03/2025] Open
Abstract
Background & Aims Lysosome-associated protein transmembrane 4β (LAPTM4B) is an oncogene implicated in the malignant progression of hepatocellular carcinoma (HCC). Previous research established a strong association between LAPTM4B and HCC stemness. However, specific mechanisms by which LAPTM4B regulates and maintains the stemness of liver cancer stem cells remain unclear. Therefore, we investigated the effects of LAPTM4B on the stemness regulation of cluster of differentiation 133 (CD133)+ liver cancer stem-like cells (CSLCs). Methods We used RNA interference and overexpression techniques in both in vitro and in vivo models. The involvement of LAPTM4B in wingless/integrated (WNT)/β-catenin signaling was examined through western blotting, immunofluorescence, and immunoprecipitation. The impact of LAPTM4B on β-catenin phosphorylation and ubiquitination was analyzed to elucidate its role in promoting stemness. Clinical relevance was evaluated in an in-house cohort of 105 specimens from patients with HCC through immunohistochemical and microarray analysis, enabling investigation of correlations with clinical outcomes. Results LAPTM4B promoted the self-renewal ability, chemoresistance, and tumorigenicity of CD133+ CSLCs. Mechanistically, aberrant LAPTM4B upregulation facilitated β-catenin nuclear translocation (nucleocytoplasmic separation assay, p <0.001) and inhibited its phosphorylation (p <0.01). In addition, LAPTM4B interacts with the deubiquitinating enzymes ubiquitin carboxyl-terminal hydrolase (USP)-1 and USP14, reducing β-catenin ubiquitination. Furthermore, patients with high LAPTM4B and β-catenin expression had markedly shorter 3-year overall survival rate (42.9% vs. 74.4%; hazard ratio, 5.174; 95% CI 2.280-11.741, p <0.001). Conclusions LAPTM4B promotes CD133+ CSLC stemness by activating WNT/β-catenin signaling by inhibiting β-catenin phosphorylation and ubiquitination degradation. The role of LAPTM4B in regulating WNT/β-catenin signaling suggests that LAPTM4B serves as a therapeutic target for impairing HCC stemness and progression. Impact and implications LAPTM4B contributes significantly to CD133+ CSLC stemness and inhibits β-catenin phosphorylation and ubiquitination degradation, activating WNT/β-catenin signaling. WNT inhibitors suppress LAPTM4B-induced CD133+ CSLC stemness. Thus, targeting the LAPTM4B-WNT/β-catenin axis could improve antitumor efficacy.
Collapse
Affiliation(s)
- Jiahong Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Ye Cheng
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Meirong Chen
- Department of Pathology, Quanzhou Maternity and Children’s Hospital, Quanzhou, Fujian 362000, China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| |
Collapse
|
3
|
Dropmann A, Alex S, Schorn K, Tong C, Caccamo T, Godoy P, Ilkavets I, Liebe R, Gonzalez D, Hengstler JG, Piiper A, Quagliata L, Matter MS, Waidmann O, Finkelmeier F, Feng T, Weiss TS, Rahbari N, Birgin E, Rasbach E, Roessler S, Breuhahn K, Tóth M, Ebert MP, Dooley S, Hammad S, Meindl-Beinker NM. The TGF-β1 target WISP1 is highly expressed in liver cirrhosis and cirrhotic HCC microenvironment and involved in pro- and anti-tumorigenic effects. Biochem Biophys Res Commun 2024; 732:150409. [PMID: 39033550 DOI: 10.1016/j.bbrc.2024.150409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION WNT1-inducible signalling pathway protein 1 (WISP1) promotes progression of several tumor entities often correlating with worse prognosis. Here its expression regulation and role in the progression of chronic liver diseases (CLD) was investigated. METHODS WISP1 expression was analyzed in human HCC datasets, in biopsies and serum samples and an HCC patient tissue microarray (TMA) including correlation to clinicopathological parameters. Spatial distribution of WISP1 expression was determined using RNAscope analysis. Regulation of WISP1 expression was investigated in cytokine-stimulated primary mouse hepatocytes (PMH) by array analysis and qRT-PCR. Outcome of WISP1 stimulation was analyzed by IncuCyte S3-live cell imaging, qRT-PCR, and immunoblotting in murine AML12 cells. RESULTS In a TMA, high WISP1 expression was positively correlated with early HCC stages and male sex. Highest WISP1 expression levels were detected in patients with cirrhosis as compared to healthy individuals, patients with early fibrosis, and non-cirrhotic HCC in liver biopsies, expression datasets and serum samples. WISP1 transcripts were predominantly detected in hepatocytes of cirrhotic rather than tumorous liver tissue. High WISP1 expression was associated with better survival. In PMH, AML12 and HepaRG, WISP1 was identified as a specific TGF-β1 target gene. Accordingly, expression levels of both cytokines positively correlated in human HCC patient samples. WISP1-stimulation induced the expression of Bcl-xL, PCNA and p21 in AML12 cells. CONCLUSIONS WISP1 expression is induced by TGF-β1 in hepatocytes and is associated with cirrhotic liver disease. We propose a crucial role of WISP1 in balancing pro- and anti-tumorigenic effects during premalignant stages of CLD.
Collapse
Affiliation(s)
- Anne Dropmann
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sophie Alex
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Katharina Schorn
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Chenhao Tong
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tiziana Caccamo
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Patricio Godoy
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Iryna Ilkavets
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Roman Liebe
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Daniela Gonzalez
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Albrecht Piiper
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Oliver Waidmann
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Teng Feng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Center for Liver Cell Research, University Hospital Regensburg, Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Nuh Rahbari
- Department of Surgery and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Emrullah Birgin
- Department of Surgery and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Erik Rasbach
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany; Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; DKFZ-Hector Cancer Institute at the University Medical Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Seddik Hammad
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nadja M Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
4
|
Wang Q, Tan W, Zhang Z, Chen Q, Xie Z, Yang L, Tang C, Zhuang H, Wang B, Jiang J, Ma X, Wang W, Hua Y, Shang C, Chen Y. FAT10 induces immune suppression by upregulating PD-L1 expression in hepatocellular carcinoma. Apoptosis 2024; 29:1529-1545. [PMID: 38824477 DOI: 10.1007/s10495-024-01982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.
