1
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Wang XL, He JH, Xie P, Wu Y, Dong LY, An W. Augmenter of Liver Regeneration Crotonylation Assists in Mitochondria-ER Contact to Alleviate Hepatic Steatosis. Cell Mol Gastroenterol Hepatol 2024; 19:101436. [PMID: 39647663 PMCID: PMC11786861 DOI: 10.1016/j.jcmgh.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND & AIMS Crotonylation (Kcr), a newly identified post-translation modification (PTM), has been confirmed to be involved in diverse biological processes and human diseases as well. Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a serious threat to people's health. Augmenter of liver regeneration (ALR) is an important liver regulatory protein, and the insufficiency of ALR expression is reported to accelerate liver steatosis progression to liver fibrosis or even hepatic carcinoma (HCC). However, the connection between dysregulated ALR crotonylation and MASLD pathogenesis remains largely unknown. METHODS Steatotic liver samples from human and Western diet (WD)-fed mice were employed for detecting Kcr levels. Mitochondrial function and mitochondria-ER interaction (MAM) relevant to ALR-Kcr modification was evaluated for hepatocyte lipid metabolism both in in vivo and in vitro experiments. RESULTS Global protein crotonylation (Kcr) as well as ALR-Kcr was significantly decreased in liver samples of patients with MASLD and WD mice. Histone deacetylase1/2 (HDAC1/2) and lysine acetyltransferase 8 (KAT8) were identified responsible for regulation of ALR-Kcr, which takes place at lysine 78 (K78). The decrease of ALR crotonylation might be related to the imbalance between HDAC1/2 and KAT8 expression, inhibited its interaction with MFN2, expanding MAM distance and impairing mitochondrial lipid metabolism, and consequently deteriorating hepatic steatosis. CONCLUSIONS The insufficient ALR crotonylation might be a crucial mechanism contributing to the pathogenesis of MASLD. Keeping ALR crotonylation level would be beneficial for the prevention and treatment of MASLD.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Hao He
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Ping Xie
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Yuan Wu
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Ling-Yue Dong
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Wei An
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Cao C, Yu K, Lin F, Xu A, Zhou M. Relationship between relative fat mass and low-carbohydrate diet scores and sleep disorders in United States: a real-world cross-sectional study. Front Nutr 2024; 11:1500934. [PMID: 39512518 PMCID: PMC11541084 DOI: 10.3389/fnut.2024.1500934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Objective To investigate the relationship between relative fat mass (RFM) and low-carbohydrate diet (LCD) scores and sleep disorders in the U.S. population. Methods Data were collected from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2014. A total of 5,394 respondents participated in the study. Univariate and multivariate linear regression analyses were used to investigate the relationship between RFM and LCD scores, and univariate and multivariate logistic regression analyses were used to investigate the relationship between RFM and LCD scores and sleep disorders. Restricted cubic spline (RCS) analyses were conducted to test for nonlinear associations between RFM and LCD scores and sleep disorders. Results A total of 5,394 participants were included in the statistical analysis, including 5,080 healthy participants and 314 with sleep disorders. Univariate and multivariate linear regression showed a bivariate positive correlation between RFM and LCD scores (p < 0.05), and logistic regression analysis showed a significant positive correlation between RFM (95% CI: 1.02-1.07, p = 0.005) LCD scores (95% CI: 1.00-1.03, p = 0.044) and sleep disturbances. Subgroup analyses showed robust effects of RFM and LCD score on sleep disorders. Conclusion RFM was positively and bi-directionally associated with LCD scores, both of which resulted as risk factors for sleep disorders. This study emphasizes that an LCD and lowering RFM can prevent and ameliorate the risk of sleep disorders.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keyi Yu
