1
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
2
|
Khabou B, Kallabi F, Abdelaziz RB, Maaloul I, Aloulou H, Chehida AB, Kammoun T, Barbu V, Boudawara TS, Fakhfakh F, Khemakhem B, Sahnoun OS. Molecular and computational characterization of ABCB11 and ABCG5 variants in Tunisian patients with neonatal/infantile low-GGT intrahepatic cholestasis: Genetic diagnosis and genotype-phenotype correlation assessment. Ann Hum Genet 2024; 88:194-211. [PMID: 38108658 DOI: 10.1111/ahg.12542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Many inherited conditions cause hepatocellular cholestasis in infancy, including progressive familial intrahepatic cholestasis (PFIC), a heterogeneous group of diseases with highly overlapping symptoms. In our study, six unrelated Tunisian infants with PFIC suspicion were the subject of a panel-target sequencing followed by an exhaustive bioinformatic and modeling investigations. Results revealed five disease-causative variants including known ones: (the p.Asp482Gly and p.Tyr354 * in the ABCB11 gene and the p.Arg446 * in the ABCC2 gene), a novel p.Ala98Cys variant in the ATP-binding cassette subfamily G member 5 (ABCG5) gene and a first homozygous description of the p.Gln312His in the ABCB11 gene. The p.Gln312His disrupts the interaction pattern of the bile salt export pump as well as the flexibility of the second intracellular loop domain harboring this residue. As for the p.Ala98Cys, it modulates both the interactions within the first nucleotide-binding domain of the bile transporter and its accessibility. Two additional potentially modifier variants in cholestasis-associated genes were retained based on their pathogenicity (p.Gly758Val in the ABCC2 gene) and functionality (p.Asp19His in the ABCG8 gene). Molecular findings allowed a PFIC2 diagnosis in five patients and an unexpected diagnosis of sisterolemia in one case. The absence of genotype/phenotype correlation suggests the implication of environmental and epigenetic factors as well as modifier variants involved directly or indirectly in the bile composition, which could explain the cholestasis phenotypic variability.
Collapse
Affiliation(s)
- Boudour Khabou
- Molecular and Functional Genetics Laboratory, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Fakhri Kallabi
- Molecular and Human Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Rim Ben Abdelaziz
- Department of Pediatrics, Hospital La Rabta, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Ines Maaloul
- Department of Pediatrics, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Hajer Aloulou
- Department of Pediatrics, University Hospital Hedi Chaker, Sfax, Tunisia
| | | | - Thouraya Kammoun
- Department of Pediatrics, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Veronique Barbu
- LCBGM, Medical Biology and Pathology Department, APHP, HUEP, St Antoine Hospital, Sorbonne University, Paris, France
| | | | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Bassem Khemakhem
- Plant Biotechnology Laboratory, Faculty of Sciences, Sfax University, Sfax, Tunisia
| | - Olfa Siala Sahnoun
- Molecular and Functional Genetics Laboratory, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Xie S, Wei S, Ma X, Wang R, He T, Zhang Z, Yang J, Wang J, Chang L, Jing M, Li H, Zhou X, Zhao Y. Genetic alterations and molecular mechanisms underlying hereditary intrahepatic cholestasis. Front Pharmacol 2023; 14:1173542. [PMID: 37324459 PMCID: PMC10264785 DOI: 10.3389/fphar.2023.1173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.
Collapse
Affiliation(s)
- Shuying Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Zheng Y, Zhou C, Zheng B, Hu G, Wang C, Zhou W, Lu Y, Zhang Z, Lin Q, Guo H, Jin Y, Liu Z, Tang W. Antisense oligonucleotides rescue an intronic splicing variant in the ABCB11 gene that causes progressive familial intrahepatic cholestasis type 2. Dig Liver Dis 2022; 54:1541-1547. [PMID: 35490150 DOI: 10.1016/j.dld.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a rare disorder caused by variants in the ABCB11 gene encoding the bile salt export pump (BSEP). We investigated the molecular defect in a PFIC2 infant and rescued the splicing defect with antisense oligonucleotides (ASOs). METHODS Whole-exome sequencing (WES) revealed compound heterozygous variants in the ABCB11 gene in a PFIC2 patient. Liver biopsy was immunostained for BSEP. The splicing effect of the candidate variants was investigated by minigene assay. ASOs were designed to rescue aberrant splicing. RESULTS A Chinese girl of two nonconsanguineous healthy parents suffered from low glutamyl transpeptidase cholestasis and showed no response to the ursodeoxycholic acid. WES revealed that the patient was compound heterozygous for two novel variants in the ABCB11 gene: c.76+29T>G and c.390-2A>G. Liver immunohistochemistry showed the absence of BSEP. The variant c.76+29T>G was confirmed to retain 42 bp in the mature mRNA. The variant c.390-2A>G was confirmed to cause exon 6 skipping. We designed two ASOs and identified one of them that efficiently induced pseudoexon exclusion. CONCLUSION We reported two novel variants of the ABCB11 gene, c.76+29T>G and c.390-2A>G, in a PFIC2 infant, thereby expanding the genotype of PFIC2. Our findings provide evidence for ASOs as a therapeutic approach for PFIC2 patients carrying intronic variants.