Collapse
Affiliation(s)
- Qingbin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, China
| | - Ziyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiuju Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, China
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chenwei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bingkun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiahao Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wentao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yonglin Hua
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
6
|
Zhang Y, Li Z, Chen X, Huang Y, Zou B, Xu Y. Prognostic significance of FAT10 expression in malignant tumors: a systematic review and meta-analysis. Future Oncol 2024; 20:1505-1514. [PMID: 38864667 PMCID: PMC11441062 DOI: 10.1080/14796694.2024.2357531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: FAT10, a ubiquitin-like modifier protein, influences apoptosis, DNA damage response and tumor growth, with unclear effects on cancer prognosis.Methods: We reviewed FAT10 expression's impact on malignancy prognosis through a systematic review and meta-analysis, including studies up to September 2023 from PubMed, EMBASE and Web of Science.Results: From 18 studies involving 2513 patients, FAT10 overexpression significantly reduced overall and disease-free survival across various tumors, indicating correlations with advanced disease stage, poor differentiation, lymph node metastasis and larger tumor size.Conclusion: FAT10's overexpression suggests a negative prognostic value in cancer, meriting further investigation.PROSPERO Registration Number: CRD42023431287.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
7
|
Chen L, Zhang L, He H, Shao F, Yu Z, Gao Y, He J. Ubiquitin-specific protease 54 regulates GLUT1-mediated aerobic glycolysis to inhibit lung adenocarcinoma progression by modifying p53 degradation. Oncogene 2024; 43:2025-2037. [PMID: 38744954 DOI: 10.1038/s41388-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent types of cancer. Ubiquitination is crucial in modulating cell proliferation and aerobic glycolysis in cancer. The frequency of TP53 mutations in LUAD is approximately 50%. Currently, therapeutic targets for wild-type (WT) p53-expressing LUAD are limited. In the present study, we systemically explored the expression of ubiquitin-specific protease genes using public datasets. Then, we focused on ubiquitin-specific protease 54 (USP54), and explored its prognostic significance in LUAD patients using public datasets, analyses, and an independent cohort from our center. We found that the expression of USP54 was lower in LUAD tissues compared with that in the paracancerous tissues. Low USP54 expression levels were linked to a malignant phenotype and worse survival in patients with LUAD. The results of functional experiments revealed that up-regulation of USP54 suppressed LUAD cell proliferation in vivo and in vitro. USP54 directly interacted with p53 protein and the levels of ubiquitinated p53 were inversely related to USP54 levels, consistent with a role of USP54 in deubiquitinating p53 in p53-WT LUAD cells. Moreover, up-regulation of the USP54 expression inhibited aerobic glycolysis in LUAD cells. Importantly, we confirmed that USP54 inhibited aerobic glycolysis and the growth of tumor cells by a p53-mediated decrease in glucose transporter 1 (GLUT1) expression in p53-WT LUAD cells. Altogether, we determined a novel mechanism of survival in the p53-WT LUAD cells to endure the malnourished tumor microenvironment and provided insights into the role of USP54 in the adaptation of p53-WT LUAD cells to metabolic stress.
Collapse
Affiliation(s)
- Leifeng Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haihua He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fei Shao
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Laboratory of Thoracic Oncology & Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- Translational Medicine Platform, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
8
|
Qiu Y, Che B, Zhang W, Zhang A, Ge J, Du D, Li J, Peng X, Shao J. The ubiquitin-like protein FAT10 in hepatocellular carcinoma cells limits the efficacy of anti-VEGF therapy. J Adv Res 2024; 59:97-109. [PMID: 37328057 PMCID: PMC11081941 DOI: 10.1016/j.jare.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION The efficacy of anti-vascular endothelial growth factor (VEGF) therapy is limited. However, the key factors involved in limiting the efficacy of anti-VEGF therapy and the underlying mechanisms remain unclear. OBJECTIVES To investigate the effects and mechanisms of human leukocyte antigen F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, in limiting the efficacy of anti-VEGF therapy in hepatocellular carcinoma (HCC) cells. METHODS FAT10 was knocked out in HCC cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. Bevacizumab (BV), an anti-VEGF monoclonal antibody, was used to evaluate the efficacy of anti-VEGF therapy in vivo. Mechanisms of FAT10 action were assessed by RNA sequencing, glutathione S-transferase pulldown assays and in vivo ubiquitination assays. RESULTS FAT10 accelerated VEGF-independent angiogenesis in HCC cells which limited BV efficacy and BV-aggravated hypoxia and inflammation promoted FAT10 expression. FAT10 overexpression increased levels of proteins involved in several signaling pathways in HCC cells, resulting in upregulation of VEGF and multiple non-VEGF proangiogenic factors. Upregulation of multiple FAT10-mediated non-VEGF signals compensated for the inhibition of VEGF signaling by BV, enhancing VEGF-independent angiogenesis and promoting HCC growth. CONCLUSIONS Our preclinical findings identify FAT10 in HCC cells as a key factor limiting the efficacy of anti-VEGF therapy and elucidate its underlying mechanisms. This study provides new mechanistic insights into the development of antiangiogenic therapies.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Ben Che
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - A.V. Zhang
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Dongnian Du
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Jiajuan Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | | | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| |
Collapse
|
9
|
Luo C, Yu Y, Zhu J, Chen L, Li D, Peng X, Liu Z, Li Q, Cao Q, Huang K, Yuan R. Deubiquitinase PSMD7 facilitates pancreatic cancer progression through activating Nocth1 pathway via modifying SOX2 degradation. Cell Biosci 2024; 14:35. [PMID: 38494478 PMCID: PMC10944620 DOI: 10.1186/s13578-024-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Ubiquitination is a critical post-translational modification which can be reversed with an enzyme family known as deubiquitinating enzymes (DUBs). It has been reported that dysregulation of deubiquitination leads to carcinogenesis. As a member of the DUBs family, proteasome 26 S subunit non-ATPase 7 (PSMD7) serves as an underlying tumour-promoting factor in multiple cancers. However, the clinical significance and biological functions of PSMD7 in pancreatic cancer (PC) remain unclear. RESULTS In this study, we first reported frequent overexpression of PSMD7 in PC tissues, and high levels of PSMD7 were markedly linked to shorter survival and a malignant phenotype in PC patients. An array of in vitro and in vivo gain/loss-of-function tests revealed that PSMD7 facilitates the progression of PC cells. Additionally, we found that PSMD7 promotes PC cell progression by activating the Notch homolog 1 (Notch1) signalling. Interestingly, in PC cells, the inhibitory effect of PSMD7 knockdown on cellular processes was comparable to that observed upon Notch1 knockdown. Mechanistically, PSMD7 deubiquitinated and stabilised sex determining region Y (SRY)-box 2 (SOX2), a key mediator of Notch1 signalling. The stabilisation of SOX2, mediated by PSMD7, dramatically increased SOX2 protein levels, subsequently activating the Notch1 pathway. Finally, restoration of SOX2 expression abrogated the PSMD7-silenced antitumour effect. CONCLUSIONS Taken together, our work identifies and validates PSMD7 as a promoter of PC progression through augmentation of the Notch1 signalling pathway mediated by SOX2. This finding suggests that PSMD7 holds promise as a potential therapeutic target for the management of this refractory disease.