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Gongye X, Xia P, Ma T, Chai Y, Chen Z, Zhu Y, Qu C, Liu J, Guo WW, Zhang M, Liu Y, Tian M, Yuan Y. Liver Extracellular Vesicles and Particles Enriched β-Sitosterol Effectively Promote Liver Regeneration in Mice. Int J Nanomedicine 2024; 19:8117-8137. [PMID: 39139504 PMCID: PMC11319097 DOI: 10.2147/ijn.s465346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Background The liver's regenerative capacity allows it to repair itself after injury. Extracellular vesicles and particles (EVPs) in the liver's interstitial space are crucial for signal transduction, metabolism, and immune regulation. Understanding the role and mechanism of liver-derived EVPs in regeneration is significant, particularly after partial hepatectomy, where the mechanisms remain unclear. Methods A 70% hepatectomy model was established in mice, and EVPs were isolated and characterized using electron microscopy, nanocharacterization, and Western blot analysis. Combined metabolomic and transcriptomic analyses revealed β-sitosterol enrichment in EVPs and activation of the Hedgehog signaling pathway during regeneration. The role of β-sitosterol in EVPs on the Hedgehog pathway and its targets were identified using qRT-PCR, Western blot analysis. The regulation of carnitine synthesis by this pathway was determined using a dual luciferase assay. The effect of a β-sitosterol diet on liver regeneration was verified in mice. Results After 70% hepatectomy, the liver successfully regenerated without liver failure or death. At 24 hours post-surgery, tissue staining showed transient regeneration-associated steatosis (TRAS), with increased Ki67 positivity at 48 hours. EVPs displayed a spherical lipid bilayer structure with particle sizes of 70-130 nm. CD9, CD63, and CD81 in liver-derived EVPs were confirmed. Transcriptomic and metabolomic analyses showed EVPs supplementation significantly promoted carnitine synthesis and fatty acid oxidation. Tissue staining confirmed accelerated TRAS resolution and enhanced liver regeneration with EVP supplementation. Mass spectrometry identified β-sitosterol in EVPs, which binds to Smo protein, activating the Hedgehog pathway. This led to the nuclear transport of Gli3, stimulating Setd5 transcription and inducing carnitine synthesis, thereby accelerating fatty acid oxidation. Mice with increased β-sitosterol intake showed faster TRAS resolution and liver regeneration compared to controls. Conclusion Liver-derived EVPs promote regeneration after partial hepatectomy. β-sitosterol from EVPs accelerates fatty acid oxidation and promotes liver regeneration by activating Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Tianyin Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yibo Chai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yimin Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Jie Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Wing Wa Guo
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Kavak N, Akcan G, Balcı N, Süer AA, Güler İ, Kavak RP. The impact of augmenter of liver regeneration in blunt liver trauma: An experimental model analysis. ULUS TRAVMA ACIL CER 2024; 30:472-479. [PMID: 38967532 PMCID: PMC11331352 DOI: 10.14744/tjtes.2024.92575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Traumatic liver injury is an acute event that triggers liver repair. The augmenter of liver regeneration (ALR) has been identified as a growth factor involved in this process. This study evaluates the impact of ALR on isolated liver blunt trauma and examines its relationship with various time intervals. METHODS Forty healthy female Wistar albino rats were divided into five groups (n=8 each). Isolated blunt liver trauma was induced using a custom-designed trauma platform in all groups except for Group 1. The groups were categorized by the timing of euthanasia post-trauma: 2nd (15 minutes), 3rd (30 minutes), 4th (45 minutes), and 5th (60 minutes). Assessments included plasma ALR levels, liver tissue ALR levels (both intact and lacerated), biochemical indices, and liver histological analysis. RESULTS Plasma ALR levels in Group 4 were higher than in Groups 1 and 2 (p<0.01). Intact liver ALR levels in Groups 3 and 4 exceeded those in Group 1 (p<0.05, p<0.01, respectively). Intact liver tissue ALR levels in Group 5 were lower than in Groups 3 and 4 (p<0.05, p<0.01, respectively). Lacerated liver tissue ALR levels in Group 5 were higher than those in Groups 2 and 3. In Group 1, the plasma ALR level was higher than the intact liver tissue ALR level (p<0.05). In Group 2, plasma ALR levels exceeded those in intact liver tissue ALR levels (p<0.01). In Group 3, plasma ALR levels surpassed both lacerated and intact liver tissue ALR levels (p<0.05, p<0.001, respectively). In Group 4, the plasma ALR level was higher than the intact liver tissue ALR level (p<0.01), and the lacerated liver tissue level was higher than the intact liver ALR level (p<0.001). Additionally, inflammation scores were higher in Groups 3, 4, and 5 compared to Group 2 (p<0.05, p<0.01, p<0.01, respectively). CONCLUSION This study is the first to explore the role of ALR in isolated blunt liver trauma. Following blunt liver trauma, both plasma and liver tissue ALR levels change within minutes.