Collapse
Affiliation(s)
- Yucan Zheng
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guorui Hu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihua Zhang
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lin
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongmei Guo
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Jin
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhifeng Liu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators. Int J Mol Sci 2022; 23:ijms231810758. [PMID: 36142670 PMCID: PMC9502978 DOI: 10.3390/ijms231810758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin–Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter.
Collapse
|
6
|
2-Guanidino-quinazoline promotes the readthrough of nonsense mutations underlying human genetic diseases. Proc Natl Acad Sci U S A 2022; 119:e2122004119. [PMID: 35994666 PMCID: PMC9436315 DOI: 10.1073/pnas.2122004119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Nonsense mutations account for approximately 11% of all described gene lesions causing human inherited diseases. This premature termination codon (PTC) leads to the premature arrest of translation that generates a truncated peptide and the degradation of the corresponding mRNA through the nonsense-mediated mRNA decay (NMD) pathway. The possibility of restoring the protein expression by promoting PTC readthrough using drugs appears to be an important therapeutic strategy. Unfortunately, this strategy is limited by the small number of molecules known to promote PTC readthrough without affecting normal translation termination. In this work, we identify a new molecule, TLN468, that promotes a high level of PTC readthrough without a detectable effect on normal stop codons. Premature termination codons (PTCs) account for 10 to 20% of genetic diseases in humans. The gene inactivation resulting from PTCs can be counteracted by the use of drugs stimulating PTC readthrough, thereby restoring production of the full-length protein. However, a greater chemical variety of readthrough inducers is required to broaden the medical applications of this therapeutic strategy. In this study, we developed a reporter cell line and performed high-throughput screening (HTS) to identify potential readthrough inducers. After three successive assays, we isolated 2-guanidino-quinazoline (TLN468). We assessed the clinical potential of this drug as a potent readthrough inducer on the 40 PTCs most frequently responsible for Duchenne muscular dystrophy (DMD). We found that TLN468 was more efficient than gentamicin, and acted on a broader range of sequences, without inducing the readthrough of normal stop codons (TC).
Collapse
|
7
|
Matakovic L, Overeem AW, Klappe K, van IJzendoorn SCD. Induction of Bile Canaliculi-Forming Hepatocytes from Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2544:71-82. [PMID: 36125710 DOI: 10.1007/978-1-0716-2557-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell polarity and formation of bile canaliculi can be achieved in hepatocytes which are generated from patient-derived induced pluripotent stem cells. This allows for the study of endogenous mutant proteins, patient-specific pathogenesis, and drug responses for diseases where hepatocyte polarity and bile canaliculi play a key role. Here, we describe a step-by-step protocol for the generation of bile canaliculi-forming hepatocytes from induced pluripotent stem cells and their evaluation.
Collapse
Affiliation(s)
- Lavinija Matakovic
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arend W Overeem
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Felzen A, Verkade HJ. The spectrum of Progressive Familial Intrahepatic Cholestasis diseases: Update on pathophysiology and emerging treatments. Eur J Med Genet 2021; 64:104317. [PMID: 34478903 DOI: 10.1016/j.ejmg.2021.104317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The Progressive Familial Intrahepatic Cholestasis (PFIC) disease spectrum encompasses a variety of genetic diseases that affect the bile production and the secretion of bile acids. Typically, the first presentation of these diseases is in early childhood, frequently followed by a severe course necessitating liver transplantation before adulthood. Except for transplantation, treatment modalities have been rather limited and frequently only aim at the symptoms of cholestasis, such as cholestatic pruritus. In recent years, progress has been made in understanding the pathophysiology of these diseases and new treatment modalities have been emerging. Herewith we summarize the latest developments in the field and formulate the current key questions and opportunities for further progress.