Collapse
Affiliation(s)
- Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yi Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, 410219, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qing Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qing Cao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Kai Huang
- Department of General Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi Province, 330029, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
10
|
Zhou M, Wang J, Pan J, Wang H, Huang L, Hou B, Lai Y, Wang F, Guan Q, Wang F, Xu Z, Yu H. Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy. Nat Commun 2023; 14:3593. [PMID: 37328484 PMCID: PMC10275881 DOI: 10.1038/s41467-023-39035-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
The immune-excluded tumors (IETs) show limited response to current immunotherapy due to intrinsic and adaptive immune resistance. In this study, it is identified that inhibition of transforming growth factor-β (TGF-β) receptor 1 can relieve tumor fibrosis, thus facilitating the recruitment of tumor-infiltrating T lymphocytes. Subsequently, a nanovesicle is constructed for tumor-specific co-delivery of a TGF-β inhibitor (LY2157299, LY) and the photosensitizer pyropheophorbide a (PPa). The LY-loaded nanovesicles suppress tumor fibrosis to promote intratumoral infiltration of T lymphocytes. Furthermore, PPa chelated with gadolinium ion is capable of fluorescence, photoacoustic and magnetic resonance triple-modal imaging-guided photodynamic therapy, to induce immunogenic death of tumor cells and elicit antitumor immunity in preclinical cancer models in female mice. These nanovesicles are further armored with a lipophilic prodrug of the bromodomain-containing protein 4 inhibitor (i.e., JQ1) to abolish programmed death ligand 1 expression of tumor cells and overcome adaptive immune resistance. This study may pave the way for nanomedicine-based immunotherapy of the IETs.
Collapse
Affiliation(s)
- Mengxue Zhou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxin Wang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China
| | - Jiaxing Pan
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Hou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Lai
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fengyang Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qingxiang Guan
- School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
11
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
12
|
Badillo-Suárez PA, Rodríguez-Cruz M, Bernabe-García M, Villa-Morales J, Iglesias-Rodríguez R, Canizales-Quinteros S, Carmona-Sierra FV. Influence of Maternal Body Fat on Levels of Insulin, Insulin-Like Growth Factor-1, and Obestatin. J Hum Lact 2022; 38:619-632. [PMID: 35950305 DOI: 10.1177/08903344221112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Insulin, insulin-like Growth Factor-1 (IGF-1), and obestatin in human milk originate from the circulation. There is also limited knowledge about the influence of body fat on the levels of these hormones in human milk. RESEARCH AIM To determine (1) the influence of body fat on levels of insulin, IGF-1, and obestatin in human milk and serum/plasma during the postpartum period; (2) the changes in the levels of these hormones in human milk and serum/plasma postpartum; and (3) the presence of IGF-1 mRNA in human milk. METHODS In this prospective, longitudinal, observational cohort study, levels of insulin, IGF-1, and obestatin were measured up to 30 days postpartum in milk and serum/plasma of 58 participants with adequate (≤ 32%) or excess (> 32%) total body fat determined by electrical bioimpedance. Student's t test and repeated-measures analysis of variance were used to evaluate the differences between groups. Pearson's test was used to analyze the associations. RESULTS The milk from participants with excess body fat had higher insulin and IGF-1 levels and lower obestatin levels than that of participants with adequate body fat at 3-7, 14-15, and 30 days postpartum (adjusted p < .001). The levels of insulin, IGF-1, and obestatin were significantly higher in human milk than in serum/plasma (p < .05) and correlated with maternal body fat (p < .001). CONCLUSIONS Maternal body fat was associated with elevated insulin and IGF-1 levels and decreased obestatin levels in human milk up to 30 days postpartum.
Collapse
Affiliation(s)
- Pilar A Badillo-Suárez
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición (UIMN), Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico.,Posgrado en Ciencias Biológicas, UNAM, Mexico City, Mexico.,Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | - Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición (UIMN), Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Mariela Bernabe-García
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición (UIMN), Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Judith Villa-Morales
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición (UIMN), Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ricardo Iglesias-Rodríguez
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición (UIMN), Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de Mexico/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Fairt V Carmona-Sierra
- Unidad de Medicina Familiar Number 4, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| |
Collapse
|
13
|
Shao Y, Zhang W, Du D, Yu Y, Li Q, Peng X. Ubiquitin-like protein FAT10 promotes renal fibrosis by stabilizing USP7 to prolong CHK1-mediated G2/M arrest in renal tubular epithelial cells. Aging (Albany NY) 2022; 14:7527-7546. [PMID: 36152057 PMCID: PMC9550257 DOI: 10.18632/aging.204301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
Renal fibrosis is the pathological hallmark of chronic kidney disease that is influenced by numerous factors. Arrest of renal tubular epithelial cells (RTECs) in G2/M phase is closely correlated with the progression of renal fibrosis; however, the mechanisms mediating these responses remain poorly defined. In this study, we observed that human leukocyte antigen-F adjacent transcript 10 (FAT10) deficiency abolished hypoxia-induced upregulation of checkpoint kinase 1 (CHK1) expression in RTECs derived from FAT10+/+ and FAT10−/− mice. Further investigations revealed that FAT10 contributes to CHK1-mediated G2/M arrest and production of pro-fibrotic cytokines in RTECs exposed to hypoxia. Mechanistically, FAT10 directly interacted with and stabilized the deubiquitylating enzyme ubiquitin specific protease 7 (USP7) to mediate CHK1 upregulation, thereby promoting CHK1-mediated G2/M arrest in RTECs. In animal model, FAT10 expression was upregulated in the obstructed kidneys of mice induced by unilateral ureteric obstruction injury, and FAT10−/− mice exhibited reduced unilateral ureteric obstruction injury induced-renal fibrosis compared with FAT10+/+ mice. Furthermore, in a cohort of patients with calculi-related chronic kidney disease, upregulated FAT10 expression was positively correlated with renal fibrosis and the USP7/CHK1 axis. These novel findings indicate that FAT10 prolongs CHK1-mediated G2/M arrest via USP7 to promote renal fibrosis, and inhibition of the FAT10/USP7/CHK1 axis might be a plausible therapeutic approach to alleviate renal fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Ying Shao
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang 330006, Jiangxi Province, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dongnian Du
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qing Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
14
|
Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Nat Commun 2022; 13:4789. [PMID: 35970836 PMCID: PMC9378703 DOI: 10.1038/s41467-022-32040-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
The covalent modification of target proteins with ubiquitin or ubiquitin-like modifiers is initiated by E1 activating enzymes, which typically transfer a single modifier onto cognate conjugating enzymes. UBA6 is an unusual E1 since it activates two highly distinct modifiers, ubiquitin and FAT10. Here, we report crystal structures of UBA6 in complex with either ATP or FAT10. In the UBA6-FAT10 complex, the C-terminal domain of FAT10 binds to where ubiquitin resides in the UBA1-ubiquitin complex, however, a switch element ensures the alternate recruitment of either modifier. Simultaneously, the N-terminal domain of FAT10 interacts with the 3-helix bundle of UBA6. Site-directed mutagenesis identifies residues permitting the selective activation of either ubiquitin or FAT10. These results pave the way for studies investigating the activation of either modifier by UBA6 in physiological and pathophysiological settings. UBA6 is an E1 enzyme that can activate both ubiquitin and FAT10. Here, the authors employ X-ray crystallography and biochemical techniques to explain this dual specificity, and identify UBA6 variants that are selectively impaired in the activation of either ubiquitin or FAT10.