Collapse
Affiliation(s)
- Nezih Kavak
- Department of Emergency, Etlik City Hospital, Ankara-Türkiye
| | - Gülben Akcan
- Department of Histology and Embryology, Karatay University, Konya-Türkiye
| | - Nurgül Balcı
- Republic of Türkiye, Ministry of Health, Family Medicine, General Directorate of Public Hospitals, Family Medicine, Ankara-Türkiye
| | - Aziz Ahmet Süer
- Coordinator Head Physician of Turkish Ministry of Health, Ankara City Hospital, General Surgery, Ankara-Türkiye
| | - İlkay Güler
- The Republic of Türkiye, Ministry of Health, Directorate of Public Hospitals, General Surgery, Ankara-Türkiye
| | | |
Collapse
|
6
|
Wang H, Tsung A, Mishra L, Huang H. Regulatory T cell: a double-edged sword from metabolic-dysfunction-associated steatohepatitis to hepatocellular carcinoma. EBioMedicine 2024; 101:105031. [PMID: 38401419 PMCID: PMC10904199 DOI: 10.1016/j.ebiom.2024.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming a leading cause of end-stage liver disease globally. Metabolic-dysfunction-associated steatohepatitis (MASH) represents a progressive inflammatory manifestation of MASLD. MASH underlies a versatile and dynamic inflammatory microenvironment, accompanied by aberrant metabolism and ongoing liver regeneration, establishing itself as a significant risk factor for hepatocellular carcinoma (HCC). The mechanisms underlying the escape and survival of malignant cells within the extensive inflammatory microenvironment of MASH remain elusive. Regulatory T cells (Tregs) play a crucial role in maintaining homeostasis and preventing excessive immune responses in the liver. Paradoxically, Tregs have been implicated in inhibiting tumour-promoting inflammation and facilitating the evasion of cancer cells. Recent studies have unveiled distinct behaviours of Tregs at different stages of MASLD, suggesting a dual role in the pathogenesis. In this review, we explore the fate of Tregs from MASLD to HCC, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lopa Mishra
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
7
|
Linghu L, Zong W, Liao Y, Chen Q, Meng F, Wang G, Liao Z, Lan X, Chen M. Herpetrione, a New Type of PPARα Ligand as a Therapeutic Strategy Against Nonalcoholic Steatohepatitis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0276. [PMID: 38034083 PMCID: PMC10687582 DOI: 10.34133/research.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease, especially nonalcoholic steatohepatitis (NASH), is a leading cause of cirrhosis and liver cancer worldwide; nevertheless, there are no Food and Drug Administration-approved drugs for treating NASH until now. Peroxisome proliferator-activated receptor alpha (PPARα) is an interesting therapeutic target for treating metabolic disorders in the clinic, including NASH. Herpetrione, a natural lignan compound isolated from Tibetan medicine Herpetospermum caudigerum, exerts various hepatoprotective effects, but its efficacy and molecular mechanism in treating NASH have not yet been elucidated. Here, we discovered that herpetrione lessened lipid accumulation and inflammation in hepatocytes stimulated with oleic acid and lipopolysaccharide, and effectively alleviated NASH caused by a high-fat diet or methionine-choline-deficient diet by regulating glucolipid metabolism, insulin resistance, and inflammation. Mechanistically, RNA-sequencing analyses further showed that herpetrione activated PPAR signaling, which was validated by protein expression. Furthermore, the analysis of molecular interactions illustrated that herpetrione bound directly to the PPARα protein, with binding sites extending to the Arm III domain. PPARα deficiency also abrogated the protective effects of herpetrione against NASH, suggesting that herpetrione protects against hepatic steatosis and inflammation by activation of PPARα signaling, thereby alleviating NASH. Our findings shed light on the efficacy of a natural product for treating NASH, as well as the broader prospects for NASH treatment by targeting PPARα.