Collapse
Affiliation(s)
- Antonia Felzen
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
9
|
Matakovic L, Li Q, van Ijzendoorn SC. Letter to the Editor: Liver Cell Models for Premature Termination Codon Readthrough Analyses. Hepatology 2021; 74:1711-1712. [PMID: 33314224 PMCID: PMC8518879 DOI: 10.1002/hep.31682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lavinija Matakovic
- Department of Biomedical Sciences of Cells and SystemsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and SystemsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Center for Liver Digestive & Metabolic DiseasesUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Sven C.D. van Ijzendoorn
- Department of Biomedical Sciences of Cells and SystemsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Center for Liver Digestive & Metabolic DiseasesUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
10
|
Kunst RF, Verkade HJ, Oude Elferink RP, van de Graaf SF. Targeting the Four Pillars of Enterohepatic Bile Salt Cycling; Lessons From Genetics and Pharmacology. Hepatology 2021; 73:2577-2585. [PMID: 33222321 PMCID: PMC8252069 DOI: 10.1002/hep.31651] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Bile salts play a pivotal role in lipid homeostasis, are sensed by specialized receptors, and have been implicated in various disorders affecting the gut or liver. They may play a role either as culprit or as potential panacea. Four very efficient transporters mediate most of the hepatic and intestinal bile salt uptake and efflux, and are each essential for the efficient enterohepatic circulation of bile salts. Starting from the intestinal lumen, conjugated bile salts cross the otherwise impermeable lipid bilayer of (primarily terminal ileal) enterocytes through the apical sodium-dependent bile acid transporter (gene SLC10A2) and leave the enterocyte through the basolateral heteromeric organic solute transporter, which consists of an alpha and beta subunit (encoded by SLC51A and SLC51B). The Na+ -taurocholate cotransporting polypeptide (gene SLC10A1) efficiently clears the portal circulation of bile salts, and the apical bile salt export pump (gene ABCB11) pumps the bile salts out of the hepatocyte into primary bile, against a very steep concentration gradient. Recently, individuals lacking either functional Na+ -taurocholate cotransporting polypeptide or organic solute transporter have been described, completing the quartet of bile acid transport deficiencies, as apical sodium-dependent bile acid transporter and bile salt export pump deficiencies were already known for years. Novel pathophysiological insights have been obtained from knockout mice lacking functional expression of these genes and from pharmacological transporter inhibition in mice or humans. Conclusion: We provide a concise overview of the four main bile salt transport pathways and of their status as possible targets of interventions in cholestatic or metabolic disorders.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- Animals
- Bile Acids and Salts/metabolism
- Biological Transport, Active/drug effects
- Biological Transport, Active/physiology
- Drug Development
- Enterohepatic Circulation/drug effects
- Enterohepatic Circulation/physiology
- Humans
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- Organic Anion Transporters, Sodium-Dependent/genetics
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Symporters/antagonists & inhibitors
- Symporters/genetics
- Symporters/metabolism
Collapse
Affiliation(s)
- Roni F. Kunst
- Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamthe Netherlands
| | - Henkjan J. Verkade
- Pediatric Gastroenterology/HepatologyDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamthe Netherlands
- Department of Gastroenterology and HepatologyAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamthe Netherlands
- Department of Gastroenterology and HepatologyAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
11
|
Sohail MI, Dönmez-Cakil Y, Szöllősi D, Stockner T, Chiba P. The Bile Salt Export Pump: Molecular Structure, Study Models and Small-Molecule Drugs for the Treatment of Inherited BSEP Deficiencies. Int J Mol Sci 2021; 22:E784. [PMID: 33466755 PMCID: PMC7830293 DOI: 10.3390/ijms22020784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The bile salt export pump (BSEP/ABCB11) is responsible for the transport of bile salts from hepatocytes into bile canaliculi. Malfunction of this transporter results in progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2) and intrahepatic cholestasis of pregnancy (ICP). Over the past few years, several small molecular weight compounds have been identified, which hold the potential to treat these genetic diseases (chaperones and potentiators). As the treatment response is mutation-specific, genetic analysis of the patients and their families is required. Furthermore, some of the mutations are refractory to therapy, with the only remaining treatment option being liver transplantation. In this review, we will focus on the molecular structure of ABCB11, reported mutations involved in cholestasis and current treatment options for inherited BSEP deficiencies.
Collapse
Affiliation(s)
| | - Yaprak Dönmez-Cakil
- Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Maltepe, 34857 Istanbul, Turkey;
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse, 13A, 1090 Vienna, Austria;
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Waehringerstrasse, 10, 1090 Vienna, Austria
| |
Collapse
|