Collapse
|
15
|
Zhu J, Zhao J, Luo C, Zhu Z, Peng X, Zhu X, Lin K, Bu F, Zhang W, Li Q, Wang K, Hu Z, Yu X, Chen L, Yuan R. FAT10 promotes chemotherapeutic resistance in pancreatic cancer by inducing epithelial-mesenchymal transition via stabilization of FOXM1 expression. Cell Death Dis 2022; 13:497. [PMID: 35614040 PMCID: PMC9132907 DOI: 10.1038/s41419-022-04960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer (PC) is one of the deadliest malignant tumors, and its resistance to gemcitabine chemotherapy is the primary reason for poor prognosis in patients. Ubiquitin-like protein FAT10 has recently been reported to promote tumor chemotherapy resistance. In this study, the expression of FAT10 in PC was significantly higher than that in adjacent noncancerous tissues. Increased expression of FAT10 in PC was related to a late TNM stage and decreased overall survival. Functional experiments revealed that downregulating the expression of FAT10 inhibits the proliferation and epithelial-mesenchymal transition (EMT) of PC cells, promotes the apoptosis of PC cells, and enhances sensitivity to gemcitabine chemotherapy. In addition, upregulation of FAT10 increased the expression of FOXM1 protein. The effect of downregulating FAT10 was reversed by FOXM1 overexpression, and FOXM1 knockdown inhibited EMT driven by FAT10 overexpression. Mechanistically, FAT10 stabilized the expression of FOXM1 by competing with ubiquitin to bind FOXM1 and inhibiting the ubiquitination-mediated degradation of FOXM1. In conclusion, the FAT10-FOXM1 axis is a pivotal driver of PC proliferation and gemcitabine resistance, and the results provide novel insights into chemotherapy resistance in PC.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jiefeng Zhao
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Chen Luo
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhengming Zhu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xingyu Peng
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaojian Zhu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kang Lin
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fanqin Bu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenjun Zhang
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qing Li
- Department of Pathology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kai Wang
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, 330006, Jiangxi Province, China
| | - Zhigang Hu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xin Yu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, 330006, Jiangxi Province, China
| | - Leifeng Chen
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Rongfa Yuan
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
16
|
Chen L, Xu Z, Li Q, Feng Q, Zheng C, Du Y, Yuan R, Peng X. USP28 facilitates pancreatic cancer progression through activation of Wnt/β-catenin pathway via stabilising FOXM1. Cell Death Dis 2021; 12:887. [PMID: 34584067 PMCID: PMC8478945 DOI: 10.1038/s41419-021-04163-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/21/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022]
Abstract
Ubiquitination is an important post-translational modification that can be reversed by a family of enzymes called deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 28 (USP28), a member of the DUBs family, functions as a potential tumour promoter in various cancers. However, the biological function and clinical significance of USP28 in pancreatic cancer (PC) are still unclear. Here, we showed that PC tumours had higher USP28 expression compared with that of normal pancreatic tissues, and high USP28 level was significantly correlated with malignant phenotype and shorter survival in patients with PC. Overexpression of USP28 accelerated PC cell growth, whereas USP28 knockdown impaired PC cell growth both in vitro and in vivo. Further, we found that USP28 promoted PC cell growth by facilitating cell cycle progression and inhibiting apoptosis. Mechanistically, USP28 deubiquitinated and stabilised FOXM1, a critical mediator of Wnt/β-catenin signalling. USP28-mediated stabilisation of FOXM1 significantly promoted nucleus β-catenin trans-activation, which in turn led to the activation of the Wnt/β-catenin pathway. Finally, restoration of FOXM1 expression abolished the anti-tumour effects of USP28-silencing. Thus, USP28 contributes to PC pathogenesis through enhancing the FOXM1-mediated Wnt/β-catenin signalling, and could be a potential diagnostic and therapeutic target for PC cases.
Collapse
Affiliation(s)
- Leifeng Chen
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zheng Xu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qing Li
- Department of Pathology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qian Feng
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Cihua Zheng
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yunyan Du
- Department of Medical, Jiangxi Provincial People's Hospital of Nanchang University, Nanchang, 330006, China.