Collapse
Affiliation(s)
- Lang Linghu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
- School of Pharmacy,
Zunyi Medical University, Zunyi 563000, China
| | - Wei Zong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Yixuan Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Qianyu Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Fancheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Guowei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, TAAHC SWU Medicinal Plant Joint R&D Centre,
Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center,
Tibet Agricultural and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences,
Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Nimphy J, Ibrahim S, Dayoub R, Kubitza M, Melter M, Weiss TS. Interleukin-1ß Attenuates Expression of Augmenter of Liver Regeneration (ALR) by Regulating HNF4α Independent of c-Jun. Int J Mol Sci 2023; 24:ijms24098107. [PMID: 37175814 PMCID: PMC10179097 DOI: 10.3390/ijms24098107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Inflammasomes and innate immune cells have been shown to contribute to liver injury, thereby activating Kupffer cells, which release several cytokines, including IL-6, IL-1ß, and TNFα. Augmenter of liver regeneration (ALR) is a hepatotropic co-mitogen that was found to have anti-oxidative and anti-apoptotic properties and to attenuate experimental non-alcoholic fatty liver disease (NAFLD) and cholestasis. Additionally, hepatic ALR expression is diminished in patients with NAFLD or cholestasis, but less is known about the mechanisms of its regulation under these conditions. Therefore, we aimed to investigate the role of IL-1ß in ALR expression and to elucidate the molecular mechanism of this regulation in vitro. We found that ALR promoter activity and mRNA and protein expression were reduced upon treatment with IL-1ß. Early growth response protein-1 (Egr-1), an ALR inducer, was induced by IL-1ß but could not activate ALR expression, which may be attributed to reduced Egr-1 binding to the ALR promoter. The expression and nuclear localization of hepatocyte nuclear factor 4 α (HNF4α), another ALR-inducing transcription factor, was reduced by IL-1ß. Interestingly, c-Jun, a potential regulator of ALR and HNF4α, showed increased nuclear phosphorylation levels upon IL-1ß treatment but did not change the expression of ALR or HNF4α. In conclusion, this study offers evidence regarding the regulation of anti-apoptotic and anti-oxidative ALR by IL-1ß through reduced Egr-1 promoter binding and diminished HNF4α expression independent of c-Jun activation. Low ALR tissue levels in NAFLD and cholestatic liver injury may be caused by IL-1ß and contribute to disease progression.
Collapse
Affiliation(s)
- Jonas Nimphy
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sara Ibrahim
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rania Dayoub
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Melter
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Kim JY, Kim SH, Seok J, Bae SH, Hwang SG, Kim GJ. Increased PRL-1 in BM-derived MSCs triggers anaerobic metabolism via mitochondria in a cholestatic rat model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:512-524. [PMID: 36865088 PMCID: PMC9970868 DOI: 10.1016/j.omtn.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cell (MSC) therapy in chronic liver disease is associated with mitochondrial anaerobic metabolism. Phosphatase of regenerating liver-1 (PRL-1), known as protein tyrosine phosphatase type 4A, member 1 (PTP4A1), plays a critical role in liver regeneration. However, its therapeutic mechanism remains obscure. The aim of this study was to establish genetically modified bone marrow (BM)-MSCs overexpressing PRL-1 (BM-MSCsPRL-1) and to investigate their therapeutic effects on mitochondrial anaerobic metabolism in a bile duct ligation (BDL)-injured cholestatic rat model. BM-MSCsPRL-1 were generated with lentiviral and nonviral gene delivery systems and characterized. Compared with naive cells, BM-MSCsPRL-1 showed an improved antioxidant capacity and mitochondrial dynamics and decreased cellular senescence. In particular, mitochondrial respiration in BM-MSCsPRL-1 generated using the nonviral system was significantly increased as well as mtDNA copy number and total ATP production. Moreover, transplantation of BM-MSCsPRL-1 generated using the nonviral system had predominantly antifibrotic effects and restored hepatic function in a BDL rat model. Decreased cytoplasmic lactate and increased mitochondrial lactate upon the administration of BM-MSCsPRL-1 indicated significant alterations in mtDNA copy number and ATP production, activating anaerobic metabolism. In conclusion, BM-MSCsPRL-1 generated by a nonviral gene delivery system enhanced anaerobic mitochondrial metabolism in a cholestatic rat model, improving hepatic function.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Se Ho Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Republic of Korea
| | - Seong-Gyu Hwang
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea,Research Institute of Placental Science, CHA University, Seongnam 13488, Republic of Korea,Corresponding author Gi Jin Kim, Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si 13488, Republic of Korea.