| | - Rongfa Yuan
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
17
|
Zhang Y, Zuo Z, Liu B, Yang P, Wu J, Han L, Han T, Chen T. FAT10 promotes hepatocellular carcinoma (HCC) carcinogenesis by mediating P53 degradation and acts as a prognostic indicator of HCC. J Gastrointest Oncol 2021; 12:1823-1837. [PMID: 34532131 DOI: 10.21037/jgo-21-374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
Background With the advancement of hepatocellular carcinoma (HCC) treatment technology, the treatment options for HCC patients have increased. However, due to high heterogeneity, among other reasons, the five-year survival rate of patients is still very low. Currently, gene expression prognostic models can suggest more appropriate strategies for the treatment of HCC. This study investigates the role of FAT10 in hepatocarcinogenesis and its underlying mechanism. Methods The expression of FAT10 was detected by immunohistochemical method using tissue arrays containing 4 specimens of patients with digestive cancer. The expression of FAT10 was determined by a tissue microarray which included 286 pairs of HCC samples and corresponding normal mucosae and was further confirmed by real-time polymerase chain reaction (PCR) and western blot. The Kaplan-Meier survival curve was used to determine the correlation of FAT10 expression with patients' recurrence and overall survival (OS) rate. In vivo, liver fibrosis, cirrhosis, and HCC models were established to assess the FAT10 expression. Moreover, FAT10 over-expressing cell lines were used to determine the molecular mechanism underlying the FAT10-induced cell proliferation and hepatocarcinogenesis by reporter gene measure, real-time PCR, and western blot. Based on TCGA database, signal pathways associated with FAT10 and HCC invasion and metastasis were analyzed by KEGG enrichment analyze. Results Overexpression of FAT10 in HCC was observed in this study compared with its expression in other digestive tumors. Clinicopathological analysis revealed that FAT10 expression levels were closely associated with tumor diameters and poor prognosis of HCC. This study also confirmed through in vivo experiments that the expression of FAT10 in liver fibrosis, cirrhosis, and HCC gradually increases. Further study revealed that forced FAT10 expression enhanced the growth ability of HCC cells and mediated the degradation of the critical anti-cancer protein p53, which led to carcinogenesis. Finally, 9 signal pathways related to HCC metastasis were obtained through bioinformatics analysis. Conclusions FAT10 may act as a proto-oncogene that facilitates HCC carcinogenesis by mediating p53 degradation, and the expression of FAT10 is negatively correlated with the prognosis of HCC patients. FAT10 is expected to become a potential combined target and prognostic warning marker for HCC treatment.
Collapse
Affiliation(s)
- Yue Zhang
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifan Zuo
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Bo Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pinghua Yang
- The Fourth Department of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Wu
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tao Han
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tingsong Chen
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Song A, Wang Y, Jiang F, Yan E, Zhou J, Ye J, Zhang H, Ding X, Li G, Wu Y, Zheng Y, Song X. Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling. Mol Cells 2021; 44:468-480. [PMID: 34230226 PMCID: PMC8334351 DOI: 10.14348/molcells.2021.2229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023] Open
Abstract
Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- An Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Feng Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Enshi Yan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210000, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221000, China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yunong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| |
Collapse
|
19
|
Su H, Qin M, Liu Q, Jin B, Shi X, Xiang Z. Ubiquitin-Like Protein UBD Promotes Cell Proliferation in Colorectal Cancer by Facilitating p53 Degradation. Front Oncol 2021; 11:691347. [PMID: 34350116 PMCID: PMC8327751 DOI: 10.3389/fonc.2021.691347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Ubiquitin D (UBD) is a member of the ubiquitin-like modifier (UBL) family and is highly expressed in a variety of cancers including colorectal cancer (CRC). However, the mechanisms of its regulatory roles in CRC are largely elusive. In this study, we revealed the effect of UBD on the proliferation of CRC. Methods The expression of UBD in clinical tissue samples of CRC and seven CRC cell lines was detected using qRT-PCR, immunohistochemistry (IHC) and Western blotting. CCK-8, colony formation, EdU and flow cytometry assays were used to detect the functional changes of CRC cells transfected with UBD stable expression plasmids in vitro. A xenograft model was constructed to assess the effect of UBD on the growth of CRC cells in vivo. The connection between UBD and p53 was analyzed using Western blotting, immunoprecipitation, proteasome inhibition assay and Cycloheximide (CHX) chase assay. Results UBD was overexpressed in CRC tumor tissues compared with nontumor tissues, and its overexpression was positively associated with the tumor size and TNM stage of CRC patients. Functionally, UBD significantly accelerated CRC cell viability and proliferation in vitro and promoted tumorigenesis in vivo. Mechanistically, UBD interacted with p53 in CRC cells, downregulated the expression of p53 by regulating its degradation, shortened the p53 half-life, thereby further affecting the decrease in p21 and the increase in Cyclin D1, Cyclin E, CDK2, CDK4 and CDK6. Moreover, in vivo experiments showed that UBD-induced tumor growth in nude mice was dependent on a decrease in p53. Conclusions Our study proved that UBD mediates the degradation of p53, thereby facilitating the growth of CRC cells and ultimately promoting the progression of CRC. Therefore, UBD may be a potential therapeutic target and a promising prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Hongbin Su
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengdi Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianjun Shi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Xiang S, Shao X, Cao J, Yang B, He Q, Ying M. FAT10: Function and Relationship with Cancer. Curr Mol Pharmacol 2021; 13:182-191. [PMID: 31729307 DOI: 10.2174/1874467212666191113130312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Posttranslational protein modifications are known to be extensively involved in cancer, and a growing number of studies have revealed that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 was found to be highly upregulated in various cancer types, such as glioma, hepatocellular carcinoma, breast cancer and gastrointestinal cancer. Protein FAT10ylation and interactions with FAT10 lead to the functional change of proteins, including proteasomal degradation, subcellular delocalization and stabilization, eventually having significant effects on cancer cell proliferation, invasion, metastasis and even tumorigenesis. In this review, we summarized the current knowledge on FAT10 and discussed its biological functions in cancer, as well as potential therapeutic strategies based on the FAT10 pathway.
Collapse
Affiliation(s)
- Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death Dis 2021; 12:25. [PMID: 33414395 PMCID: PMC7790828 DOI: 10.1038/s41419-020-03290-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/29/2023]
Abstract
The human leukocyte antigen F-associated transcript 10 (FAT10) is a member of the small ubiquitin-like protein family that binds to its target proteins and subjects them to degradation by the ubiquitin-proteasome system (UPS). In the heart, FAT10 plays a cardioprotective role and affects predisposition to cardiac arrhythmias after myocardial ischemia (MI). However, whether and how FAT10 influences cardiac arrhythmias is unknown. We investigated the role of FAT10 in regulating the sodium channel Nav1.5, a major regulator of cardiac arrhythmias. Fat10 was conditionally deleted in cardiac myocytes using Myh6-Cre and Fat10F/F mice (cFat10-/-). Compared with their wild-type littermates, cFat10-/- mice showed prolonged RR, PR, and corrected QT (QTc) intervals, were more likely to develop ventricular arrhythmia, and had increased mortality after MI. Patch-clamp studies showed that the peak Na+ current was reduced, and the late Na+ current was significantly augmented, resulting in a decreased action potential amplitude and delayed depolarization. Immunoblot and immunofluorescence analyses showed that the expression of the membrane protein Nav1.5 was decreased. Coimmunoprecipitation experiments demonstrated that FAT10 stabilized Nav1.5 expression by antagonizing Nav1.5 ubiquitination and degradation. Specifically, FAT10 bound to the lysine residues in the C-terminal fragments of Nav1.5 and decreased the binding of Nav1.5 to the Nedd4-2 protein, a ubiquitin E3 ligase, preventing degradation of the Nav1.5 protein. Collectively, our findings showed that deletion of the Fat10 in cardiac myocytes led to increased cardiac arrhythmias and increased mortality after MI. Thus, FAT10 protects against ischemia-induced ventricular arrhythmia by binding to Nav1.5 and preventing its Neddylation and degradation by the UPS after MI.
Collapse
|
22
|
Wang D, Zhao C, Xu F, Zhang A, Jin M, Zhang K, Liu L, Hua Q, Zhao J, Liu J, Yang H, Huang G. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics 2021; 11:2860-2875. [PMID: 33456577 PMCID: PMC7806469 DOI: 10.7150/thno.51797] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is commonly observed in solid tumors and contributes to the resistance of DNA damage drugs. However, the mechanisms behind this resistance are still unclear. In this study, we aimed to explore the effects of hypoxia-induced exosomes on non-small cell lung cancer (NSCLC). Methods: NSCLC cells were subjected to either normoxic or hypoxic conditions to assess cell survival and changes in the expression levels of key proteins. Comparative proteomics were performed to identify exosomal PKM2 in normoxic or hypoxic cisplatin-resistant NSCLC cells-derived exosomes. Functions of hypoxia induced-exosomal PKM2 in promoting cisplatin resistance to NSCLC cells were evaluated both in vitro and in vivo experiments and the molecular mechanisms of hypoxia induced-exosomal PKM2 were demonstrated using flow cytometry, immunoblotting, oxidative stress detection and histological examination. A series of in vitro experiments were performed to evaluate the function of hypoxia-induced exosomes on cancer-associated fibroblasts (CAFs). Results: Hypoxia exacerbated the cisplatin resistance in lung cancer cells due to the increased expression of PKM2 that was observed in the exosomes secreted by hypoxic cisplatin-resistance cells. We identified that hypoxia-induced exosomal PKM2 transmitted cisplatin-resistance to sensitive NSCLC cells in vitro and in vivo. Mechanistically, hypoxia-induced exosomal PKM2 promoted glycolysis in NSCLC cells to produce reductive metabolites, which may neutralize reactive oxygen species (ROS) induced by cisplatin. Additionally, hypoxia-induced exosomal PKM2 inhibited apoptosis in a PKM2-BCL2-dependent manner. Moreover, hypoxia-induced exosomal PKM2 reprogrammed CAFs to create an acidic microenvironment promoting NSCLC cells proliferation and cisplatin resistance. Conclusions: Our findings revealed that hypoxia-induced exosomes transmit cisplatin resistance to sensitive NSCLC cells by delivering PKM2. Exosomal PKM2 may serve as a promising biomarker and therapeutic target for cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Chaoshuai Zhao
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fei Xu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Aimi Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Hua
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian Zhao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
23
|
Chen LM, Xiang L, Sun WJ, Zhai YJ, Gao S, Fan YC, Wang K. Diagnostic Value of the Hypomethylation of the WISP1 Promoter in Patients with Hepatocellular Carcinoma Associated with Hepatitis B Virus. TOHOKU J EXP MED 2020; 252:297-307. [PMID: 33239483 DOI: 10.1620/tjem.252.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wnt1-inducible signaling pathway protein 1 (WISP1) regulates cell proliferation, differentiation, adhesion, migration and survival. Abnormal WISP1 expression is associated with the carcinogenesis of hepatocellular carcinoma (HCC). Aberrant DNA methylation is one of the major epigenetic alterations in HCC. However, the methylation status of the WISP1 promoter is still unclear. We therefore aimed to determine the methylation status of the WISP1 promoter and evaluate its clinical value in HCC. The study enrolled 251 participants, including 123 participants with HCC, 90 participants with chronic hepatitis B (CHB) and 38 healthy controls (HCs). WISP1 methylation status, mRNA levels and plasma soluble WISP1 were detected by methylation-specific polymerase chain reaction (MSP), quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. We found that the methylation frequency of WISP1 in patients with HCC was significantly lower than that in patients with CHB and HCs, while the relative expression levels of WISP1 mRNA were markedly higher in patients with HCC than in patients with CHB and HCs. Furthermore, the plasma soluble WISP1 in patients with HCC was obviously lower than in that in patients with CHB and HCs. Alpha-fetoprotein (AFP) is a widely recognized biomarker to diagnose HCC which lacks enough sensitivity and specificity. WISP1 promoter methylation status combined with AFP significantly improved the diagnostic ability in discriminating HCC from CHB compared with AFP or WISP1 methylation status alone. In conclusion, hypomethylation of the WISP1 gene promoter may serve as a noninvasive biomarker for detecting HBV-associated HCC.
Collapse
Affiliation(s)
- La-Mei Chen
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Lin Xiang
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Wei-Juan Sun
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Yu-Jia Zhai
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University
- Institute of Hepatology, Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University
- Institute of Hepatology, Shandong University
- Shenzhen Research Institute of Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University
- Institute of Hepatology, Shandong University
- Shenzhen Research Institute of Shandong University
| |
Collapse
|
24
|
FAT10 promotes the progression of bladder cancer by upregulating HK2 through the EGFR/AKT pathway. Exp Cell Res 2020; 398:112401. [PMID: 33253711 DOI: 10.1016/j.yexcr.2020.112401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-like protein FAT10 and the hexokinase protein HK2 play vital regulatory roles in several cellular processes. However, the relationship between these two proteins and their role in the pathogenesis of bladder cancer are not well understood. Here, we found that FAT10 and HK2 protein levels were markedly higher in bladder cancer tissues than in normal adjacent tissues. In addition, RNAi-mediated silencing of FAT10 led to reduced HK2 levels and suppressed bladder cancer progression in vivo and in vitro. The results of our in vivo and in vitro experiments revealed that HK2 is critical for FAT10-mediated progression of bladder cancer. The current study demonstrated that FAT10 enhanced the progression of bladder cancer by positively regulating HK2 via the EGFR/AKT pathway. Based on our findings, FAT10 is believed to stabilize EGFR expression by modulating its degradation and ubiquitination. The results of the current study indicate that there is a correlation between FAT10 and HK2 in the progression of bladder cancer. In addition, we identified a new pathway that may be involved in the regulation of HK2. These findings implicate dysfunction of the FAT10, EGFR/AKT, and HK2 regulatory circuit in the progression of bladder cancer.