| |
Collapse
|
10
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:15791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Verma AK, Sharma A, Subramaniyam N, Gandhi CR. Augmenter of liver regeneration: Mitochondrial function and steatohepatitis. J Hepatol 2022; 77:1410-1421. [PMID: 35777586 DOI: 10.1016/j.jhep.2022.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
Augmenter of liver regeneration (ALR), a ubiquitous fundamental life protein, is expressed more abundantly in the liver than other organs. Expression of ALR is highest in hepatocytes, which also constitutively secrete it. ALR gene transcription is regulated by NRF2, FOXA2, SP1, HNF4α, EGR-1 and AP1/AP4. ALR's FAD-linked sulfhydryl oxidase activity is essential for protein folding in the mitochondrial intermembrane space. ALR's functions also include cytochrome c reductase and protein Fe/S maturation activities. ALR depletion from hepatocytes leads to increased oxidative stress, impaired ATP synthesis and apoptosis/necrosis. Loss of ALR's functions due to homozygous mutation causes severe mitochondrial defects and congenital progressive multiorgan failure, suggesting that individuals with one functional ALR allele might be susceptible to disorders involving compromised mitochondrial function. Genetic ablation of ALR from hepatocytes induces structural and functional mitochondrial abnormalities, dysregulation of lipid homeostasis and development of steatohepatitis. High-fat diet-fed ALR-deficient mice develop non-alcoholic steatohepatitis (NASH) and fibrosis, while hepatic and serum levels of ALR are lower than normal in human NASH and NASH-cirrhosis. Thus, ALR deficiency may be a critical predisposing factor in the pathogenesis and progression of NASH.
Collapse
Affiliation(s)
- Alok Kumar Verma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Nithyananthan Subramaniyam
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
12
|
Dong Y, Zhang Y, Feng Y, An W. The protective roles of augmenter of liver regeneration in hepatocytes in the non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:928606. [PMID: 36304168 PMCID: PMC9592723 DOI: 10.3389/fphar.2022.928606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the augmenter of liver regeneration (ALR) is a key factor in liver regulation that can alleviate fatty liver disease and protect the liver from abnormal liver lipid metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which 23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane space (IMS), whereby it protects the liver against various types of injury. In this review, we describe the role of ALR in regulating hepatocytes in the context of NAFLD. We also discuss questions about ALR that remain to be explored in the future. In conclusion, ALR appears to be a promising therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuejie Zhang
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| |
Collapse
|
13
|
Cai J, Huang J, Yang J, Chen X, Zhang H, Zhu Y, Liu Q, Zhang Z. The protective effect of selenoprotein M on non-alcoholic fatty liver disease: the role of the AMPKα1-MFN2 pathway and Parkin mitophagy. Cell Mol Life Sci 2022; 79:354. [PMID: 35678878 PMCID: PMC11073218 DOI: 10.1007/s00018-022-04385-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is related to a dysregulation of mitophagy, a process that is not fully understood. Parkin-related mitophagy can sustain mitochondrial homeostasis and hepatocyte viability. Herein, we report that selenoprotein M (SELENOM) plays a central role in maintaining mitophagy in high-fat diet (HFD)-mediated NAFLD. We show that SELENOM was significantly downregulated in the liver of HFD-fed mice. SELENOM deletion aggravated HFD-mediated hepatic steatosis, inflammation, and fibrosis; accompanied by enhanced fatty acid oxidation and oxidative stress in the liver. Molecular analyses show that lipotoxicity was related to increased mitochondrial apoptosis as evidenced by enhanced mitochondrial ROS production, and attenuation of mitochondrial potential in the liver of HFD-fed SELENOM-/- mice. Additionally, SELENOM deletion reduced mitophagy and aggravated hepatic injury in NAFLD. Mechanistically, SELENOM overexpression activated Parkin-mediated mitophagy to reduce mitochondrial apoptosis and remove HFD-damaged mitochondria. We further found that SELENOM regulates Parkin expression via the AMPKα1-MFN2 pathway; blockade of AMPKα1 prevented SELENOM activation of Parkin-mediated mitophagy. Our work identified SELENOM downregulation as a possible explanation for the defective mitophagy in NAFLD. Thus, targeting SELENOM may be potential new therapeutic modalities for NAFLD treatment.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education, Harbin, People's Republic of China.
| |
Collapse
|
14
|
Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43:1141-1155. [PMID: 35105958 PMCID: PMC9061859 DOI: 10.1038/s41401-022-00864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
Collapse
|
15
|
Wang G, Su Z, Li H, Xiao L, Li C, Lian G. The role of metabolism in Th17 cell differentiation and autoimmune diseases. Int Immunopharmacol 2021; 103:108450. [PMID: 34954561 DOI: 10.1016/j.intimp.2021.108450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 12/24/2022]
Abstract
T helper 17 cells (Th17) have been associated with the pathogenesis of autoimmune and inflammatory diseases, which makes them become a sharp focus when the researchers are seeking therapeutic target for these diseases. A growing body of evidence has suggested that cellular metabolism dictates Th17 cell differentiation and effector function. Moreover, various studies have disclosed that metabolism is linked to the occurrence of autoimmune diseases. In this article, we reviewed the most recent findings regarding the importance of metabolism in Th17 cell differentiation and autoimmune diseases and also discussed the modulation mechanisms of glycolysis, fatty acid and cholesterol synthesis, and amino acids metabolism for Th17 cell differentiation. This review summarized the potential therapeutic or preventing strategies for Th17 cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Guang Wang
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education.
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Li Xiao
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chengyue Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Zhang C, Yang M. Targeting T Cell Subtypes for NAFLD and NAFLD-Related HCC Treatment: An Opinion. Front Med (Lausanne) 2021; 8:789859. [PMID: 34869507 PMCID: PMC8637206 DOI: 10.3389/fmed.2021.789859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| |
Collapse
|
17
|
Hur S, Oh B, Kim H, Kwon O. Associations of Diet Quality and Sleep Quality with Obesity. Nutrients 2021; 13:nu13093181. [PMID: 34579058 PMCID: PMC8466020 DOI: 10.3390/nu13093181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Short sleep duration or poor sleep quality has been associated with an increased risk of obesity. Although the underlying mechanism remains unclear, one proposed pathway is poor diet quality. This cross-sectional study investigated whether diet quality modifies the association between sleep status and obesity in Korean adults. We used the baseline data and samples of 737 men and 428 women (n = 1165) aged 19–64, who participated in the prospective Ewha–Boramae cohort study. Sleep duration was dichotomized into ≥7 h (adequate) and <7 h (insufficient). Pittsburgh Sleep Quality Index (PSQI) values, reflecting sleep quality, were dichotomized into >5 (poor quality) and ≤5 (good quality). Diet quality was evaluated by the Recommended Food Score (RFS). Obesity was associated with higher rates of insufficient sleep and poor sleep quality in women, but not in men. After adjustment for covariates, women with poor sleep quality had a higher risk of obesity than women with good sleep quality (OR = 2.198; 95% CI = 1.027–4.704); this association occurred only in the group with RFS ≤ median score. Our findings support a significant association between sleep quality and obesity, and this association has been potentially modified by dietary quality in women.