Collapse
|
25
|
Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 - much more than a proteasome-targeting signal. J Cell Sci 2020; 133:133/14/jcs246041. [PMID: 32719056 DOI: 10.1242/jcs.246041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) also called ubiquitin D (UBD) is a member of the ubiquitin-like modifier (ULM) family. The FAT10 gene is localized in the MHC class I locus and FAT10 protein expression is mainly restricted to cells and organs of the immune system. In all other cell types and tissues, FAT10 expression is highly inducible by the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF). Besides ubiquitin, FAT10 is the only ULM which directly targets its substrates for degradation by the 26S proteasome. This poses the question as to why two ULMs sharing the proteasome-targeting function have evolved and how they differ from each other. This Review summarizes the current knowledge of the special structure of FAT10 and highlights its differences from ubiquitin. We discuss how these differences might result in differential outcomes concerning proteasomal degradation mechanisms and non-covalent target interactions. Moreover, recent insights about the structural and functional impact of FAT10 interacting with specific non-covalent interaction partners are reviewed.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland .,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
26
|
Schmoll D, Ziegler N, Viollet B, Foretz M, Even PC, Azzout-Marniche D, Nygaard Madsen A, Illemann M, Mandrup K, Feigh M, Czech J, Glombik H, Olsen JA, Hennerici W, Steinmeyer K, Elvert R, Castañeda TR, Kannt A. Activation of Adenosine Monophosphate-Activated Protein Kinase Reduces the Onset of Diet-Induced Hepatocellular Carcinoma in Mice. Hepatol Commun 2020; 4:1056-1072. [PMID: 32626837 PMCID: PMC7327225 DOI: 10.1002/hep4.1508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
The worldwide obesity and type 2 diabetes epidemics have led to an increase in nonalcoholic fatty liver disease (NAFLD). NAFLD covers a spectrum of hepatic pathologies ranging from simple steatosis to nonalcoholic steatohepatitis, characterized by fibrosis and hepatic inflammation. Nonalcoholic steatohepatitis predisposes to the onset of hepatocellular carcinoma (HCC). Here, we characterized the effect of a pharmacological activator of the intracellular energy sensor adenosine monophosphate–activated protein kinase (AMPK) on NAFLD progression in a mouse model. The compound stimulated fat oxidation by activating AMPK in both liver and skeletal muscle, as revealed by indirect calorimetry. This translated into an ameliorated hepatic steatosis and reduced fibrosis progression in mice fed a diet high in fat, cholesterol, and fructose for 20 weeks. Feeding mice this diet for 80 weeks caused the onset of HCC. The administration of the AMPK activator for 12 weeks significantly reduced tumor incidence and size. Conclusion: Pharmacological activation of AMPK reduces NAFLD progression to HCC in preclinical models.
Collapse
Affiliation(s)
| | | | - Benoit Viollet
- Université de Paris Institut Cochin CNRS UMR 8104 INSERM U1016 Paris France
| | - Marc Foretz
- Université de Paris Institut Cochin CNRS UMR 8104 INSERM U1016 Paris France
| | - Patrick C Even
- UMR Nutrition Physiology and Ingestive Behavior AgroParisTech INRA Université Paris-Saclay Paris France
| | - Dalila Azzout-Marniche
- UMR Nutrition Physiology and Ingestive Behavior AgroParisTech INRA Université Paris-Saclay Paris France
| | | | | | | | | | | | | | | | | | | | | | | | - Aimo Kannt
- Sanofi R&D Frankfurt Germany.,Institute of Experimental Pharmacology Medical Faculty Mannheim University of Heidelberg Mannheim Germany.,Fraunhofer IME Translational Medicine and Pharmacology Frankfurt Germany
| |
Collapse
|
27
|
TAB3 upregulates PIM1 expression by directly activating the TAK1-STAT3 complex to promote colorectal cancer growth. Exp Cell Res 2020; 391:111975. [PMID: 32229191 DOI: 10.1016/j.yexcr.2020.111975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1)-binding protein 3 (TAB3) and the proviral integration site for Moloney murine leukaemia virus 1 (PIM1) are implicated in cancer development. In this study, we investigated the relationship between TAB3 and PIM1 in colorectal cancer (CRC) and determined the potential role and molecular mechanism of TAB3 in PIM1-mediated CRC growth. We found that TAB3 and PIM1 expression levels were positively correlated in CRC tissues. The knockdown of TAB3 significantly decreased PIM1 expression and inhibited CRC proliferation in vitro and in vivo. The upregulation of PIM1 rescued the decreased cell proliferation induced by TAB3 knockdown, whereas PIM1 knockdown decreased TAB3-enhanced CRC proliferation. Additionally, TAB3 regulates PIM1 expression through the STAT3 signalling pathway and confirmed a positive correlation between TAB3 and phosphorylated-STAT3 expression in CRC tissues. Patients with high expression of TAB3 and phosphorylated-STAT3 had the worst prognosis. Mechanistically, TAB3 regulates PIM1 expression by promoting STAT3 phosphorylation and activation through the formation of the TAB3-TAK1-STAT3 complex. Overall, a novel CRC regulatory circuit involving the TAB3-TAK1-STAT3 complex and PIM1 was identified, the dysfunction of which may contribute to CRC tumorigenesis.