Collapse
Affiliation(s)
- Soohee Hur
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
- System Health & Engineering Major in Graduate School, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Bumjo Oh
- Department of Family Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Korea;
| | - Hyesook Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
- System Health & Engineering Major in Graduate School, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
- Correspondence: (H.K.); (O.K.); Tel./Fax: +82-2-3277-6860 (O.K.)
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
- System Health & Engineering Major in Graduate School, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
- Correspondence: (H.K.); (O.K.); Tel./Fax: +82-2-3277-6860 (O.K.)
| |
Collapse
|
18
|
Lan T, Yu Y, Zhang J, Li H, Weng Q, Jiang S, Tian S, Xu T, Hu S, Yang G, Zhang Y, Wang W, Wang L, Zhu Q, Rong X, Guo J. Cordycepin Ameliorates Nonalcoholic Steatohepatitis by Activation of the AMP-Activated Protein Kinase Signaling Pathway. Hepatology 2021; 74:686-703. [PMID: 33576035 PMCID: PMC8457150 DOI: 10.1002/hep.31749] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease, especially nonalcoholic steatohepatitis (NASH), has become a major cause of liver transplantation and liver-associated death. NASH is the hepatic manifestation of metabolic syndrome and is characterized by hepatic steatosis, inflammation, hepatocellular injury, and different degrees of fibrosis. However, there is no US Food and Drug Administration-approved medication to treat this devastating disease. Therapeutic activators of the AMP-activated protein kinase (AMPK) have been proposed as a potential treatment for metabolic diseases such as NASH. Cordycepin, a natural product isolated from the traditional Chinese medicine Cordyceps militaris, has recently emerged as a promising drug candidate for metabolic diseases. APPROACH AND RESULTS We evaluated the effects of cordycepin on lipid storage in hepatocytes, inflammation, and fibrosis development in mice with NASH. Cordycepin attenuated lipid accumulation, inflammation, and lipotoxicity in hepatocytes subjected to metabolic stress. In addition, cordycepin treatment significantly and dose-dependently decreased the elevated levels of serum aminotransferases in mice with diet-induced NASH. Furthermore, cordycepin treatment significantly reduced hepatic triglyceride accumulation, inflammatory cell infiltration, and hepatic fibrosis in mice. In vitro and in vivo mechanistic studies revealed that a key mechanism linking the protective effects of cordycepin were AMPK phosphorylation-dependent, as indicated by the finding that treatment with the AMPK inhibitor Compound C abrogated cordycepin-induced hepatoprotection in hepatocytes and mice with NASH. CONCLUSION Cordycepin exerts significant protective effects against hepatic steatosis, inflammation, liver injury, and fibrosis in mice under metabolic stress through activation of the AMPK signaling pathway. Cordycepin might be an AMPK activator that can be used for the treatment of NASH.
Collapse
|
19
|
Weng J, Wang X, Xu B, Li W. Augmenter of liver regeneration ameliorates ischemia-reperfusion injury in steatotic liver via inhibition of the TLR4/NF-κB pathway. Exp Ther Med 2021; 22:863. [PMID: 34178136 PMCID: PMC8220637 DOI: 10.3892/etm.2021.10295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Hepatocytes from donors with preexisting hepatic steatosis exhibited increased sensitivity to ischemia-reperfusion injury (IRI) during liver transplantation. Augmenter of liver regeneration (ALR) protected the liver against IRI, but the mechanism was not clarified. Therefore, the hypothesis that ALR attenuated IRI in steatotic liver by inhibition of inflammation and downregulation of the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway was examined. C57BL/6 mice were subjected to a methionine-choline-deficient (MCD) diet to induce liver steatosis. Mice were transfected with ALR-containing adenovirus 3 days prior to partial warm hepatic IRI. After 30 min of ischemia and 6 h of reperfusion injury, liver function, hepatic injury, the inflammatory response and TLR4/NF-κB signaling pathway activation were assessed. ALR maintained liver function and alleviated hepatic injury as indicated by the decreased levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), preserved hepatic structure and reduced apoptosis. ALR also reduced the IRI-induced inflammatory response by suppressing Kupffer cell activation, inhibiting neutrophil chemotaxis and reducing inflammatory cytokine production. Further investigation using reverse transcription-quantitative PCR, western blotting and immunohistochemistry revealed that ALR reduced TLR4/NF-κB signaling pathway activation, which led to a decreased synthesis of inflammatory cytokines. ALR functioned as a regulator of the IRI-induced inflammatory response by suppressing the TLR4/NF-κB pathway, which supports the use of ALR in therapeutic applications for fatty liver transplantation.
Collapse
Affiliation(s)
- Junhua Weng
- Department of Gastroenterology, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Xin Wang
- Beijing Key Laboratory of Diabetes Research and Care Center for Endocrine Metabolism and Immune Diseases, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Wen Li
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
20
|
The Effect of Lipid Metabolism on CD4 + T Cells. Mediators Inflamm 2021; 2021:6634532. [PMID: 33505215 PMCID: PMC7806377 DOI: 10.1155/2021/6634532] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells play a vital role in the adaptive immune system and are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. As an important mechanism for energy storage, a lot of researches have clarified that metabolism imbalance interacts with immune disorder, and one leads to the other. Lipid metabolism has close relationship with CD4+ T cells. In this review, we discuss fatty acid, cholesterol, prostaglandin, and phospholipid metabolism in CD4+ T cell subsets. Fatty acid β-oxidation (FAO) is activated in Th17 cell to support the proinflammatory function. Cholesterol promotes Th1, Th2, and Treg cell differentiation. In addition to glucose metabolism, lipid metabolism is also very important for immunity. Here, it is highlighted that lipid metabolism regulates CD4+ T cell differentiation and function and is related to diseases.
Collapse
|
21
|
Verma AK, Gandhi CR. Reply. Hepatology 2020; 72:1157-1158. [PMID: 32219876 DOI: 10.1002/hep.31246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Alok K Verma
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
22
|
Weiss TS, Melter M, Dayoub R. Letter to the Editor: Does Augmenter of Liver Regeneration Deficiency Pave the Way for Nonalcoholic Steatohepatitis Progression? Hepatology 2020; 72:1156-1157. [PMID: 32222994 DOI: 10.1002/hep.31248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas S Weiss
- Children's University Hospital (KUNO), University Hospital Regensburg, Regensburg, Germany
| | - Michael Melter
- Children's University Hospital (KUNO), University Hospital Regensburg, Regensburg, Germany
| | - Rania Dayoub
- Children's University Hospital (KUNO), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Chen Y, Tian Z. Roles of Hepatic Innate and Innate-Like Lymphocytes in Nonalcoholic Steatohepatitis. Front Immunol 2020; 11:1500. [PMID: 32765518 PMCID: PMC7378363 DOI: 10.3389/fimmu.2020.01500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease (NAFLD), is accompanied by steatosis, hepatocyte injury and liver inflammation, which has been a health problem in the world as one of the major high risk factors of cirrhosis and hepatocellular carcinoma (HCC). Complex immune responses involving T cells, B cells, Kupffer cells, monocytes, neutrophils, DCs and other innate lymphocytes account for the pathogenesis of NASH; however, the underlying mechanisms have not been clearly elucidated in detail. In the liver, innate and innate-like lymphocytes account for more than two-thirds of total lymphocytes and play an important role in maintaining the immune homeostasis. Therefore, their roles in the progression of NASH deserves investigation. In this review, we summarized murine NASH models for immunological studies, including the diet-induced NASH, chemical-induced NASH and genetic-induced NASH. The role of innate and innate-like lymphocytes including NK cells, ILCs, NKT, γδT and MAIT cells in the progression of NASH were elucidated. Further, the metabolic regulation of the innate immune response was addressed in consideration to explain the molecular mechanisms. Based on the findings of the reviewed studies, strategies of immune intervention are proposed to control the progression of NASH.
Collapse
Affiliation(s)
- Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|