Collapse
|
28
|
Shi Z, Feng L, Lian Z, Liu J, Chen H, Du Q, Zhang Y, Zhang Q, Yang M, Zhou H. Decreased mRNA Expressions of CD40L in Patients with Neuromyelitis Optica Spectrum Disorder. J Mol Neurosci 2020; 70:610-617. [PMID: 31925706 DOI: 10.1007/s12031-019-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease that preferentially affects central nerve system. Herein, we evaluated changes of CD40L and CD40 mRNA expressions in NMOSD and controls to explore their potential roles in development of NMOSD. The expressions of CD40L and CD40 mRNA in peripheral blood mononuclear cells (PBMCs) from patients with NMOSD and healthy controls were detected by quantitative real-time PCR (qPCR). Kruskal-Wallis tests were used to compare expression levels of CD40L and CD40 mRNA between groups, and Spearman correlation analysis was performed to evaluate correlation between mRNA expression levels and annual relapse rate (ARR) of NMOSD. A total of 71 patients with NMOSD and 42 gender- and age-matched healthy volunteers were recruited in our study. Compared with healthy controls, expression of CD40L mRNA was significantly decreased in untreated patients with NMOSD, and similar trends were observed also in CD40 mRNA expression although the difference was not significant. Other than that, immunosuppressants not only successfully increased CD40L and CD40 mRNA levels during remission of NMOSD, but also corrected the negative correlation between CD40L mRNA expression and annual relapse rate (ARR) of patients NMOSD. These results favored the long-term prognosis of NMOSD patients. Our results suggest that decreased expressions of CD40L mRNA may be involved in developing of NMOSD and the proper CD40L mRNA levels benefit to prevent attacks of NMOSD. Nevertheless, the relationship between protein and mRNA expressions of CD40L and their underlying roles in the pathogenesis of NMOSD remains to be further studied.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ling Feng
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Zhiyun Lian
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ju Liu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Qin Zhang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Translational Centre for Oncoimmunology, Sichuan Cancer Hospital and research Institute, Sichuan Cancer Center, No.55 South Renmin Road, Chengdu, 610000, China.
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Shi X, Wang B, Chen X, Zheng Y, Ding Y, Wang C. Upregulation of ubiquitin-conjugating enzyme E2Z is associated with human hepatocellular carcinoma. Biochem Biophys Res Commun 2019; 523:25-32. [PMID: 31831168 DOI: 10.1016/j.bbrc.2019.11.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
UBE2Z, a member of ubiquitin-conjugating enzymes, has been reported to participate in multiple biological processes. However, its roles in hepatocellular carcinoma (HCC) remain undiscovered. This study aimed at investigating the functions of UBE2Z in HCC. Firstly, we evaluated UBE2Z expression in HCC and identified associations among UBE2Z expression, clinicopathological features, copy number alterations, DNA methylation, and survival of patients using data from the Cancer Genome Atlas (TCGA). As a result, UBE2Z was remarkably overexpressed in HCC tissues relative to normal liver tissues (P < 0.05). High UBE2Z expression was significantly correlated with age, advanced TNM stage, histological grade, vascular invasion, elevated serum alpha-fetoprotein expression (AFP), worse overall survival (OS) and disease-free survival (DFS) of HCC patients (all P < 0.05). Besides, data mining in UCSC Xena Browser showed that UBE2Z DNA amplification which was significantly associated with its expression was common (108 out of 364) in HCC, and that the level of UBE2Z DNA methylation was negatively associated with its expression (Pearson's correlation = -0.4, P < 0.0001). After analyzing the datasets from TCGA, we further confirmed the up-regulation of UBE2Z in 60 HCC tissues and several HCC cell lines. Finally, functional assays were performed and showed that knockdown UBE2Z using small interfering RNA (siRNA) could significantly restrain tumor cell proliferation and suppress cell migration and cell invasion through repressing the expression of MMP2 and MMP9. Meanwhile, UBE2Z knockdown could effectively reduce the expression of p-ERK, p-p38, p-JNK, p-Stat3 and p-JAK2, suggesting that UBE2Z might promote HCC progression by targeting ERK and stat3 signaling pathway. These findings implied that UBE2Z might be considered as a prognostic biomarker in HCC and provided a potential therapeutic tumor-associated antigen for HCC.
Collapse
Affiliation(s)
- Xiaokang Shi
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Bin Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoyan Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuyang Zheng
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
30
|
Wang F, Zhao B. UBA6 and Its Bispecific Pathways for Ubiquitin and FAT10. Int J Mol Sci 2019; 20:ijms20092250. [PMID: 31067743 PMCID: PMC6539292 DOI: 10.3390/ijms20092250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Questions have been raised since the discovery of UBA6 and its significant coexistence with UBE1 in the ubiquitin–proteasome system (UPS). The facts that UBA6 has the dedicated E2 enzyme USE1 and the E1–E2 cascade can activate and transfer both ubiquitin and ubiquitin-like protein FAT10 have attracted a great deal of attention to the regulational mechanisms of the UBA6–USE1 cascade and to how FAT10 and ubiquitin differentiate with each other. This review recapitulates the latest advances in UBA6 and its bispecific UBA6–USE1 pathways for both ubiquitin and FAT10. The intricate networks of UBA6 and its interplays with ubiquitin and FAT10 are briefly reviewed, as are their individual and collective functions in diverse physiological conditions.
Collapse
Affiliation(s)
- Fengting Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Zhang J, Cai M, Jiang D, Xu L. Upregulated LncRNA-CCAT1 promotes hepatocellular carcinoma progression by functioning as miR-30c-2-3p sponge. Cell Biochem Funct 2019; 37:84-92. [PMID: 30773676 DOI: 10.1002/cbf.3375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death over the world. It is well studied that long noncoding RNA colon cancer-associated transcript-1 (CCAT1) played important roles in variety of cancers promoting cell proliferation and metastasis by acting as a competing endogenous RNA (ceRNA) of microRNAs. However, whether CCAT1 could regulate HCC by serving as a ceRNA of microRNA remains to be revealed. In this study, we demonstrated that CCAT1 was highly expressed in HCC tissues and remarkably associated with metastasis. With a bioinformatics prediction and functional assay validation, we found a binding site of miR-30c-2-3p on CCAT1, which was important for CCAT1 to promote cell proliferation. Interestingly, we further revealed a novel recognition site for miR-30c-2-3p on the 3'UTR of CCNE1 by mutative method, luciferase assay, and cell viability confirmation. In general, CCAT1 regulate the expression of CCNE1 by acting as a ceRNA to sponge miR-30c-2-3p in regulating the cell proliferation of HCC. These results suggest that CCAT1 may be a new therapy target for HCC in the future. SIGNIFICANCE OF THE STUDY: Our findings may broaden the understanding of the role of CCAT1 in tumorigenesis and may provide a new therapy target for HCC.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hepatobiliary Surgical, First Hospital of Jiaxing, Jiaxing, China
| | - Min Cai
- Department of Hepatobiliary Surgical, First Hospital of Jiaxing, Jiaxing, China
| | - Dawei Jiang
- Department of Hepatobiliary Surgical, First Hospital of Jiaxing, Jiaxing, China
| | - Liu Xu
- Department of Hepatobiliary Surgical, First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|